Move to xautodl
This commit is contained in:
760
xautodl/models/shape_searchs/SearchCifarResNet.py
Normal file
760
xautodl/models/shape_searchs/SearchCifarResNet.py
Normal file
@@ -0,0 +1,760 @@
|
||||
##################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
|
||||
##################################################
|
||||
import math, torch
|
||||
from collections import OrderedDict
|
||||
from bisect import bisect_right
|
||||
import torch.nn as nn
|
||||
from ..initialization import initialize_resnet
|
||||
from ..SharedUtils import additive_func
|
||||
from .SoftSelect import select2withP, ChannelWiseInter
|
||||
from .SoftSelect import linear_forward
|
||||
from .SoftSelect import get_width_choices
|
||||
|
||||
|
||||
def get_depth_choices(nDepth, return_num):
|
||||
if nDepth == 2:
|
||||
choices = (1, 2)
|
||||
elif nDepth == 3:
|
||||
choices = (1, 2, 3)
|
||||
elif nDepth > 3:
|
||||
choices = list(range(1, nDepth + 1, 2))
|
||||
if choices[-1] < nDepth:
|
||||
choices.append(nDepth)
|
||||
else:
|
||||
raise ValueError("invalid nDepth : {:}".format(nDepth))
|
||||
if return_num:
|
||||
return len(choices)
|
||||
else:
|
||||
return choices
|
||||
|
||||
|
||||
def conv_forward(inputs, conv, choices):
|
||||
iC = conv.in_channels
|
||||
fill_size = list(inputs.size())
|
||||
fill_size[1] = iC - fill_size[1]
|
||||
filled = torch.zeros(fill_size, device=inputs.device)
|
||||
xinputs = torch.cat((inputs, filled), dim=1)
|
||||
outputs = conv(xinputs)
|
||||
selecteds = [outputs[:, :oC] for oC in choices]
|
||||
return selecteds
|
||||
|
||||
|
||||
class ConvBNReLU(nn.Module):
|
||||
num_conv = 1
|
||||
|
||||
def __init__(
|
||||
self, nIn, nOut, kernel, stride, padding, bias, has_avg, has_bn, has_relu
|
||||
):
|
||||
super(ConvBNReLU, self).__init__()
|
||||
self.InShape = None
|
||||
self.OutShape = None
|
||||
self.choices = get_width_choices(nOut)
|
||||
self.register_buffer("choices_tensor", torch.Tensor(self.choices))
|
||||
|
||||
if has_avg:
|
||||
self.avg = nn.AvgPool2d(kernel_size=2, stride=2, padding=0)
|
||||
else:
|
||||
self.avg = None
|
||||
self.conv = nn.Conv2d(
|
||||
nIn,
|
||||
nOut,
|
||||
kernel_size=kernel,
|
||||
stride=stride,
|
||||
padding=padding,
|
||||
dilation=1,
|
||||
groups=1,
|
||||
bias=bias,
|
||||
)
|
||||
# if has_bn : self.bn = nn.BatchNorm2d(nOut)
|
||||
# else : self.bn = None
|
||||
self.has_bn = has_bn
|
||||
self.BNs = nn.ModuleList()
|
||||
for i, _out in enumerate(self.choices):
|
||||
self.BNs.append(nn.BatchNorm2d(_out))
|
||||
if has_relu:
|
||||
self.relu = nn.ReLU(inplace=True)
|
||||
else:
|
||||
self.relu = None
|
||||
self.in_dim = nIn
|
||||
self.out_dim = nOut
|
||||
self.search_mode = "basic"
|
||||
|
||||
def get_flops(self, channels, check_range=True, divide=1):
|
||||
iC, oC = channels
|
||||
if check_range:
|
||||
assert (
|
||||
iC <= self.conv.in_channels and oC <= self.conv.out_channels
|
||||
), "{:} vs {:} | {:} vs {:}".format(
|
||||
iC, self.conv.in_channels, oC, self.conv.out_channels
|
||||
)
|
||||
assert (
|
||||
isinstance(self.InShape, tuple) and len(self.InShape) == 2
|
||||
), "invalid in-shape : {:}".format(self.InShape)
|
||||
assert (
|
||||
isinstance(self.OutShape, tuple) and len(self.OutShape) == 2
|
||||
), "invalid out-shape : {:}".format(self.OutShape)
|
||||
# conv_per_position_flops = self.conv.kernel_size[0] * self.conv.kernel_size[1] * iC * oC / self.conv.groups
|
||||
conv_per_position_flops = (
|
||||
self.conv.kernel_size[0] * self.conv.kernel_size[1] * 1.0 / self.conv.groups
|
||||
)
|
||||
all_positions = self.OutShape[0] * self.OutShape[1]
|
||||
flops = (conv_per_position_flops * all_positions / divide) * iC * oC
|
||||
if self.conv.bias is not None:
|
||||
flops += all_positions / divide
|
||||
return flops
|
||||
|
||||
def get_range(self):
|
||||
return [self.choices]
|
||||
|
||||
def forward(self, inputs):
|
||||
if self.search_mode == "basic":
|
||||
return self.basic_forward(inputs)
|
||||
elif self.search_mode == "search":
|
||||
return self.search_forward(inputs)
|
||||
else:
|
||||
raise ValueError("invalid search_mode = {:}".format(self.search_mode))
|
||||
|
||||
def search_forward(self, tuple_inputs):
|
||||
assert (
|
||||
isinstance(tuple_inputs, tuple) and len(tuple_inputs) == 5
|
||||
), "invalid type input : {:}".format(type(tuple_inputs))
|
||||
inputs, expected_inC, probability, index, prob = tuple_inputs
|
||||
index, prob = torch.squeeze(index).tolist(), torch.squeeze(prob)
|
||||
probability = torch.squeeze(probability)
|
||||
assert len(index) == 2, "invalid length : {:}".format(index)
|
||||
# compute expected flop
|
||||
# coordinates = torch.arange(self.x_range[0], self.x_range[1]+1).type_as(probability)
|
||||
expected_outC = (self.choices_tensor * probability).sum()
|
||||
expected_flop = self.get_flops([expected_inC, expected_outC], False, 1e6)
|
||||
if self.avg:
|
||||
out = self.avg(inputs)
|
||||
else:
|
||||
out = inputs
|
||||
# convolutional layer
|
||||
out_convs = conv_forward(out, self.conv, [self.choices[i] for i in index])
|
||||
out_bns = [self.BNs[idx](out_conv) for idx, out_conv in zip(index, out_convs)]
|
||||
# merge
|
||||
out_channel = max([x.size(1) for x in out_bns])
|
||||
outA = ChannelWiseInter(out_bns[0], out_channel)
|
||||
outB = ChannelWiseInter(out_bns[1], out_channel)
|
||||
out = outA * prob[0] + outB * prob[1]
|
||||
# out = additive_func(out_bns[0]*prob[0], out_bns[1]*prob[1])
|
||||
|
||||
if self.relu:
|
||||
out = self.relu(out)
|
||||
else:
|
||||
out = out
|
||||
return out, expected_outC, expected_flop
|
||||
|
||||
def basic_forward(self, inputs):
|
||||
if self.avg:
|
||||
out = self.avg(inputs)
|
||||
else:
|
||||
out = inputs
|
||||
conv = self.conv(out)
|
||||
if self.has_bn:
|
||||
out = self.BNs[-1](conv)
|
||||
else:
|
||||
out = conv
|
||||
if self.relu:
|
||||
out = self.relu(out)
|
||||
else:
|
||||
out = out
|
||||
if self.InShape is None:
|
||||
self.InShape = (inputs.size(-2), inputs.size(-1))
|
||||
self.OutShape = (out.size(-2), out.size(-1))
|
||||
return out
|
||||
|
||||
|
||||
class ResNetBasicblock(nn.Module):
|
||||
expansion = 1
|
||||
num_conv = 2
|
||||
|
||||
def __init__(self, inplanes, planes, stride):
|
||||
super(ResNetBasicblock, self).__init__()
|
||||
assert stride == 1 or stride == 2, "invalid stride {:}".format(stride)
|
||||
self.conv_a = ConvBNReLU(
|
||||
inplanes,
|
||||
planes,
|
||||
3,
|
||||
stride,
|
||||
1,
|
||||
False,
|
||||
has_avg=False,
|
||||
has_bn=True,
|
||||
has_relu=True,
|
||||
)
|
||||
self.conv_b = ConvBNReLU(
|
||||
planes, planes, 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=False
|
||||
)
|
||||
if stride == 2:
|
||||
self.downsample = ConvBNReLU(
|
||||
inplanes,
|
||||
planes,
|
||||
1,
|
||||
1,
|
||||
0,
|
||||
False,
|
||||
has_avg=True,
|
||||
has_bn=False,
|
||||
has_relu=False,
|
||||
)
|
||||
elif inplanes != planes:
|
||||
self.downsample = ConvBNReLU(
|
||||
inplanes,
|
||||
planes,
|
||||
1,
|
||||
1,
|
||||
0,
|
||||
False,
|
||||
has_avg=False,
|
||||
has_bn=True,
|
||||
has_relu=False,
|
||||
)
|
||||
else:
|
||||
self.downsample = None
|
||||
self.out_dim = planes
|
||||
self.search_mode = "basic"
|
||||
|
||||
def get_range(self):
|
||||
return self.conv_a.get_range() + self.conv_b.get_range()
|
||||
|
||||
def get_flops(self, channels):
|
||||
assert len(channels) == 3, "invalid channels : {:}".format(channels)
|
||||
flop_A = self.conv_a.get_flops([channels[0], channels[1]])
|
||||
flop_B = self.conv_b.get_flops([channels[1], channels[2]])
|
||||
if hasattr(self.downsample, "get_flops"):
|
||||
flop_C = self.downsample.get_flops([channels[0], channels[-1]])
|
||||
else:
|
||||
flop_C = 0
|
||||
if (
|
||||
channels[0] != channels[-1] and self.downsample is None
|
||||
): # this short-cut will be added during the infer-train
|
||||
flop_C = (
|
||||
channels[0]
|
||||
* channels[-1]
|
||||
* self.conv_b.OutShape[0]
|
||||
* self.conv_b.OutShape[1]
|
||||
)
|
||||
return flop_A + flop_B + flop_C
|
||||
|
||||
def forward(self, inputs):
|
||||
if self.search_mode == "basic":
|
||||
return self.basic_forward(inputs)
|
||||
elif self.search_mode == "search":
|
||||
return self.search_forward(inputs)
|
||||
else:
|
||||
raise ValueError("invalid search_mode = {:}".format(self.search_mode))
|
||||
|
||||
def search_forward(self, tuple_inputs):
|
||||
assert (
|
||||
isinstance(tuple_inputs, tuple) and len(tuple_inputs) == 5
|
||||
), "invalid type input : {:}".format(type(tuple_inputs))
|
||||
inputs, expected_inC, probability, indexes, probs = tuple_inputs
|
||||
assert indexes.size(0) == 2 and probs.size(0) == 2 and probability.size(0) == 2
|
||||
out_a, expected_inC_a, expected_flop_a = self.conv_a(
|
||||
(inputs, expected_inC, probability[0], indexes[0], probs[0])
|
||||
)
|
||||
out_b, expected_inC_b, expected_flop_b = self.conv_b(
|
||||
(out_a, expected_inC_a, probability[1], indexes[1], probs[1])
|
||||
)
|
||||
if self.downsample is not None:
|
||||
residual, _, expected_flop_c = self.downsample(
|
||||
(inputs, expected_inC, probability[1], indexes[1], probs[1])
|
||||
)
|
||||
else:
|
||||
residual, expected_flop_c = inputs, 0
|
||||
out = additive_func(residual, out_b)
|
||||
return (
|
||||
nn.functional.relu(out, inplace=True),
|
||||
expected_inC_b,
|
||||
sum([expected_flop_a, expected_flop_b, expected_flop_c]),
|
||||
)
|
||||
|
||||
def basic_forward(self, inputs):
|
||||
basicblock = self.conv_a(inputs)
|
||||
basicblock = self.conv_b(basicblock)
|
||||
if self.downsample is not None:
|
||||
residual = self.downsample(inputs)
|
||||
else:
|
||||
residual = inputs
|
||||
out = additive_func(residual, basicblock)
|
||||
return nn.functional.relu(out, inplace=True)
|
||||
|
||||
|
||||
class ResNetBottleneck(nn.Module):
|
||||
expansion = 4
|
||||
num_conv = 3
|
||||
|
||||
def __init__(self, inplanes, planes, stride):
|
||||
super(ResNetBottleneck, self).__init__()
|
||||
assert stride == 1 or stride == 2, "invalid stride {:}".format(stride)
|
||||
self.conv_1x1 = ConvBNReLU(
|
||||
inplanes, planes, 1, 1, 0, False, has_avg=False, has_bn=True, has_relu=True
|
||||
)
|
||||
self.conv_3x3 = ConvBNReLU(
|
||||
planes,
|
||||
planes,
|
||||
3,
|
||||
stride,
|
||||
1,
|
||||
False,
|
||||
has_avg=False,
|
||||
has_bn=True,
|
||||
has_relu=True,
|
||||
)
|
||||
self.conv_1x4 = ConvBNReLU(
|
||||
planes,
|
||||
planes * self.expansion,
|
||||
1,
|
||||
1,
|
||||
0,
|
||||
False,
|
||||
has_avg=False,
|
||||
has_bn=True,
|
||||
has_relu=False,
|
||||
)
|
||||
if stride == 2:
|
||||
self.downsample = ConvBNReLU(
|
||||
inplanes,
|
||||
planes * self.expansion,
|
||||
1,
|
||||
1,
|
||||
0,
|
||||
False,
|
||||
has_avg=True,
|
||||
has_bn=False,
|
||||
has_relu=False,
|
||||
)
|
||||
elif inplanes != planes * self.expansion:
|
||||
self.downsample = ConvBNReLU(
|
||||
inplanes,
|
||||
planes * self.expansion,
|
||||
1,
|
||||
1,
|
||||
0,
|
||||
False,
|
||||
has_avg=False,
|
||||
has_bn=True,
|
||||
has_relu=False,
|
||||
)
|
||||
else:
|
||||
self.downsample = None
|
||||
self.out_dim = planes * self.expansion
|
||||
self.search_mode = "basic"
|
||||
|
||||
def get_range(self):
|
||||
return (
|
||||
self.conv_1x1.get_range()
|
||||
+ self.conv_3x3.get_range()
|
||||
+ self.conv_1x4.get_range()
|
||||
)
|
||||
|
||||
def get_flops(self, channels):
|
||||
assert len(channels) == 4, "invalid channels : {:}".format(channels)
|
||||
flop_A = self.conv_1x1.get_flops([channels[0], channels[1]])
|
||||
flop_B = self.conv_3x3.get_flops([channels[1], channels[2]])
|
||||
flop_C = self.conv_1x4.get_flops([channels[2], channels[3]])
|
||||
if hasattr(self.downsample, "get_flops"):
|
||||
flop_D = self.downsample.get_flops([channels[0], channels[-1]])
|
||||
else:
|
||||
flop_D = 0
|
||||
if (
|
||||
channels[0] != channels[-1] and self.downsample is None
|
||||
): # this short-cut will be added during the infer-train
|
||||
flop_D = (
|
||||
channels[0]
|
||||
* channels[-1]
|
||||
* self.conv_1x4.OutShape[0]
|
||||
* self.conv_1x4.OutShape[1]
|
||||
)
|
||||
return flop_A + flop_B + flop_C + flop_D
|
||||
|
||||
def forward(self, inputs):
|
||||
if self.search_mode == "basic":
|
||||
return self.basic_forward(inputs)
|
||||
elif self.search_mode == "search":
|
||||
return self.search_forward(inputs)
|
||||
else:
|
||||
raise ValueError("invalid search_mode = {:}".format(self.search_mode))
|
||||
|
||||
def basic_forward(self, inputs):
|
||||
bottleneck = self.conv_1x1(inputs)
|
||||
bottleneck = self.conv_3x3(bottleneck)
|
||||
bottleneck = self.conv_1x4(bottleneck)
|
||||
if self.downsample is not None:
|
||||
residual = self.downsample(inputs)
|
||||
else:
|
||||
residual = inputs
|
||||
out = additive_func(residual, bottleneck)
|
||||
return nn.functional.relu(out, inplace=True)
|
||||
|
||||
def search_forward(self, tuple_inputs):
|
||||
assert (
|
||||
isinstance(tuple_inputs, tuple) and len(tuple_inputs) == 5
|
||||
), "invalid type input : {:}".format(type(tuple_inputs))
|
||||
inputs, expected_inC, probability, indexes, probs = tuple_inputs
|
||||
assert indexes.size(0) == 3 and probs.size(0) == 3 and probability.size(0) == 3
|
||||
out_1x1, expected_inC_1x1, expected_flop_1x1 = self.conv_1x1(
|
||||
(inputs, expected_inC, probability[0], indexes[0], probs[0])
|
||||
)
|
||||
out_3x3, expected_inC_3x3, expected_flop_3x3 = self.conv_3x3(
|
||||
(out_1x1, expected_inC_1x1, probability[1], indexes[1], probs[1])
|
||||
)
|
||||
out_1x4, expected_inC_1x4, expected_flop_1x4 = self.conv_1x4(
|
||||
(out_3x3, expected_inC_3x3, probability[2], indexes[2], probs[2])
|
||||
)
|
||||
if self.downsample is not None:
|
||||
residual, _, expected_flop_c = self.downsample(
|
||||
(inputs, expected_inC, probability[2], indexes[2], probs[2])
|
||||
)
|
||||
else:
|
||||
residual, expected_flop_c = inputs, 0
|
||||
out = additive_func(residual, out_1x4)
|
||||
return (
|
||||
nn.functional.relu(out, inplace=True),
|
||||
expected_inC_1x4,
|
||||
sum(
|
||||
[
|
||||
expected_flop_1x1,
|
||||
expected_flop_3x3,
|
||||
expected_flop_1x4,
|
||||
expected_flop_c,
|
||||
]
|
||||
),
|
||||
)
|
||||
|
||||
|
||||
class SearchShapeCifarResNet(nn.Module):
|
||||
def __init__(self, block_name, depth, num_classes):
|
||||
super(SearchShapeCifarResNet, self).__init__()
|
||||
|
||||
# Model type specifies number of layers for CIFAR-10 and CIFAR-100 model
|
||||
if block_name == "ResNetBasicblock":
|
||||
block = ResNetBasicblock
|
||||
assert (depth - 2) % 6 == 0, "depth should be one of 20, 32, 44, 56, 110"
|
||||
layer_blocks = (depth - 2) // 6
|
||||
elif block_name == "ResNetBottleneck":
|
||||
block = ResNetBottleneck
|
||||
assert (depth - 2) % 9 == 0, "depth should be one of 164"
|
||||
layer_blocks = (depth - 2) // 9
|
||||
else:
|
||||
raise ValueError("invalid block : {:}".format(block_name))
|
||||
|
||||
self.message = (
|
||||
"SearchShapeCifarResNet : Depth : {:} , Layers for each block : {:}".format(
|
||||
depth, layer_blocks
|
||||
)
|
||||
)
|
||||
self.num_classes = num_classes
|
||||
self.channels = [16]
|
||||
self.layers = nn.ModuleList(
|
||||
[
|
||||
ConvBNReLU(
|
||||
3, 16, 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=True
|
||||
)
|
||||
]
|
||||
)
|
||||
self.InShape = None
|
||||
self.depth_info = OrderedDict()
|
||||
self.depth_at_i = OrderedDict()
|
||||
for stage in range(3):
|
||||
cur_block_choices = get_depth_choices(layer_blocks, False)
|
||||
assert (
|
||||
cur_block_choices[-1] == layer_blocks
|
||||
), "stage={:}, {:} vs {:}".format(stage, cur_block_choices, layer_blocks)
|
||||
self.message += (
|
||||
"\nstage={:} ::: depth-block-choices={:} for {:} blocks.".format(
|
||||
stage, cur_block_choices, layer_blocks
|
||||
)
|
||||
)
|
||||
block_choices, xstart = [], len(self.layers)
|
||||
for iL in range(layer_blocks):
|
||||
iC = self.channels[-1]
|
||||
planes = 16 * (2 ** stage)
|
||||
stride = 2 if stage > 0 and iL == 0 else 1
|
||||
module = block(iC, planes, stride)
|
||||
self.channels.append(module.out_dim)
|
||||
self.layers.append(module)
|
||||
self.message += "\nstage={:}, ilayer={:02d}/{:02d}, block={:03d}, iC={:3d}, oC={:3d}, stride={:}".format(
|
||||
stage,
|
||||
iL,
|
||||
layer_blocks,
|
||||
len(self.layers) - 1,
|
||||
iC,
|
||||
module.out_dim,
|
||||
stride,
|
||||
)
|
||||
# added for depth
|
||||
layer_index = len(self.layers) - 1
|
||||
if iL + 1 in cur_block_choices:
|
||||
block_choices.append(layer_index)
|
||||
if iL + 1 == layer_blocks:
|
||||
self.depth_info[layer_index] = {
|
||||
"choices": block_choices,
|
||||
"stage": stage,
|
||||
"xstart": xstart,
|
||||
}
|
||||
self.depth_info_list = []
|
||||
for xend, info in self.depth_info.items():
|
||||
self.depth_info_list.append((xend, info))
|
||||
xstart, xstage = info["xstart"], info["stage"]
|
||||
for ilayer in range(xstart, xend + 1):
|
||||
idx = bisect_right(info["choices"], ilayer - 1)
|
||||
self.depth_at_i[ilayer] = (xstage, idx)
|
||||
|
||||
self.avgpool = nn.AvgPool2d(8)
|
||||
self.classifier = nn.Linear(module.out_dim, num_classes)
|
||||
self.InShape = None
|
||||
self.tau = -1
|
||||
self.search_mode = "basic"
|
||||
# assert sum(x.num_conv for x in self.layers) + 1 == depth, 'invalid depth check {:} vs {:}'.format(sum(x.num_conv for x in self.layers)+1, depth)
|
||||
|
||||
# parameters for width
|
||||
self.Ranges = []
|
||||
self.layer2indexRange = []
|
||||
for i, layer in enumerate(self.layers):
|
||||
start_index = len(self.Ranges)
|
||||
self.Ranges += layer.get_range()
|
||||
self.layer2indexRange.append((start_index, len(self.Ranges)))
|
||||
assert len(self.Ranges) + 1 == depth, "invalid depth check {:} vs {:}".format(
|
||||
len(self.Ranges) + 1, depth
|
||||
)
|
||||
|
||||
self.register_parameter(
|
||||
"width_attentions",
|
||||
nn.Parameter(torch.Tensor(len(self.Ranges), get_width_choices(None))),
|
||||
)
|
||||
self.register_parameter(
|
||||
"depth_attentions",
|
||||
nn.Parameter(torch.Tensor(3, get_depth_choices(layer_blocks, True))),
|
||||
)
|
||||
nn.init.normal_(self.width_attentions, 0, 0.01)
|
||||
nn.init.normal_(self.depth_attentions, 0, 0.01)
|
||||
self.apply(initialize_resnet)
|
||||
|
||||
def arch_parameters(self, LR=None):
|
||||
if LR is None:
|
||||
return [self.width_attentions, self.depth_attentions]
|
||||
else:
|
||||
return [
|
||||
{"params": self.width_attentions, "lr": LR},
|
||||
{"params": self.depth_attentions, "lr": LR},
|
||||
]
|
||||
|
||||
def base_parameters(self):
|
||||
return (
|
||||
list(self.layers.parameters())
|
||||
+ list(self.avgpool.parameters())
|
||||
+ list(self.classifier.parameters())
|
||||
)
|
||||
|
||||
def get_flop(self, mode, config_dict, extra_info):
|
||||
if config_dict is not None:
|
||||
config_dict = config_dict.copy()
|
||||
# select channels
|
||||
channels = [3]
|
||||
for i, weight in enumerate(self.width_attentions):
|
||||
if mode == "genotype":
|
||||
with torch.no_grad():
|
||||
probe = nn.functional.softmax(weight, dim=0)
|
||||
C = self.Ranges[i][torch.argmax(probe).item()]
|
||||
elif mode == "max":
|
||||
C = self.Ranges[i][-1]
|
||||
elif mode == "fix":
|
||||
C = int(math.sqrt(extra_info) * self.Ranges[i][-1])
|
||||
elif mode == "random":
|
||||
assert isinstance(extra_info, float), "invalid extra_info : {:}".format(
|
||||
extra_info
|
||||
)
|
||||
with torch.no_grad():
|
||||
prob = nn.functional.softmax(weight, dim=0)
|
||||
approximate_C = int(math.sqrt(extra_info) * self.Ranges[i][-1])
|
||||
for j in range(prob.size(0)):
|
||||
prob[j] = 1 / (
|
||||
abs(j - (approximate_C - self.Ranges[i][j])) + 0.2
|
||||
)
|
||||
C = self.Ranges[i][torch.multinomial(prob, 1, False).item()]
|
||||
else:
|
||||
raise ValueError("invalid mode : {:}".format(mode))
|
||||
channels.append(C)
|
||||
# select depth
|
||||
if mode == "genotype":
|
||||
with torch.no_grad():
|
||||
depth_probs = nn.functional.softmax(self.depth_attentions, dim=1)
|
||||
choices = torch.argmax(depth_probs, dim=1).cpu().tolist()
|
||||
elif mode == "max" or mode == "fix":
|
||||
choices = [depth_probs.size(1) - 1 for _ in range(depth_probs.size(0))]
|
||||
elif mode == "random":
|
||||
with torch.no_grad():
|
||||
depth_probs = nn.functional.softmax(self.depth_attentions, dim=1)
|
||||
choices = torch.multinomial(depth_probs, 1, False).cpu().tolist()
|
||||
else:
|
||||
raise ValueError("invalid mode : {:}".format(mode))
|
||||
selected_layers = []
|
||||
for choice, xvalue in zip(choices, self.depth_info_list):
|
||||
xtemp = xvalue[1]["choices"][choice] - xvalue[1]["xstart"] + 1
|
||||
selected_layers.append(xtemp)
|
||||
flop = 0
|
||||
for i, layer in enumerate(self.layers):
|
||||
s, e = self.layer2indexRange[i]
|
||||
xchl = tuple(channels[s : e + 1])
|
||||
if i in self.depth_at_i:
|
||||
xstagei, xatti = self.depth_at_i[i]
|
||||
if xatti <= choices[xstagei]: # leave this depth
|
||||
flop += layer.get_flops(xchl)
|
||||
else:
|
||||
flop += 0 # do not use this layer
|
||||
else:
|
||||
flop += layer.get_flops(xchl)
|
||||
# the last fc layer
|
||||
flop += channels[-1] * self.classifier.out_features
|
||||
if config_dict is None:
|
||||
return flop / 1e6
|
||||
else:
|
||||
config_dict["xchannels"] = channels
|
||||
config_dict["xblocks"] = selected_layers
|
||||
config_dict["super_type"] = "infer-shape"
|
||||
config_dict["estimated_FLOP"] = flop / 1e6
|
||||
return flop / 1e6, config_dict
|
||||
|
||||
def get_arch_info(self):
|
||||
string = (
|
||||
"for depth and width, there are {:} + {:} attention probabilities.".format(
|
||||
len(self.depth_attentions), len(self.width_attentions)
|
||||
)
|
||||
)
|
||||
string += "\n{:}".format(self.depth_info)
|
||||
discrepancy = []
|
||||
with torch.no_grad():
|
||||
for i, att in enumerate(self.depth_attentions):
|
||||
prob = nn.functional.softmax(att, dim=0)
|
||||
prob = prob.cpu()
|
||||
selc = prob.argmax().item()
|
||||
prob = prob.tolist()
|
||||
prob = ["{:.3f}".format(x) for x in prob]
|
||||
xstring = "{:03d}/{:03d}-th : {:}".format(
|
||||
i, len(self.depth_attentions), " ".join(prob)
|
||||
)
|
||||
logt = ["{:.4f}".format(x) for x in att.cpu().tolist()]
|
||||
xstring += " || {:17s}".format(" ".join(logt))
|
||||
prob = sorted([float(x) for x in prob])
|
||||
disc = prob[-1] - prob[-2]
|
||||
xstring += " || discrepancy={:.2f} || select={:}/{:}".format(
|
||||
disc, selc, len(prob)
|
||||
)
|
||||
discrepancy.append(disc)
|
||||
string += "\n{:}".format(xstring)
|
||||
string += "\n-----------------------------------------------"
|
||||
for i, att in enumerate(self.width_attentions):
|
||||
prob = nn.functional.softmax(att, dim=0)
|
||||
prob = prob.cpu()
|
||||
selc = prob.argmax().item()
|
||||
prob = prob.tolist()
|
||||
prob = ["{:.3f}".format(x) for x in prob]
|
||||
xstring = "{:03d}/{:03d}-th : {:}".format(
|
||||
i, len(self.width_attentions), " ".join(prob)
|
||||
)
|
||||
logt = ["{:.3f}".format(x) for x in att.cpu().tolist()]
|
||||
xstring += " || {:52s}".format(" ".join(logt))
|
||||
prob = sorted([float(x) for x in prob])
|
||||
disc = prob[-1] - prob[-2]
|
||||
xstring += " || dis={:.2f} || select={:}/{:}".format(
|
||||
disc, selc, len(prob)
|
||||
)
|
||||
discrepancy.append(disc)
|
||||
string += "\n{:}".format(xstring)
|
||||
return string, discrepancy
|
||||
|
||||
def set_tau(self, tau_max, tau_min, epoch_ratio):
|
||||
assert (
|
||||
epoch_ratio >= 0 and epoch_ratio <= 1
|
||||
), "invalid epoch-ratio : {:}".format(epoch_ratio)
|
||||
tau = tau_min + (tau_max - tau_min) * (1 + math.cos(math.pi * epoch_ratio)) / 2
|
||||
self.tau = tau
|
||||
|
||||
def get_message(self):
|
||||
return self.message
|
||||
|
||||
def forward(self, inputs):
|
||||
if self.search_mode == "basic":
|
||||
return self.basic_forward(inputs)
|
||||
elif self.search_mode == "search":
|
||||
return self.search_forward(inputs)
|
||||
else:
|
||||
raise ValueError("invalid search_mode = {:}".format(self.search_mode))
|
||||
|
||||
def search_forward(self, inputs):
|
||||
flop_width_probs = nn.functional.softmax(self.width_attentions, dim=1)
|
||||
flop_depth_probs = nn.functional.softmax(self.depth_attentions, dim=1)
|
||||
flop_depth_probs = torch.flip(
|
||||
torch.cumsum(torch.flip(flop_depth_probs, [1]), 1), [1]
|
||||
)
|
||||
selected_widths, selected_width_probs = select2withP(
|
||||
self.width_attentions, self.tau
|
||||
)
|
||||
selected_depth_probs = select2withP(self.depth_attentions, self.tau, True)
|
||||
with torch.no_grad():
|
||||
selected_widths = selected_widths.cpu()
|
||||
|
||||
x, last_channel_idx, expected_inC, flops = inputs, 0, 3, []
|
||||
feature_maps = []
|
||||
for i, layer in enumerate(self.layers):
|
||||
selected_w_index = selected_widths[
|
||||
last_channel_idx : last_channel_idx + layer.num_conv
|
||||
]
|
||||
selected_w_probs = selected_width_probs[
|
||||
last_channel_idx : last_channel_idx + layer.num_conv
|
||||
]
|
||||
layer_prob = flop_width_probs[
|
||||
last_channel_idx : last_channel_idx + layer.num_conv
|
||||
]
|
||||
x, expected_inC, expected_flop = layer(
|
||||
(x, expected_inC, layer_prob, selected_w_index, selected_w_probs)
|
||||
)
|
||||
feature_maps.append(x)
|
||||
last_channel_idx += layer.num_conv
|
||||
if i in self.depth_info: # aggregate the information
|
||||
choices = self.depth_info[i]["choices"]
|
||||
xstagei = self.depth_info[i]["stage"]
|
||||
# print ('iL={:}, choices={:}, stage={:}, probs={:}'.format(i, choices, xstagei, selected_depth_probs[xstagei].cpu().tolist()))
|
||||
# for A, W in zip(choices, selected_depth_probs[xstagei]):
|
||||
# print('Size = {:}, W = {:}'.format(feature_maps[A].size(), W))
|
||||
possible_tensors = []
|
||||
max_C = max(feature_maps[A].size(1) for A in choices)
|
||||
for tempi, A in enumerate(choices):
|
||||
xtensor = ChannelWiseInter(feature_maps[A], max_C)
|
||||
# drop_ratio = 1-(tempi+1.0)/len(choices)
|
||||
# xtensor = drop_path(xtensor, drop_ratio)
|
||||
possible_tensors.append(xtensor)
|
||||
weighted_sum = sum(
|
||||
xtensor * W
|
||||
for xtensor, W in zip(
|
||||
possible_tensors, selected_depth_probs[xstagei]
|
||||
)
|
||||
)
|
||||
x = weighted_sum
|
||||
|
||||
if i in self.depth_at_i:
|
||||
xstagei, xatti = self.depth_at_i[i]
|
||||
x_expected_flop = flop_depth_probs[xstagei, xatti] * expected_flop
|
||||
else:
|
||||
x_expected_flop = expected_flop
|
||||
flops.append(x_expected_flop)
|
||||
flops.append(expected_inC * (self.classifier.out_features * 1.0 / 1e6))
|
||||
features = self.avgpool(x)
|
||||
features = features.view(features.size(0), -1)
|
||||
logits = linear_forward(features, self.classifier)
|
||||
return logits, torch.stack([sum(flops)])
|
||||
|
||||
def basic_forward(self, inputs):
|
||||
if self.InShape is None:
|
||||
self.InShape = (inputs.size(-2), inputs.size(-1))
|
||||
x = inputs
|
||||
for i, layer in enumerate(self.layers):
|
||||
x = layer(x)
|
||||
features = self.avgpool(x)
|
||||
features = features.view(features.size(0), -1)
|
||||
logits = self.classifier(features)
|
||||
return features, logits
|
515
xautodl/models/shape_searchs/SearchCifarResNet_depth.py
Normal file
515
xautodl/models/shape_searchs/SearchCifarResNet_depth.py
Normal file
@@ -0,0 +1,515 @@
|
||||
##################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
|
||||
##################################################
|
||||
import math, torch
|
||||
from collections import OrderedDict
|
||||
from bisect import bisect_right
|
||||
import torch.nn as nn
|
||||
from ..initialization import initialize_resnet
|
||||
from ..SharedUtils import additive_func
|
||||
from .SoftSelect import select2withP, ChannelWiseInter
|
||||
from .SoftSelect import linear_forward
|
||||
from .SoftSelect import get_width_choices
|
||||
|
||||
|
||||
def get_depth_choices(nDepth, return_num):
|
||||
if nDepth == 2:
|
||||
choices = (1, 2)
|
||||
elif nDepth == 3:
|
||||
choices = (1, 2, 3)
|
||||
elif nDepth > 3:
|
||||
choices = list(range(1, nDepth + 1, 2))
|
||||
if choices[-1] < nDepth:
|
||||
choices.append(nDepth)
|
||||
else:
|
||||
raise ValueError("invalid nDepth : {:}".format(nDepth))
|
||||
if return_num:
|
||||
return len(choices)
|
||||
else:
|
||||
return choices
|
||||
|
||||
|
||||
class ConvBNReLU(nn.Module):
|
||||
num_conv = 1
|
||||
|
||||
def __init__(
|
||||
self, nIn, nOut, kernel, stride, padding, bias, has_avg, has_bn, has_relu
|
||||
):
|
||||
super(ConvBNReLU, self).__init__()
|
||||
self.InShape = None
|
||||
self.OutShape = None
|
||||
self.choices = get_width_choices(nOut)
|
||||
self.register_buffer("choices_tensor", torch.Tensor(self.choices))
|
||||
|
||||
if has_avg:
|
||||
self.avg = nn.AvgPool2d(kernel_size=2, stride=2, padding=0)
|
||||
else:
|
||||
self.avg = None
|
||||
self.conv = nn.Conv2d(
|
||||
nIn,
|
||||
nOut,
|
||||
kernel_size=kernel,
|
||||
stride=stride,
|
||||
padding=padding,
|
||||
dilation=1,
|
||||
groups=1,
|
||||
bias=bias,
|
||||
)
|
||||
if has_bn:
|
||||
self.bn = nn.BatchNorm2d(nOut)
|
||||
else:
|
||||
self.bn = None
|
||||
if has_relu:
|
||||
self.relu = nn.ReLU(inplace=False)
|
||||
else:
|
||||
self.relu = None
|
||||
self.in_dim = nIn
|
||||
self.out_dim = nOut
|
||||
|
||||
def get_flops(self, divide=1):
|
||||
iC, oC = self.in_dim, self.out_dim
|
||||
assert (
|
||||
iC <= self.conv.in_channels and oC <= self.conv.out_channels
|
||||
), "{:} vs {:} | {:} vs {:}".format(
|
||||
iC, self.conv.in_channels, oC, self.conv.out_channels
|
||||
)
|
||||
assert (
|
||||
isinstance(self.InShape, tuple) and len(self.InShape) == 2
|
||||
), "invalid in-shape : {:}".format(self.InShape)
|
||||
assert (
|
||||
isinstance(self.OutShape, tuple) and len(self.OutShape) == 2
|
||||
), "invalid out-shape : {:}".format(self.OutShape)
|
||||
# conv_per_position_flops = self.conv.kernel_size[0] * self.conv.kernel_size[1] * iC * oC / self.conv.groups
|
||||
conv_per_position_flops = (
|
||||
self.conv.kernel_size[0] * self.conv.kernel_size[1] * 1.0 / self.conv.groups
|
||||
)
|
||||
all_positions = self.OutShape[0] * self.OutShape[1]
|
||||
flops = (conv_per_position_flops * all_positions / divide) * iC * oC
|
||||
if self.conv.bias is not None:
|
||||
flops += all_positions / divide
|
||||
return flops
|
||||
|
||||
def forward(self, inputs):
|
||||
if self.avg:
|
||||
out = self.avg(inputs)
|
||||
else:
|
||||
out = inputs
|
||||
conv = self.conv(out)
|
||||
if self.bn:
|
||||
out = self.bn(conv)
|
||||
else:
|
||||
out = conv
|
||||
if self.relu:
|
||||
out = self.relu(out)
|
||||
else:
|
||||
out = out
|
||||
if self.InShape is None:
|
||||
self.InShape = (inputs.size(-2), inputs.size(-1))
|
||||
self.OutShape = (out.size(-2), out.size(-1))
|
||||
return out
|
||||
|
||||
|
||||
class ResNetBasicblock(nn.Module):
|
||||
expansion = 1
|
||||
num_conv = 2
|
||||
|
||||
def __init__(self, inplanes, planes, stride):
|
||||
super(ResNetBasicblock, self).__init__()
|
||||
assert stride == 1 or stride == 2, "invalid stride {:}".format(stride)
|
||||
self.conv_a = ConvBNReLU(
|
||||
inplanes,
|
||||
planes,
|
||||
3,
|
||||
stride,
|
||||
1,
|
||||
False,
|
||||
has_avg=False,
|
||||
has_bn=True,
|
||||
has_relu=True,
|
||||
)
|
||||
self.conv_b = ConvBNReLU(
|
||||
planes, planes, 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=False
|
||||
)
|
||||
if stride == 2:
|
||||
self.downsample = ConvBNReLU(
|
||||
inplanes,
|
||||
planes,
|
||||
1,
|
||||
1,
|
||||
0,
|
||||
False,
|
||||
has_avg=True,
|
||||
has_bn=False,
|
||||
has_relu=False,
|
||||
)
|
||||
elif inplanes != planes:
|
||||
self.downsample = ConvBNReLU(
|
||||
inplanes,
|
||||
planes,
|
||||
1,
|
||||
1,
|
||||
0,
|
||||
False,
|
||||
has_avg=False,
|
||||
has_bn=True,
|
||||
has_relu=False,
|
||||
)
|
||||
else:
|
||||
self.downsample = None
|
||||
self.out_dim = planes
|
||||
self.search_mode = "basic"
|
||||
|
||||
def get_flops(self, divide=1):
|
||||
flop_A = self.conv_a.get_flops(divide)
|
||||
flop_B = self.conv_b.get_flops(divide)
|
||||
if hasattr(self.downsample, "get_flops"):
|
||||
flop_C = self.downsample.get_flops(divide)
|
||||
else:
|
||||
flop_C = 0
|
||||
return flop_A + flop_B + flop_C
|
||||
|
||||
def forward(self, inputs):
|
||||
basicblock = self.conv_a(inputs)
|
||||
basicblock = self.conv_b(basicblock)
|
||||
if self.downsample is not None:
|
||||
residual = self.downsample(inputs)
|
||||
else:
|
||||
residual = inputs
|
||||
out = additive_func(residual, basicblock)
|
||||
return nn.functional.relu(out, inplace=True)
|
||||
|
||||
|
||||
class ResNetBottleneck(nn.Module):
|
||||
expansion = 4
|
||||
num_conv = 3
|
||||
|
||||
def __init__(self, inplanes, planes, stride):
|
||||
super(ResNetBottleneck, self).__init__()
|
||||
assert stride == 1 or stride == 2, "invalid stride {:}".format(stride)
|
||||
self.conv_1x1 = ConvBNReLU(
|
||||
inplanes, planes, 1, 1, 0, False, has_avg=False, has_bn=True, has_relu=True
|
||||
)
|
||||
self.conv_3x3 = ConvBNReLU(
|
||||
planes,
|
||||
planes,
|
||||
3,
|
||||
stride,
|
||||
1,
|
||||
False,
|
||||
has_avg=False,
|
||||
has_bn=True,
|
||||
has_relu=True,
|
||||
)
|
||||
self.conv_1x4 = ConvBNReLU(
|
||||
planes,
|
||||
planes * self.expansion,
|
||||
1,
|
||||
1,
|
||||
0,
|
||||
False,
|
||||
has_avg=False,
|
||||
has_bn=True,
|
||||
has_relu=False,
|
||||
)
|
||||
if stride == 2:
|
||||
self.downsample = ConvBNReLU(
|
||||
inplanes,
|
||||
planes * self.expansion,
|
||||
1,
|
||||
1,
|
||||
0,
|
||||
False,
|
||||
has_avg=True,
|
||||
has_bn=False,
|
||||
has_relu=False,
|
||||
)
|
||||
elif inplanes != planes * self.expansion:
|
||||
self.downsample = ConvBNReLU(
|
||||
inplanes,
|
||||
planes * self.expansion,
|
||||
1,
|
||||
1,
|
||||
0,
|
||||
False,
|
||||
has_avg=False,
|
||||
has_bn=True,
|
||||
has_relu=False,
|
||||
)
|
||||
else:
|
||||
self.downsample = None
|
||||
self.out_dim = planes * self.expansion
|
||||
self.search_mode = "basic"
|
||||
|
||||
def get_range(self):
|
||||
return (
|
||||
self.conv_1x1.get_range()
|
||||
+ self.conv_3x3.get_range()
|
||||
+ self.conv_1x4.get_range()
|
||||
)
|
||||
|
||||
def get_flops(self, divide):
|
||||
flop_A = self.conv_1x1.get_flops(divide)
|
||||
flop_B = self.conv_3x3.get_flops(divide)
|
||||
flop_C = self.conv_1x4.get_flops(divide)
|
||||
if hasattr(self.downsample, "get_flops"):
|
||||
flop_D = self.downsample.get_flops(divide)
|
||||
else:
|
||||
flop_D = 0
|
||||
return flop_A + flop_B + flop_C + flop_D
|
||||
|
||||
def forward(self, inputs):
|
||||
bottleneck = self.conv_1x1(inputs)
|
||||
bottleneck = self.conv_3x3(bottleneck)
|
||||
bottleneck = self.conv_1x4(bottleneck)
|
||||
if self.downsample is not None:
|
||||
residual = self.downsample(inputs)
|
||||
else:
|
||||
residual = inputs
|
||||
out = additive_func(residual, bottleneck)
|
||||
return nn.functional.relu(out, inplace=True)
|
||||
|
||||
|
||||
class SearchDepthCifarResNet(nn.Module):
|
||||
def __init__(self, block_name, depth, num_classes):
|
||||
super(SearchDepthCifarResNet, self).__init__()
|
||||
|
||||
# Model type specifies number of layers for CIFAR-10 and CIFAR-100 model
|
||||
if block_name == "ResNetBasicblock":
|
||||
block = ResNetBasicblock
|
||||
assert (depth - 2) % 6 == 0, "depth should be one of 20, 32, 44, 56, 110"
|
||||
layer_blocks = (depth - 2) // 6
|
||||
elif block_name == "ResNetBottleneck":
|
||||
block = ResNetBottleneck
|
||||
assert (depth - 2) % 9 == 0, "depth should be one of 164"
|
||||
layer_blocks = (depth - 2) // 9
|
||||
else:
|
||||
raise ValueError("invalid block : {:}".format(block_name))
|
||||
|
||||
self.message = (
|
||||
"SearchShapeCifarResNet : Depth : {:} , Layers for each block : {:}".format(
|
||||
depth, layer_blocks
|
||||
)
|
||||
)
|
||||
self.num_classes = num_classes
|
||||
self.channels = [16]
|
||||
self.layers = nn.ModuleList(
|
||||
[
|
||||
ConvBNReLU(
|
||||
3, 16, 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=True
|
||||
)
|
||||
]
|
||||
)
|
||||
self.InShape = None
|
||||
self.depth_info = OrderedDict()
|
||||
self.depth_at_i = OrderedDict()
|
||||
for stage in range(3):
|
||||
cur_block_choices = get_depth_choices(layer_blocks, False)
|
||||
assert (
|
||||
cur_block_choices[-1] == layer_blocks
|
||||
), "stage={:}, {:} vs {:}".format(stage, cur_block_choices, layer_blocks)
|
||||
self.message += (
|
||||
"\nstage={:} ::: depth-block-choices={:} for {:} blocks.".format(
|
||||
stage, cur_block_choices, layer_blocks
|
||||
)
|
||||
)
|
||||
block_choices, xstart = [], len(self.layers)
|
||||
for iL in range(layer_blocks):
|
||||
iC = self.channels[-1]
|
||||
planes = 16 * (2 ** stage)
|
||||
stride = 2 if stage > 0 and iL == 0 else 1
|
||||
module = block(iC, planes, stride)
|
||||
self.channels.append(module.out_dim)
|
||||
self.layers.append(module)
|
||||
self.message += "\nstage={:}, ilayer={:02d}/{:02d}, block={:03d}, iC={:3d}, oC={:3d}, stride={:}".format(
|
||||
stage,
|
||||
iL,
|
||||
layer_blocks,
|
||||
len(self.layers) - 1,
|
||||
iC,
|
||||
module.out_dim,
|
||||
stride,
|
||||
)
|
||||
# added for depth
|
||||
layer_index = len(self.layers) - 1
|
||||
if iL + 1 in cur_block_choices:
|
||||
block_choices.append(layer_index)
|
||||
if iL + 1 == layer_blocks:
|
||||
self.depth_info[layer_index] = {
|
||||
"choices": block_choices,
|
||||
"stage": stage,
|
||||
"xstart": xstart,
|
||||
}
|
||||
self.depth_info_list = []
|
||||
for xend, info in self.depth_info.items():
|
||||
self.depth_info_list.append((xend, info))
|
||||
xstart, xstage = info["xstart"], info["stage"]
|
||||
for ilayer in range(xstart, xend + 1):
|
||||
idx = bisect_right(info["choices"], ilayer - 1)
|
||||
self.depth_at_i[ilayer] = (xstage, idx)
|
||||
|
||||
self.avgpool = nn.AvgPool2d(8)
|
||||
self.classifier = nn.Linear(module.out_dim, num_classes)
|
||||
self.InShape = None
|
||||
self.tau = -1
|
||||
self.search_mode = "basic"
|
||||
# assert sum(x.num_conv for x in self.layers) + 1 == depth, 'invalid depth check {:} vs {:}'.format(sum(x.num_conv for x in self.layers)+1, depth)
|
||||
|
||||
self.register_parameter(
|
||||
"depth_attentions",
|
||||
nn.Parameter(torch.Tensor(3, get_depth_choices(layer_blocks, True))),
|
||||
)
|
||||
nn.init.normal_(self.depth_attentions, 0, 0.01)
|
||||
self.apply(initialize_resnet)
|
||||
|
||||
def arch_parameters(self):
|
||||
return [self.depth_attentions]
|
||||
|
||||
def base_parameters(self):
|
||||
return (
|
||||
list(self.layers.parameters())
|
||||
+ list(self.avgpool.parameters())
|
||||
+ list(self.classifier.parameters())
|
||||
)
|
||||
|
||||
def get_flop(self, mode, config_dict, extra_info):
|
||||
if config_dict is not None:
|
||||
config_dict = config_dict.copy()
|
||||
# select depth
|
||||
if mode == "genotype":
|
||||
with torch.no_grad():
|
||||
depth_probs = nn.functional.softmax(self.depth_attentions, dim=1)
|
||||
choices = torch.argmax(depth_probs, dim=1).cpu().tolist()
|
||||
elif mode == "max":
|
||||
choices = [depth_probs.size(1) - 1 for _ in range(depth_probs.size(0))]
|
||||
elif mode == "random":
|
||||
with torch.no_grad():
|
||||
depth_probs = nn.functional.softmax(self.depth_attentions, dim=1)
|
||||
choices = torch.multinomial(depth_probs, 1, False).cpu().tolist()
|
||||
else:
|
||||
raise ValueError("invalid mode : {:}".format(mode))
|
||||
selected_layers = []
|
||||
for choice, xvalue in zip(choices, self.depth_info_list):
|
||||
xtemp = xvalue[1]["choices"][choice] - xvalue[1]["xstart"] + 1
|
||||
selected_layers.append(xtemp)
|
||||
flop = 0
|
||||
for i, layer in enumerate(self.layers):
|
||||
if i in self.depth_at_i:
|
||||
xstagei, xatti = self.depth_at_i[i]
|
||||
if xatti <= choices[xstagei]: # leave this depth
|
||||
flop += layer.get_flops()
|
||||
else:
|
||||
flop += 0 # do not use this layer
|
||||
else:
|
||||
flop += layer.get_flops()
|
||||
# the last fc layer
|
||||
flop += self.classifier.in_features * self.classifier.out_features
|
||||
if config_dict is None:
|
||||
return flop / 1e6
|
||||
else:
|
||||
config_dict["xblocks"] = selected_layers
|
||||
config_dict["super_type"] = "infer-depth"
|
||||
config_dict["estimated_FLOP"] = flop / 1e6
|
||||
return flop / 1e6, config_dict
|
||||
|
||||
def get_arch_info(self):
|
||||
string = "for depth, there are {:} attention probabilities.".format(
|
||||
len(self.depth_attentions)
|
||||
)
|
||||
string += "\n{:}".format(self.depth_info)
|
||||
discrepancy = []
|
||||
with torch.no_grad():
|
||||
for i, att in enumerate(self.depth_attentions):
|
||||
prob = nn.functional.softmax(att, dim=0)
|
||||
prob = prob.cpu()
|
||||
selc = prob.argmax().item()
|
||||
prob = prob.tolist()
|
||||
prob = ["{:.3f}".format(x) for x in prob]
|
||||
xstring = "{:03d}/{:03d}-th : {:}".format(
|
||||
i, len(self.depth_attentions), " ".join(prob)
|
||||
)
|
||||
logt = ["{:.4f}".format(x) for x in att.cpu().tolist()]
|
||||
xstring += " || {:17s}".format(" ".join(logt))
|
||||
prob = sorted([float(x) for x in prob])
|
||||
disc = prob[-1] - prob[-2]
|
||||
xstring += " || discrepancy={:.2f} || select={:}/{:}".format(
|
||||
disc, selc, len(prob)
|
||||
)
|
||||
discrepancy.append(disc)
|
||||
string += "\n{:}".format(xstring)
|
||||
return string, discrepancy
|
||||
|
||||
def set_tau(self, tau_max, tau_min, epoch_ratio):
|
||||
assert (
|
||||
epoch_ratio >= 0 and epoch_ratio <= 1
|
||||
), "invalid epoch-ratio : {:}".format(epoch_ratio)
|
||||
tau = tau_min + (tau_max - tau_min) * (1 + math.cos(math.pi * epoch_ratio)) / 2
|
||||
self.tau = tau
|
||||
|
||||
def get_message(self):
|
||||
return self.message
|
||||
|
||||
def forward(self, inputs):
|
||||
if self.search_mode == "basic":
|
||||
return self.basic_forward(inputs)
|
||||
elif self.search_mode == "search":
|
||||
return self.search_forward(inputs)
|
||||
else:
|
||||
raise ValueError("invalid search_mode = {:}".format(self.search_mode))
|
||||
|
||||
def search_forward(self, inputs):
|
||||
flop_depth_probs = nn.functional.softmax(self.depth_attentions, dim=1)
|
||||
flop_depth_probs = torch.flip(
|
||||
torch.cumsum(torch.flip(flop_depth_probs, [1]), 1), [1]
|
||||
)
|
||||
selected_depth_probs = select2withP(self.depth_attentions, self.tau, True)
|
||||
|
||||
x, flops = inputs, []
|
||||
feature_maps = []
|
||||
for i, layer in enumerate(self.layers):
|
||||
layer_i = layer(x)
|
||||
feature_maps.append(layer_i)
|
||||
if i in self.depth_info: # aggregate the information
|
||||
choices = self.depth_info[i]["choices"]
|
||||
xstagei = self.depth_info[i]["stage"]
|
||||
possible_tensors = []
|
||||
for tempi, A in enumerate(choices):
|
||||
xtensor = feature_maps[A]
|
||||
possible_tensors.append(xtensor)
|
||||
weighted_sum = sum(
|
||||
xtensor * W
|
||||
for xtensor, W in zip(
|
||||
possible_tensors, selected_depth_probs[xstagei]
|
||||
)
|
||||
)
|
||||
x = weighted_sum
|
||||
else:
|
||||
x = layer_i
|
||||
|
||||
if i in self.depth_at_i:
|
||||
xstagei, xatti = self.depth_at_i[i]
|
||||
# print ('layer-{:03d}, stage={:}, att={:}, prob={:}, flop={:}'.format(i, xstagei, xatti, flop_depth_probs[xstagei, xatti].item(), layer.get_flops(1e6)))
|
||||
x_expected_flop = flop_depth_probs[xstagei, xatti] * layer.get_flops(
|
||||
1e6
|
||||
)
|
||||
else:
|
||||
x_expected_flop = layer.get_flops(1e6)
|
||||
flops.append(x_expected_flop)
|
||||
flops.append(
|
||||
(self.classifier.in_features * self.classifier.out_features * 1.0 / 1e6)
|
||||
)
|
||||
|
||||
features = self.avgpool(x)
|
||||
features = features.view(features.size(0), -1)
|
||||
logits = linear_forward(features, self.classifier)
|
||||
return logits, torch.stack([sum(flops)])
|
||||
|
||||
def basic_forward(self, inputs):
|
||||
if self.InShape is None:
|
||||
self.InShape = (inputs.size(-2), inputs.size(-1))
|
||||
x = inputs
|
||||
for i, layer in enumerate(self.layers):
|
||||
x = layer(x)
|
||||
features = self.avgpool(x)
|
||||
features = features.view(features.size(0), -1)
|
||||
logits = self.classifier(features)
|
||||
return features, logits
|
619
xautodl/models/shape_searchs/SearchCifarResNet_width.py
Normal file
619
xautodl/models/shape_searchs/SearchCifarResNet_width.py
Normal file
@@ -0,0 +1,619 @@
|
||||
##################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
|
||||
##################################################
|
||||
import math, torch
|
||||
import torch.nn as nn
|
||||
from ..initialization import initialize_resnet
|
||||
from ..SharedUtils import additive_func
|
||||
from .SoftSelect import select2withP, ChannelWiseInter
|
||||
from .SoftSelect import linear_forward
|
||||
from .SoftSelect import get_width_choices as get_choices
|
||||
|
||||
|
||||
def conv_forward(inputs, conv, choices):
|
||||
iC = conv.in_channels
|
||||
fill_size = list(inputs.size())
|
||||
fill_size[1] = iC - fill_size[1]
|
||||
filled = torch.zeros(fill_size, device=inputs.device)
|
||||
xinputs = torch.cat((inputs, filled), dim=1)
|
||||
outputs = conv(xinputs)
|
||||
selecteds = [outputs[:, :oC] for oC in choices]
|
||||
return selecteds
|
||||
|
||||
|
||||
class ConvBNReLU(nn.Module):
|
||||
num_conv = 1
|
||||
|
||||
def __init__(
|
||||
self, nIn, nOut, kernel, stride, padding, bias, has_avg, has_bn, has_relu
|
||||
):
|
||||
super(ConvBNReLU, self).__init__()
|
||||
self.InShape = None
|
||||
self.OutShape = None
|
||||
self.choices = get_choices(nOut)
|
||||
self.register_buffer("choices_tensor", torch.Tensor(self.choices))
|
||||
|
||||
if has_avg:
|
||||
self.avg = nn.AvgPool2d(kernel_size=2, stride=2, padding=0)
|
||||
else:
|
||||
self.avg = None
|
||||
self.conv = nn.Conv2d(
|
||||
nIn,
|
||||
nOut,
|
||||
kernel_size=kernel,
|
||||
stride=stride,
|
||||
padding=padding,
|
||||
dilation=1,
|
||||
groups=1,
|
||||
bias=bias,
|
||||
)
|
||||
# if has_bn : self.bn = nn.BatchNorm2d(nOut)
|
||||
# else : self.bn = None
|
||||
self.has_bn = has_bn
|
||||
self.BNs = nn.ModuleList()
|
||||
for i, _out in enumerate(self.choices):
|
||||
self.BNs.append(nn.BatchNorm2d(_out))
|
||||
if has_relu:
|
||||
self.relu = nn.ReLU(inplace=True)
|
||||
else:
|
||||
self.relu = None
|
||||
self.in_dim = nIn
|
||||
self.out_dim = nOut
|
||||
self.search_mode = "basic"
|
||||
|
||||
def get_flops(self, channels, check_range=True, divide=1):
|
||||
iC, oC = channels
|
||||
if check_range:
|
||||
assert (
|
||||
iC <= self.conv.in_channels and oC <= self.conv.out_channels
|
||||
), "{:} vs {:} | {:} vs {:}".format(
|
||||
iC, self.conv.in_channels, oC, self.conv.out_channels
|
||||
)
|
||||
assert (
|
||||
isinstance(self.InShape, tuple) and len(self.InShape) == 2
|
||||
), "invalid in-shape : {:}".format(self.InShape)
|
||||
assert (
|
||||
isinstance(self.OutShape, tuple) and len(self.OutShape) == 2
|
||||
), "invalid out-shape : {:}".format(self.OutShape)
|
||||
# conv_per_position_flops = self.conv.kernel_size[0] * self.conv.kernel_size[1] * iC * oC / self.conv.groups
|
||||
conv_per_position_flops = (
|
||||
self.conv.kernel_size[0] * self.conv.kernel_size[1] * 1.0 / self.conv.groups
|
||||
)
|
||||
all_positions = self.OutShape[0] * self.OutShape[1]
|
||||
flops = (conv_per_position_flops * all_positions / divide) * iC * oC
|
||||
if self.conv.bias is not None:
|
||||
flops += all_positions / divide
|
||||
return flops
|
||||
|
||||
def get_range(self):
|
||||
return [self.choices]
|
||||
|
||||
def forward(self, inputs):
|
||||
if self.search_mode == "basic":
|
||||
return self.basic_forward(inputs)
|
||||
elif self.search_mode == "search":
|
||||
return self.search_forward(inputs)
|
||||
else:
|
||||
raise ValueError("invalid search_mode = {:}".format(self.search_mode))
|
||||
|
||||
def search_forward(self, tuple_inputs):
|
||||
assert (
|
||||
isinstance(tuple_inputs, tuple) and len(tuple_inputs) == 5
|
||||
), "invalid type input : {:}".format(type(tuple_inputs))
|
||||
inputs, expected_inC, probability, index, prob = tuple_inputs
|
||||
index, prob = torch.squeeze(index).tolist(), torch.squeeze(prob)
|
||||
probability = torch.squeeze(probability)
|
||||
assert len(index) == 2, "invalid length : {:}".format(index)
|
||||
# compute expected flop
|
||||
# coordinates = torch.arange(self.x_range[0], self.x_range[1]+1).type_as(probability)
|
||||
expected_outC = (self.choices_tensor * probability).sum()
|
||||
expected_flop = self.get_flops([expected_inC, expected_outC], False, 1e6)
|
||||
if self.avg:
|
||||
out = self.avg(inputs)
|
||||
else:
|
||||
out = inputs
|
||||
# convolutional layer
|
||||
out_convs = conv_forward(out, self.conv, [self.choices[i] for i in index])
|
||||
out_bns = [self.BNs[idx](out_conv) for idx, out_conv in zip(index, out_convs)]
|
||||
# merge
|
||||
out_channel = max([x.size(1) for x in out_bns])
|
||||
outA = ChannelWiseInter(out_bns[0], out_channel)
|
||||
outB = ChannelWiseInter(out_bns[1], out_channel)
|
||||
out = outA * prob[0] + outB * prob[1]
|
||||
# out = additive_func(out_bns[0]*prob[0], out_bns[1]*prob[1])
|
||||
|
||||
if self.relu:
|
||||
out = self.relu(out)
|
||||
else:
|
||||
out = out
|
||||
return out, expected_outC, expected_flop
|
||||
|
||||
def basic_forward(self, inputs):
|
||||
if self.avg:
|
||||
out = self.avg(inputs)
|
||||
else:
|
||||
out = inputs
|
||||
conv = self.conv(out)
|
||||
if self.has_bn:
|
||||
out = self.BNs[-1](conv)
|
||||
else:
|
||||
out = conv
|
||||
if self.relu:
|
||||
out = self.relu(out)
|
||||
else:
|
||||
out = out
|
||||
if self.InShape is None:
|
||||
self.InShape = (inputs.size(-2), inputs.size(-1))
|
||||
self.OutShape = (out.size(-2), out.size(-1))
|
||||
return out
|
||||
|
||||
|
||||
class ResNetBasicblock(nn.Module):
|
||||
expansion = 1
|
||||
num_conv = 2
|
||||
|
||||
def __init__(self, inplanes, planes, stride):
|
||||
super(ResNetBasicblock, self).__init__()
|
||||
assert stride == 1 or stride == 2, "invalid stride {:}".format(stride)
|
||||
self.conv_a = ConvBNReLU(
|
||||
inplanes,
|
||||
planes,
|
||||
3,
|
||||
stride,
|
||||
1,
|
||||
False,
|
||||
has_avg=False,
|
||||
has_bn=True,
|
||||
has_relu=True,
|
||||
)
|
||||
self.conv_b = ConvBNReLU(
|
||||
planes, planes, 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=False
|
||||
)
|
||||
if stride == 2:
|
||||
self.downsample = ConvBNReLU(
|
||||
inplanes,
|
||||
planes,
|
||||
1,
|
||||
1,
|
||||
0,
|
||||
False,
|
||||
has_avg=True,
|
||||
has_bn=False,
|
||||
has_relu=False,
|
||||
)
|
||||
elif inplanes != planes:
|
||||
self.downsample = ConvBNReLU(
|
||||
inplanes,
|
||||
planes,
|
||||
1,
|
||||
1,
|
||||
0,
|
||||
False,
|
||||
has_avg=False,
|
||||
has_bn=True,
|
||||
has_relu=False,
|
||||
)
|
||||
else:
|
||||
self.downsample = None
|
||||
self.out_dim = planes
|
||||
self.search_mode = "basic"
|
||||
|
||||
def get_range(self):
|
||||
return self.conv_a.get_range() + self.conv_b.get_range()
|
||||
|
||||
def get_flops(self, channels):
|
||||
assert len(channels) == 3, "invalid channels : {:}".format(channels)
|
||||
flop_A = self.conv_a.get_flops([channels[0], channels[1]])
|
||||
flop_B = self.conv_b.get_flops([channels[1], channels[2]])
|
||||
if hasattr(self.downsample, "get_flops"):
|
||||
flop_C = self.downsample.get_flops([channels[0], channels[-1]])
|
||||
else:
|
||||
flop_C = 0
|
||||
if (
|
||||
channels[0] != channels[-1] and self.downsample is None
|
||||
): # this short-cut will be added during the infer-train
|
||||
flop_C = (
|
||||
channels[0]
|
||||
* channels[-1]
|
||||
* self.conv_b.OutShape[0]
|
||||
* self.conv_b.OutShape[1]
|
||||
)
|
||||
return flop_A + flop_B + flop_C
|
||||
|
||||
def forward(self, inputs):
|
||||
if self.search_mode == "basic":
|
||||
return self.basic_forward(inputs)
|
||||
elif self.search_mode == "search":
|
||||
return self.search_forward(inputs)
|
||||
else:
|
||||
raise ValueError("invalid search_mode = {:}".format(self.search_mode))
|
||||
|
||||
def search_forward(self, tuple_inputs):
|
||||
assert (
|
||||
isinstance(tuple_inputs, tuple) and len(tuple_inputs) == 5
|
||||
), "invalid type input : {:}".format(type(tuple_inputs))
|
||||
inputs, expected_inC, probability, indexes, probs = tuple_inputs
|
||||
assert indexes.size(0) == 2 and probs.size(0) == 2 and probability.size(0) == 2
|
||||
out_a, expected_inC_a, expected_flop_a = self.conv_a(
|
||||
(inputs, expected_inC, probability[0], indexes[0], probs[0])
|
||||
)
|
||||
out_b, expected_inC_b, expected_flop_b = self.conv_b(
|
||||
(out_a, expected_inC_a, probability[1], indexes[1], probs[1])
|
||||
)
|
||||
if self.downsample is not None:
|
||||
residual, _, expected_flop_c = self.downsample(
|
||||
(inputs, expected_inC, probability[1], indexes[1], probs[1])
|
||||
)
|
||||
else:
|
||||
residual, expected_flop_c = inputs, 0
|
||||
out = additive_func(residual, out_b)
|
||||
return (
|
||||
nn.functional.relu(out, inplace=True),
|
||||
expected_inC_b,
|
||||
sum([expected_flop_a, expected_flop_b, expected_flop_c]),
|
||||
)
|
||||
|
||||
def basic_forward(self, inputs):
|
||||
basicblock = self.conv_a(inputs)
|
||||
basicblock = self.conv_b(basicblock)
|
||||
if self.downsample is not None:
|
||||
residual = self.downsample(inputs)
|
||||
else:
|
||||
residual = inputs
|
||||
out = additive_func(residual, basicblock)
|
||||
return nn.functional.relu(out, inplace=True)
|
||||
|
||||
|
||||
class ResNetBottleneck(nn.Module):
|
||||
expansion = 4
|
||||
num_conv = 3
|
||||
|
||||
def __init__(self, inplanes, planes, stride):
|
||||
super(ResNetBottleneck, self).__init__()
|
||||
assert stride == 1 or stride == 2, "invalid stride {:}".format(stride)
|
||||
self.conv_1x1 = ConvBNReLU(
|
||||
inplanes, planes, 1, 1, 0, False, has_avg=False, has_bn=True, has_relu=True
|
||||
)
|
||||
self.conv_3x3 = ConvBNReLU(
|
||||
planes,
|
||||
planes,
|
||||
3,
|
||||
stride,
|
||||
1,
|
||||
False,
|
||||
has_avg=False,
|
||||
has_bn=True,
|
||||
has_relu=True,
|
||||
)
|
||||
self.conv_1x4 = ConvBNReLU(
|
||||
planes,
|
||||
planes * self.expansion,
|
||||
1,
|
||||
1,
|
||||
0,
|
||||
False,
|
||||
has_avg=False,
|
||||
has_bn=True,
|
||||
has_relu=False,
|
||||
)
|
||||
if stride == 2:
|
||||
self.downsample = ConvBNReLU(
|
||||
inplanes,
|
||||
planes * self.expansion,
|
||||
1,
|
||||
1,
|
||||
0,
|
||||
False,
|
||||
has_avg=True,
|
||||
has_bn=False,
|
||||
has_relu=False,
|
||||
)
|
||||
elif inplanes != planes * self.expansion:
|
||||
self.downsample = ConvBNReLU(
|
||||
inplanes,
|
||||
planes * self.expansion,
|
||||
1,
|
||||
1,
|
||||
0,
|
||||
False,
|
||||
has_avg=False,
|
||||
has_bn=True,
|
||||
has_relu=False,
|
||||
)
|
||||
else:
|
||||
self.downsample = None
|
||||
self.out_dim = planes * self.expansion
|
||||
self.search_mode = "basic"
|
||||
|
||||
def get_range(self):
|
||||
return (
|
||||
self.conv_1x1.get_range()
|
||||
+ self.conv_3x3.get_range()
|
||||
+ self.conv_1x4.get_range()
|
||||
)
|
||||
|
||||
def get_flops(self, channels):
|
||||
assert len(channels) == 4, "invalid channels : {:}".format(channels)
|
||||
flop_A = self.conv_1x1.get_flops([channels[0], channels[1]])
|
||||
flop_B = self.conv_3x3.get_flops([channels[1], channels[2]])
|
||||
flop_C = self.conv_1x4.get_flops([channels[2], channels[3]])
|
||||
if hasattr(self.downsample, "get_flops"):
|
||||
flop_D = self.downsample.get_flops([channels[0], channels[-1]])
|
||||
else:
|
||||
flop_D = 0
|
||||
if (
|
||||
channels[0] != channels[-1] and self.downsample is None
|
||||
): # this short-cut will be added during the infer-train
|
||||
flop_D = (
|
||||
channels[0]
|
||||
* channels[-1]
|
||||
* self.conv_1x4.OutShape[0]
|
||||
* self.conv_1x4.OutShape[1]
|
||||
)
|
||||
return flop_A + flop_B + flop_C + flop_D
|
||||
|
||||
def forward(self, inputs):
|
||||
if self.search_mode == "basic":
|
||||
return self.basic_forward(inputs)
|
||||
elif self.search_mode == "search":
|
||||
return self.search_forward(inputs)
|
||||
else:
|
||||
raise ValueError("invalid search_mode = {:}".format(self.search_mode))
|
||||
|
||||
def basic_forward(self, inputs):
|
||||
bottleneck = self.conv_1x1(inputs)
|
||||
bottleneck = self.conv_3x3(bottleneck)
|
||||
bottleneck = self.conv_1x4(bottleneck)
|
||||
if self.downsample is not None:
|
||||
residual = self.downsample(inputs)
|
||||
else:
|
||||
residual = inputs
|
||||
out = additive_func(residual, bottleneck)
|
||||
return nn.functional.relu(out, inplace=True)
|
||||
|
||||
def search_forward(self, tuple_inputs):
|
||||
assert (
|
||||
isinstance(tuple_inputs, tuple) and len(tuple_inputs) == 5
|
||||
), "invalid type input : {:}".format(type(tuple_inputs))
|
||||
inputs, expected_inC, probability, indexes, probs = tuple_inputs
|
||||
assert indexes.size(0) == 3 and probs.size(0) == 3 and probability.size(0) == 3
|
||||
out_1x1, expected_inC_1x1, expected_flop_1x1 = self.conv_1x1(
|
||||
(inputs, expected_inC, probability[0], indexes[0], probs[0])
|
||||
)
|
||||
out_3x3, expected_inC_3x3, expected_flop_3x3 = self.conv_3x3(
|
||||
(out_1x1, expected_inC_1x1, probability[1], indexes[1], probs[1])
|
||||
)
|
||||
out_1x4, expected_inC_1x4, expected_flop_1x4 = self.conv_1x4(
|
||||
(out_3x3, expected_inC_3x3, probability[2], indexes[2], probs[2])
|
||||
)
|
||||
if self.downsample is not None:
|
||||
residual, _, expected_flop_c = self.downsample(
|
||||
(inputs, expected_inC, probability[2], indexes[2], probs[2])
|
||||
)
|
||||
else:
|
||||
residual, expected_flop_c = inputs, 0
|
||||
out = additive_func(residual, out_1x4)
|
||||
return (
|
||||
nn.functional.relu(out, inplace=True),
|
||||
expected_inC_1x4,
|
||||
sum(
|
||||
[
|
||||
expected_flop_1x1,
|
||||
expected_flop_3x3,
|
||||
expected_flop_1x4,
|
||||
expected_flop_c,
|
||||
]
|
||||
),
|
||||
)
|
||||
|
||||
|
||||
class SearchWidthCifarResNet(nn.Module):
|
||||
def __init__(self, block_name, depth, num_classes):
|
||||
super(SearchWidthCifarResNet, self).__init__()
|
||||
|
||||
# Model type specifies number of layers for CIFAR-10 and CIFAR-100 model
|
||||
if block_name == "ResNetBasicblock":
|
||||
block = ResNetBasicblock
|
||||
assert (depth - 2) % 6 == 0, "depth should be one of 20, 32, 44, 56, 110"
|
||||
layer_blocks = (depth - 2) // 6
|
||||
elif block_name == "ResNetBottleneck":
|
||||
block = ResNetBottleneck
|
||||
assert (depth - 2) % 9 == 0, "depth should be one of 164"
|
||||
layer_blocks = (depth - 2) // 9
|
||||
else:
|
||||
raise ValueError("invalid block : {:}".format(block_name))
|
||||
|
||||
self.message = (
|
||||
"SearchWidthCifarResNet : Depth : {:} , Layers for each block : {:}".format(
|
||||
depth, layer_blocks
|
||||
)
|
||||
)
|
||||
self.num_classes = num_classes
|
||||
self.channels = [16]
|
||||
self.layers = nn.ModuleList(
|
||||
[
|
||||
ConvBNReLU(
|
||||
3, 16, 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=True
|
||||
)
|
||||
]
|
||||
)
|
||||
self.InShape = None
|
||||
for stage in range(3):
|
||||
for iL in range(layer_blocks):
|
||||
iC = self.channels[-1]
|
||||
planes = 16 * (2 ** stage)
|
||||
stride = 2 if stage > 0 and iL == 0 else 1
|
||||
module = block(iC, planes, stride)
|
||||
self.channels.append(module.out_dim)
|
||||
self.layers.append(module)
|
||||
self.message += "\nstage={:}, ilayer={:02d}/{:02d}, block={:03d}, iC={:3d}, oC={:3d}, stride={:}".format(
|
||||
stage,
|
||||
iL,
|
||||
layer_blocks,
|
||||
len(self.layers) - 1,
|
||||
iC,
|
||||
module.out_dim,
|
||||
stride,
|
||||
)
|
||||
|
||||
self.avgpool = nn.AvgPool2d(8)
|
||||
self.classifier = nn.Linear(module.out_dim, num_classes)
|
||||
self.InShape = None
|
||||
self.tau = -1
|
||||
self.search_mode = "basic"
|
||||
# assert sum(x.num_conv for x in self.layers) + 1 == depth, 'invalid depth check {:} vs {:}'.format(sum(x.num_conv for x in self.layers)+1, depth)
|
||||
|
||||
# parameters for width
|
||||
self.Ranges = []
|
||||
self.layer2indexRange = []
|
||||
for i, layer in enumerate(self.layers):
|
||||
start_index = len(self.Ranges)
|
||||
self.Ranges += layer.get_range()
|
||||
self.layer2indexRange.append((start_index, len(self.Ranges)))
|
||||
assert len(self.Ranges) + 1 == depth, "invalid depth check {:} vs {:}".format(
|
||||
len(self.Ranges) + 1, depth
|
||||
)
|
||||
|
||||
self.register_parameter(
|
||||
"width_attentions",
|
||||
nn.Parameter(torch.Tensor(len(self.Ranges), get_choices(None))),
|
||||
)
|
||||
nn.init.normal_(self.width_attentions, 0, 0.01)
|
||||
self.apply(initialize_resnet)
|
||||
|
||||
def arch_parameters(self):
|
||||
return [self.width_attentions]
|
||||
|
||||
def base_parameters(self):
|
||||
return (
|
||||
list(self.layers.parameters())
|
||||
+ list(self.avgpool.parameters())
|
||||
+ list(self.classifier.parameters())
|
||||
)
|
||||
|
||||
def get_flop(self, mode, config_dict, extra_info):
|
||||
if config_dict is not None:
|
||||
config_dict = config_dict.copy()
|
||||
# weights = [F.softmax(x, dim=0) for x in self.width_attentions]
|
||||
channels = [3]
|
||||
for i, weight in enumerate(self.width_attentions):
|
||||
if mode == "genotype":
|
||||
with torch.no_grad():
|
||||
probe = nn.functional.softmax(weight, dim=0)
|
||||
C = self.Ranges[i][torch.argmax(probe).item()]
|
||||
elif mode == "max":
|
||||
C = self.Ranges[i][-1]
|
||||
elif mode == "fix":
|
||||
C = int(math.sqrt(extra_info) * self.Ranges[i][-1])
|
||||
elif mode == "random":
|
||||
assert isinstance(extra_info, float), "invalid extra_info : {:}".format(
|
||||
extra_info
|
||||
)
|
||||
with torch.no_grad():
|
||||
prob = nn.functional.softmax(weight, dim=0)
|
||||
approximate_C = int(math.sqrt(extra_info) * self.Ranges[i][-1])
|
||||
for j in range(prob.size(0)):
|
||||
prob[j] = 1 / (
|
||||
abs(j - (approximate_C - self.Ranges[i][j])) + 0.2
|
||||
)
|
||||
C = self.Ranges[i][torch.multinomial(prob, 1, False).item()]
|
||||
else:
|
||||
raise ValueError("invalid mode : {:}".format(mode))
|
||||
channels.append(C)
|
||||
flop = 0
|
||||
for i, layer in enumerate(self.layers):
|
||||
s, e = self.layer2indexRange[i]
|
||||
xchl = tuple(channels[s : e + 1])
|
||||
flop += layer.get_flops(xchl)
|
||||
# the last fc layer
|
||||
flop += channels[-1] * self.classifier.out_features
|
||||
if config_dict is None:
|
||||
return flop / 1e6
|
||||
else:
|
||||
config_dict["xchannels"] = channels
|
||||
config_dict["super_type"] = "infer-width"
|
||||
config_dict["estimated_FLOP"] = flop / 1e6
|
||||
return flop / 1e6, config_dict
|
||||
|
||||
def get_arch_info(self):
|
||||
string = "for width, there are {:} attention probabilities.".format(
|
||||
len(self.width_attentions)
|
||||
)
|
||||
discrepancy = []
|
||||
with torch.no_grad():
|
||||
for i, att in enumerate(self.width_attentions):
|
||||
prob = nn.functional.softmax(att, dim=0)
|
||||
prob = prob.cpu()
|
||||
selc = prob.argmax().item()
|
||||
prob = prob.tolist()
|
||||
prob = ["{:.3f}".format(x) for x in prob]
|
||||
xstring = "{:03d}/{:03d}-th : {:}".format(
|
||||
i, len(self.width_attentions), " ".join(prob)
|
||||
)
|
||||
logt = ["{:.3f}".format(x) for x in att.cpu().tolist()]
|
||||
xstring += " || {:52s}".format(" ".join(logt))
|
||||
prob = sorted([float(x) for x in prob])
|
||||
disc = prob[-1] - prob[-2]
|
||||
xstring += " || dis={:.2f} || select={:}/{:}".format(
|
||||
disc, selc, len(prob)
|
||||
)
|
||||
discrepancy.append(disc)
|
||||
string += "\n{:}".format(xstring)
|
||||
return string, discrepancy
|
||||
|
||||
def set_tau(self, tau_max, tau_min, epoch_ratio):
|
||||
assert (
|
||||
epoch_ratio >= 0 and epoch_ratio <= 1
|
||||
), "invalid epoch-ratio : {:}".format(epoch_ratio)
|
||||
tau = tau_min + (tau_max - tau_min) * (1 + math.cos(math.pi * epoch_ratio)) / 2
|
||||
self.tau = tau
|
||||
|
||||
def get_message(self):
|
||||
return self.message
|
||||
|
||||
def forward(self, inputs):
|
||||
if self.search_mode == "basic":
|
||||
return self.basic_forward(inputs)
|
||||
elif self.search_mode == "search":
|
||||
return self.search_forward(inputs)
|
||||
else:
|
||||
raise ValueError("invalid search_mode = {:}".format(self.search_mode))
|
||||
|
||||
def search_forward(self, inputs):
|
||||
flop_probs = nn.functional.softmax(self.width_attentions, dim=1)
|
||||
selected_widths, selected_probs = select2withP(self.width_attentions, self.tau)
|
||||
with torch.no_grad():
|
||||
selected_widths = selected_widths.cpu()
|
||||
|
||||
x, last_channel_idx, expected_inC, flops = inputs, 0, 3, []
|
||||
for i, layer in enumerate(self.layers):
|
||||
selected_w_index = selected_widths[
|
||||
last_channel_idx : last_channel_idx + layer.num_conv
|
||||
]
|
||||
selected_w_probs = selected_probs[
|
||||
last_channel_idx : last_channel_idx + layer.num_conv
|
||||
]
|
||||
layer_prob = flop_probs[
|
||||
last_channel_idx : last_channel_idx + layer.num_conv
|
||||
]
|
||||
x, expected_inC, expected_flop = layer(
|
||||
(x, expected_inC, layer_prob, selected_w_index, selected_w_probs)
|
||||
)
|
||||
last_channel_idx += layer.num_conv
|
||||
flops.append(expected_flop)
|
||||
flops.append(expected_inC * (self.classifier.out_features * 1.0 / 1e6))
|
||||
features = self.avgpool(x)
|
||||
features = features.view(features.size(0), -1)
|
||||
logits = linear_forward(features, self.classifier)
|
||||
return logits, torch.stack([sum(flops)])
|
||||
|
||||
def basic_forward(self, inputs):
|
||||
if self.InShape is None:
|
||||
self.InShape = (inputs.size(-2), inputs.size(-1))
|
||||
x = inputs
|
||||
for i, layer in enumerate(self.layers):
|
||||
x = layer(x)
|
||||
features = self.avgpool(x)
|
||||
features = features.view(features.size(0), -1)
|
||||
logits = self.classifier(features)
|
||||
return features, logits
|
766
xautodl/models/shape_searchs/SearchImagenetResNet.py
Normal file
766
xautodl/models/shape_searchs/SearchImagenetResNet.py
Normal file
@@ -0,0 +1,766 @@
|
||||
import math, torch
|
||||
from collections import OrderedDict
|
||||
from bisect import bisect_right
|
||||
import torch.nn as nn
|
||||
from ..initialization import initialize_resnet
|
||||
from ..SharedUtils import additive_func
|
||||
from .SoftSelect import select2withP, ChannelWiseInter
|
||||
from .SoftSelect import linear_forward
|
||||
from .SoftSelect import get_width_choices
|
||||
|
||||
|
||||
def get_depth_choices(layers):
|
||||
min_depth = min(layers)
|
||||
info = {"num": min_depth}
|
||||
for i, depth in enumerate(layers):
|
||||
choices = []
|
||||
for j in range(1, min_depth + 1):
|
||||
choices.append(int(float(depth) * j / min_depth))
|
||||
info[i] = choices
|
||||
return info
|
||||
|
||||
|
||||
def conv_forward(inputs, conv, choices):
|
||||
iC = conv.in_channels
|
||||
fill_size = list(inputs.size())
|
||||
fill_size[1] = iC - fill_size[1]
|
||||
filled = torch.zeros(fill_size, device=inputs.device)
|
||||
xinputs = torch.cat((inputs, filled), dim=1)
|
||||
outputs = conv(xinputs)
|
||||
selecteds = [outputs[:, :oC] for oC in choices]
|
||||
return selecteds
|
||||
|
||||
|
||||
class ConvBNReLU(nn.Module):
|
||||
num_conv = 1
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
nIn,
|
||||
nOut,
|
||||
kernel,
|
||||
stride,
|
||||
padding,
|
||||
bias,
|
||||
has_avg,
|
||||
has_bn,
|
||||
has_relu,
|
||||
last_max_pool=False,
|
||||
):
|
||||
super(ConvBNReLU, self).__init__()
|
||||
self.InShape = None
|
||||
self.OutShape = None
|
||||
self.choices = get_width_choices(nOut)
|
||||
self.register_buffer("choices_tensor", torch.Tensor(self.choices))
|
||||
|
||||
if has_avg:
|
||||
self.avg = nn.AvgPool2d(kernel_size=2, stride=2, padding=0)
|
||||
else:
|
||||
self.avg = None
|
||||
self.conv = nn.Conv2d(
|
||||
nIn,
|
||||
nOut,
|
||||
kernel_size=kernel,
|
||||
stride=stride,
|
||||
padding=padding,
|
||||
dilation=1,
|
||||
groups=1,
|
||||
bias=bias,
|
||||
)
|
||||
# if has_bn : self.bn = nn.BatchNorm2d(nOut)
|
||||
# else : self.bn = None
|
||||
self.has_bn = has_bn
|
||||
self.BNs = nn.ModuleList()
|
||||
for i, _out in enumerate(self.choices):
|
||||
self.BNs.append(nn.BatchNorm2d(_out))
|
||||
if has_relu:
|
||||
self.relu = nn.ReLU(inplace=True)
|
||||
else:
|
||||
self.relu = None
|
||||
|
||||
if last_max_pool:
|
||||
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
|
||||
else:
|
||||
self.maxpool = None
|
||||
self.in_dim = nIn
|
||||
self.out_dim = nOut
|
||||
self.search_mode = "basic"
|
||||
|
||||
def get_flops(self, channels, check_range=True, divide=1):
|
||||
iC, oC = channels
|
||||
if check_range:
|
||||
assert (
|
||||
iC <= self.conv.in_channels and oC <= self.conv.out_channels
|
||||
), "{:} vs {:} | {:} vs {:}".format(
|
||||
iC, self.conv.in_channels, oC, self.conv.out_channels
|
||||
)
|
||||
assert (
|
||||
isinstance(self.InShape, tuple) and len(self.InShape) == 2
|
||||
), "invalid in-shape : {:}".format(self.InShape)
|
||||
assert (
|
||||
isinstance(self.OutShape, tuple) and len(self.OutShape) == 2
|
||||
), "invalid out-shape : {:}".format(self.OutShape)
|
||||
# conv_per_position_flops = self.conv.kernel_size[0] * self.conv.kernel_size[1] * iC * oC / self.conv.groups
|
||||
conv_per_position_flops = (
|
||||
self.conv.kernel_size[0] * self.conv.kernel_size[1] * 1.0 / self.conv.groups
|
||||
)
|
||||
all_positions = self.OutShape[0] * self.OutShape[1]
|
||||
flops = (conv_per_position_flops * all_positions / divide) * iC * oC
|
||||
if self.conv.bias is not None:
|
||||
flops += all_positions / divide
|
||||
return flops
|
||||
|
||||
def get_range(self):
|
||||
return [self.choices]
|
||||
|
||||
def forward(self, inputs):
|
||||
if self.search_mode == "basic":
|
||||
return self.basic_forward(inputs)
|
||||
elif self.search_mode == "search":
|
||||
return self.search_forward(inputs)
|
||||
else:
|
||||
raise ValueError("invalid search_mode = {:}".format(self.search_mode))
|
||||
|
||||
def search_forward(self, tuple_inputs):
|
||||
assert (
|
||||
isinstance(tuple_inputs, tuple) and len(tuple_inputs) == 5
|
||||
), "invalid type input : {:}".format(type(tuple_inputs))
|
||||
inputs, expected_inC, probability, index, prob = tuple_inputs
|
||||
index, prob = torch.squeeze(index).tolist(), torch.squeeze(prob)
|
||||
probability = torch.squeeze(probability)
|
||||
assert len(index) == 2, "invalid length : {:}".format(index)
|
||||
# compute expected flop
|
||||
# coordinates = torch.arange(self.x_range[0], self.x_range[1]+1).type_as(probability)
|
||||
expected_outC = (self.choices_tensor * probability).sum()
|
||||
expected_flop = self.get_flops([expected_inC, expected_outC], False, 1e6)
|
||||
if self.avg:
|
||||
out = self.avg(inputs)
|
||||
else:
|
||||
out = inputs
|
||||
# convolutional layer
|
||||
out_convs = conv_forward(out, self.conv, [self.choices[i] for i in index])
|
||||
out_bns = [self.BNs[idx](out_conv) for idx, out_conv in zip(index, out_convs)]
|
||||
# merge
|
||||
out_channel = max([x.size(1) for x in out_bns])
|
||||
outA = ChannelWiseInter(out_bns[0], out_channel)
|
||||
outB = ChannelWiseInter(out_bns[1], out_channel)
|
||||
out = outA * prob[0] + outB * prob[1]
|
||||
# out = additive_func(out_bns[0]*prob[0], out_bns[1]*prob[1])
|
||||
|
||||
if self.relu:
|
||||
out = self.relu(out)
|
||||
if self.maxpool:
|
||||
out = self.maxpool(out)
|
||||
return out, expected_outC, expected_flop
|
||||
|
||||
def basic_forward(self, inputs):
|
||||
if self.avg:
|
||||
out = self.avg(inputs)
|
||||
else:
|
||||
out = inputs
|
||||
conv = self.conv(out)
|
||||
if self.has_bn:
|
||||
out = self.BNs[-1](conv)
|
||||
else:
|
||||
out = conv
|
||||
if self.relu:
|
||||
out = self.relu(out)
|
||||
else:
|
||||
out = out
|
||||
if self.InShape is None:
|
||||
self.InShape = (inputs.size(-2), inputs.size(-1))
|
||||
self.OutShape = (out.size(-2), out.size(-1))
|
||||
if self.maxpool:
|
||||
out = self.maxpool(out)
|
||||
return out
|
||||
|
||||
|
||||
class ResNetBasicblock(nn.Module):
|
||||
expansion = 1
|
||||
num_conv = 2
|
||||
|
||||
def __init__(self, inplanes, planes, stride):
|
||||
super(ResNetBasicblock, self).__init__()
|
||||
assert stride == 1 or stride == 2, "invalid stride {:}".format(stride)
|
||||
self.conv_a = ConvBNReLU(
|
||||
inplanes,
|
||||
planes,
|
||||
3,
|
||||
stride,
|
||||
1,
|
||||
False,
|
||||
has_avg=False,
|
||||
has_bn=True,
|
||||
has_relu=True,
|
||||
)
|
||||
self.conv_b = ConvBNReLU(
|
||||
planes, planes, 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=False
|
||||
)
|
||||
if stride == 2:
|
||||
self.downsample = ConvBNReLU(
|
||||
inplanes,
|
||||
planes,
|
||||
1,
|
||||
1,
|
||||
0,
|
||||
False,
|
||||
has_avg=True,
|
||||
has_bn=True,
|
||||
has_relu=False,
|
||||
)
|
||||
elif inplanes != planes:
|
||||
self.downsample = ConvBNReLU(
|
||||
inplanes,
|
||||
planes,
|
||||
1,
|
||||
1,
|
||||
0,
|
||||
False,
|
||||
has_avg=False,
|
||||
has_bn=True,
|
||||
has_relu=False,
|
||||
)
|
||||
else:
|
||||
self.downsample = None
|
||||
self.out_dim = planes
|
||||
self.search_mode = "basic"
|
||||
|
||||
def get_range(self):
|
||||
return self.conv_a.get_range() + self.conv_b.get_range()
|
||||
|
||||
def get_flops(self, channels):
|
||||
assert len(channels) == 3, "invalid channels : {:}".format(channels)
|
||||
flop_A = self.conv_a.get_flops([channels[0], channels[1]])
|
||||
flop_B = self.conv_b.get_flops([channels[1], channels[2]])
|
||||
if hasattr(self.downsample, "get_flops"):
|
||||
flop_C = self.downsample.get_flops([channels[0], channels[-1]])
|
||||
else:
|
||||
flop_C = 0
|
||||
if (
|
||||
channels[0] != channels[-1] and self.downsample is None
|
||||
): # this short-cut will be added during the infer-train
|
||||
flop_C = (
|
||||
channels[0]
|
||||
* channels[-1]
|
||||
* self.conv_b.OutShape[0]
|
||||
* self.conv_b.OutShape[1]
|
||||
)
|
||||
return flop_A + flop_B + flop_C
|
||||
|
||||
def forward(self, inputs):
|
||||
if self.search_mode == "basic":
|
||||
return self.basic_forward(inputs)
|
||||
elif self.search_mode == "search":
|
||||
return self.search_forward(inputs)
|
||||
else:
|
||||
raise ValueError("invalid search_mode = {:}".format(self.search_mode))
|
||||
|
||||
def search_forward(self, tuple_inputs):
|
||||
assert (
|
||||
isinstance(tuple_inputs, tuple) and len(tuple_inputs) == 5
|
||||
), "invalid type input : {:}".format(type(tuple_inputs))
|
||||
inputs, expected_inC, probability, indexes, probs = tuple_inputs
|
||||
assert indexes.size(0) == 2 and probs.size(0) == 2 and probability.size(0) == 2
|
||||
# import pdb; pdb.set_trace()
|
||||
out_a, expected_inC_a, expected_flop_a = self.conv_a(
|
||||
(inputs, expected_inC, probability[0], indexes[0], probs[0])
|
||||
)
|
||||
out_b, expected_inC_b, expected_flop_b = self.conv_b(
|
||||
(out_a, expected_inC_a, probability[1], indexes[1], probs[1])
|
||||
)
|
||||
if self.downsample is not None:
|
||||
residual, _, expected_flop_c = self.downsample(
|
||||
(inputs, expected_inC, probability[1], indexes[1], probs[1])
|
||||
)
|
||||
else:
|
||||
residual, expected_flop_c = inputs, 0
|
||||
out = additive_func(residual, out_b)
|
||||
return (
|
||||
nn.functional.relu(out, inplace=True),
|
||||
expected_inC_b,
|
||||
sum([expected_flop_a, expected_flop_b, expected_flop_c]),
|
||||
)
|
||||
|
||||
def basic_forward(self, inputs):
|
||||
basicblock = self.conv_a(inputs)
|
||||
basicblock = self.conv_b(basicblock)
|
||||
if self.downsample is not None:
|
||||
residual = self.downsample(inputs)
|
||||
else:
|
||||
residual = inputs
|
||||
out = additive_func(residual, basicblock)
|
||||
return nn.functional.relu(out, inplace=True)
|
||||
|
||||
|
||||
class ResNetBottleneck(nn.Module):
|
||||
expansion = 4
|
||||
num_conv = 3
|
||||
|
||||
def __init__(self, inplanes, planes, stride):
|
||||
super(ResNetBottleneck, self).__init__()
|
||||
assert stride == 1 or stride == 2, "invalid stride {:}".format(stride)
|
||||
self.conv_1x1 = ConvBNReLU(
|
||||
inplanes, planes, 1, 1, 0, False, has_avg=False, has_bn=True, has_relu=True
|
||||
)
|
||||
self.conv_3x3 = ConvBNReLU(
|
||||
planes,
|
||||
planes,
|
||||
3,
|
||||
stride,
|
||||
1,
|
||||
False,
|
||||
has_avg=False,
|
||||
has_bn=True,
|
||||
has_relu=True,
|
||||
)
|
||||
self.conv_1x4 = ConvBNReLU(
|
||||
planes,
|
||||
planes * self.expansion,
|
||||
1,
|
||||
1,
|
||||
0,
|
||||
False,
|
||||
has_avg=False,
|
||||
has_bn=True,
|
||||
has_relu=False,
|
||||
)
|
||||
if stride == 2:
|
||||
self.downsample = ConvBNReLU(
|
||||
inplanes,
|
||||
planes * self.expansion,
|
||||
1,
|
||||
1,
|
||||
0,
|
||||
False,
|
||||
has_avg=True,
|
||||
has_bn=True,
|
||||
has_relu=False,
|
||||
)
|
||||
elif inplanes != planes * self.expansion:
|
||||
self.downsample = ConvBNReLU(
|
||||
inplanes,
|
||||
planes * self.expansion,
|
||||
1,
|
||||
1,
|
||||
0,
|
||||
False,
|
||||
has_avg=False,
|
||||
has_bn=True,
|
||||
has_relu=False,
|
||||
)
|
||||
else:
|
||||
self.downsample = None
|
||||
self.out_dim = planes * self.expansion
|
||||
self.search_mode = "basic"
|
||||
|
||||
def get_range(self):
|
||||
return (
|
||||
self.conv_1x1.get_range()
|
||||
+ self.conv_3x3.get_range()
|
||||
+ self.conv_1x4.get_range()
|
||||
)
|
||||
|
||||
def get_flops(self, channels):
|
||||
assert len(channels) == 4, "invalid channels : {:}".format(channels)
|
||||
flop_A = self.conv_1x1.get_flops([channels[0], channels[1]])
|
||||
flop_B = self.conv_3x3.get_flops([channels[1], channels[2]])
|
||||
flop_C = self.conv_1x4.get_flops([channels[2], channels[3]])
|
||||
if hasattr(self.downsample, "get_flops"):
|
||||
flop_D = self.downsample.get_flops([channels[0], channels[-1]])
|
||||
else:
|
||||
flop_D = 0
|
||||
if (
|
||||
channels[0] != channels[-1] and self.downsample is None
|
||||
): # this short-cut will be added during the infer-train
|
||||
flop_D = (
|
||||
channels[0]
|
||||
* channels[-1]
|
||||
* self.conv_1x4.OutShape[0]
|
||||
* self.conv_1x4.OutShape[1]
|
||||
)
|
||||
return flop_A + flop_B + flop_C + flop_D
|
||||
|
||||
def forward(self, inputs):
|
||||
if self.search_mode == "basic":
|
||||
return self.basic_forward(inputs)
|
||||
elif self.search_mode == "search":
|
||||
return self.search_forward(inputs)
|
||||
else:
|
||||
raise ValueError("invalid search_mode = {:}".format(self.search_mode))
|
||||
|
||||
def basic_forward(self, inputs):
|
||||
bottleneck = self.conv_1x1(inputs)
|
||||
bottleneck = self.conv_3x3(bottleneck)
|
||||
bottleneck = self.conv_1x4(bottleneck)
|
||||
if self.downsample is not None:
|
||||
residual = self.downsample(inputs)
|
||||
else:
|
||||
residual = inputs
|
||||
out = additive_func(residual, bottleneck)
|
||||
return nn.functional.relu(out, inplace=True)
|
||||
|
||||
def search_forward(self, tuple_inputs):
|
||||
assert (
|
||||
isinstance(tuple_inputs, tuple) and len(tuple_inputs) == 5
|
||||
), "invalid type input : {:}".format(type(tuple_inputs))
|
||||
inputs, expected_inC, probability, indexes, probs = tuple_inputs
|
||||
assert indexes.size(0) == 3 and probs.size(0) == 3 and probability.size(0) == 3
|
||||
out_1x1, expected_inC_1x1, expected_flop_1x1 = self.conv_1x1(
|
||||
(inputs, expected_inC, probability[0], indexes[0], probs[0])
|
||||
)
|
||||
out_3x3, expected_inC_3x3, expected_flop_3x3 = self.conv_3x3(
|
||||
(out_1x1, expected_inC_1x1, probability[1], indexes[1], probs[1])
|
||||
)
|
||||
out_1x4, expected_inC_1x4, expected_flop_1x4 = self.conv_1x4(
|
||||
(out_3x3, expected_inC_3x3, probability[2], indexes[2], probs[2])
|
||||
)
|
||||
if self.downsample is not None:
|
||||
residual, _, expected_flop_c = self.downsample(
|
||||
(inputs, expected_inC, probability[2], indexes[2], probs[2])
|
||||
)
|
||||
else:
|
||||
residual, expected_flop_c = inputs, 0
|
||||
out = additive_func(residual, out_1x4)
|
||||
return (
|
||||
nn.functional.relu(out, inplace=True),
|
||||
expected_inC_1x4,
|
||||
sum(
|
||||
[
|
||||
expected_flop_1x1,
|
||||
expected_flop_3x3,
|
||||
expected_flop_1x4,
|
||||
expected_flop_c,
|
||||
]
|
||||
),
|
||||
)
|
||||
|
||||
|
||||
class SearchShapeImagenetResNet(nn.Module):
|
||||
def __init__(self, block_name, layers, deep_stem, num_classes):
|
||||
super(SearchShapeImagenetResNet, self).__init__()
|
||||
|
||||
# Model type specifies number of layers for CIFAR-10 and CIFAR-100 model
|
||||
if block_name == "BasicBlock":
|
||||
block = ResNetBasicblock
|
||||
elif block_name == "Bottleneck":
|
||||
block = ResNetBottleneck
|
||||
else:
|
||||
raise ValueError("invalid block : {:}".format(block_name))
|
||||
|
||||
self.message = (
|
||||
"SearchShapeCifarResNet : Depth : {:} , Layers for each block : {:}".format(
|
||||
sum(layers) * block.num_conv, layers
|
||||
)
|
||||
)
|
||||
self.num_classes = num_classes
|
||||
if not deep_stem:
|
||||
self.layers = nn.ModuleList(
|
||||
[
|
||||
ConvBNReLU(
|
||||
3,
|
||||
64,
|
||||
7,
|
||||
2,
|
||||
3,
|
||||
False,
|
||||
has_avg=False,
|
||||
has_bn=True,
|
||||
has_relu=True,
|
||||
last_max_pool=True,
|
||||
)
|
||||
]
|
||||
)
|
||||
self.channels = [64]
|
||||
else:
|
||||
self.layers = nn.ModuleList(
|
||||
[
|
||||
ConvBNReLU(
|
||||
3, 32, 3, 2, 1, False, has_avg=False, has_bn=True, has_relu=True
|
||||
),
|
||||
ConvBNReLU(
|
||||
32,
|
||||
64,
|
||||
3,
|
||||
1,
|
||||
1,
|
||||
False,
|
||||
has_avg=False,
|
||||
has_bn=True,
|
||||
has_relu=True,
|
||||
last_max_pool=True,
|
||||
),
|
||||
]
|
||||
)
|
||||
self.channels = [32, 64]
|
||||
|
||||
meta_depth_info = get_depth_choices(layers)
|
||||
self.InShape = None
|
||||
self.depth_info = OrderedDict()
|
||||
self.depth_at_i = OrderedDict()
|
||||
for stage, layer_blocks in enumerate(layers):
|
||||
cur_block_choices = meta_depth_info[stage]
|
||||
assert (
|
||||
cur_block_choices[-1] == layer_blocks
|
||||
), "stage={:}, {:} vs {:}".format(stage, cur_block_choices, layer_blocks)
|
||||
block_choices, xstart = [], len(self.layers)
|
||||
for iL in range(layer_blocks):
|
||||
iC = self.channels[-1]
|
||||
planes = 64 * (2 ** stage)
|
||||
stride = 2 if stage > 0 and iL == 0 else 1
|
||||
module = block(iC, planes, stride)
|
||||
self.channels.append(module.out_dim)
|
||||
self.layers.append(module)
|
||||
self.message += "\nstage={:}, ilayer={:02d}/{:02d}, block={:03d}, iC={:3d}, oC={:3d}, stride={:}".format(
|
||||
stage,
|
||||
iL,
|
||||
layer_blocks,
|
||||
len(self.layers) - 1,
|
||||
iC,
|
||||
module.out_dim,
|
||||
stride,
|
||||
)
|
||||
# added for depth
|
||||
layer_index = len(self.layers) - 1
|
||||
if iL + 1 in cur_block_choices:
|
||||
block_choices.append(layer_index)
|
||||
if iL + 1 == layer_blocks:
|
||||
self.depth_info[layer_index] = {
|
||||
"choices": block_choices,
|
||||
"stage": stage,
|
||||
"xstart": xstart,
|
||||
}
|
||||
self.depth_info_list = []
|
||||
for xend, info in self.depth_info.items():
|
||||
self.depth_info_list.append((xend, info))
|
||||
xstart, xstage = info["xstart"], info["stage"]
|
||||
for ilayer in range(xstart, xend + 1):
|
||||
idx = bisect_right(info["choices"], ilayer - 1)
|
||||
self.depth_at_i[ilayer] = (xstage, idx)
|
||||
|
||||
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
|
||||
self.classifier = nn.Linear(module.out_dim, num_classes)
|
||||
self.InShape = None
|
||||
self.tau = -1
|
||||
self.search_mode = "basic"
|
||||
# assert sum(x.num_conv for x in self.layers) + 1 == depth, 'invalid depth check {:} vs {:}'.format(sum(x.num_conv for x in self.layers)+1, depth)
|
||||
|
||||
# parameters for width
|
||||
self.Ranges = []
|
||||
self.layer2indexRange = []
|
||||
for i, layer in enumerate(self.layers):
|
||||
start_index = len(self.Ranges)
|
||||
self.Ranges += layer.get_range()
|
||||
self.layer2indexRange.append((start_index, len(self.Ranges)))
|
||||
|
||||
self.register_parameter(
|
||||
"width_attentions",
|
||||
nn.Parameter(torch.Tensor(len(self.Ranges), get_width_choices(None))),
|
||||
)
|
||||
self.register_parameter(
|
||||
"depth_attentions",
|
||||
nn.Parameter(torch.Tensor(len(layers), meta_depth_info["num"])),
|
||||
)
|
||||
nn.init.normal_(self.width_attentions, 0, 0.01)
|
||||
nn.init.normal_(self.depth_attentions, 0, 0.01)
|
||||
self.apply(initialize_resnet)
|
||||
|
||||
def arch_parameters(self, LR=None):
|
||||
if LR is None:
|
||||
return [self.width_attentions, self.depth_attentions]
|
||||
else:
|
||||
return [
|
||||
{"params": self.width_attentions, "lr": LR},
|
||||
{"params": self.depth_attentions, "lr": LR},
|
||||
]
|
||||
|
||||
def base_parameters(self):
|
||||
return (
|
||||
list(self.layers.parameters())
|
||||
+ list(self.avgpool.parameters())
|
||||
+ list(self.classifier.parameters())
|
||||
)
|
||||
|
||||
def get_flop(self, mode, config_dict, extra_info):
|
||||
if config_dict is not None:
|
||||
config_dict = config_dict.copy()
|
||||
# select channels
|
||||
channels = [3]
|
||||
for i, weight in enumerate(self.width_attentions):
|
||||
if mode == "genotype":
|
||||
with torch.no_grad():
|
||||
probe = nn.functional.softmax(weight, dim=0)
|
||||
C = self.Ranges[i][torch.argmax(probe).item()]
|
||||
else:
|
||||
raise ValueError("invalid mode : {:}".format(mode))
|
||||
channels.append(C)
|
||||
# select depth
|
||||
if mode == "genotype":
|
||||
with torch.no_grad():
|
||||
depth_probs = nn.functional.softmax(self.depth_attentions, dim=1)
|
||||
choices = torch.argmax(depth_probs, dim=1).cpu().tolist()
|
||||
else:
|
||||
raise ValueError("invalid mode : {:}".format(mode))
|
||||
selected_layers = []
|
||||
for choice, xvalue in zip(choices, self.depth_info_list):
|
||||
xtemp = xvalue[1]["choices"][choice] - xvalue[1]["xstart"] + 1
|
||||
selected_layers.append(xtemp)
|
||||
flop = 0
|
||||
for i, layer in enumerate(self.layers):
|
||||
s, e = self.layer2indexRange[i]
|
||||
xchl = tuple(channels[s : e + 1])
|
||||
if i in self.depth_at_i:
|
||||
xstagei, xatti = self.depth_at_i[i]
|
||||
if xatti <= choices[xstagei]: # leave this depth
|
||||
flop += layer.get_flops(xchl)
|
||||
else:
|
||||
flop += 0 # do not use this layer
|
||||
else:
|
||||
flop += layer.get_flops(xchl)
|
||||
# the last fc layer
|
||||
flop += channels[-1] * self.classifier.out_features
|
||||
if config_dict is None:
|
||||
return flop / 1e6
|
||||
else:
|
||||
config_dict["xchannels"] = channels
|
||||
config_dict["xblocks"] = selected_layers
|
||||
config_dict["super_type"] = "infer-shape"
|
||||
config_dict["estimated_FLOP"] = flop / 1e6
|
||||
return flop / 1e6, config_dict
|
||||
|
||||
def get_arch_info(self):
|
||||
string = (
|
||||
"for depth and width, there are {:} + {:} attention probabilities.".format(
|
||||
len(self.depth_attentions), len(self.width_attentions)
|
||||
)
|
||||
)
|
||||
string += "\n{:}".format(self.depth_info)
|
||||
discrepancy = []
|
||||
with torch.no_grad():
|
||||
for i, att in enumerate(self.depth_attentions):
|
||||
prob = nn.functional.softmax(att, dim=0)
|
||||
prob = prob.cpu()
|
||||
selc = prob.argmax().item()
|
||||
prob = prob.tolist()
|
||||
prob = ["{:.3f}".format(x) for x in prob]
|
||||
xstring = "{:03d}/{:03d}-th : {:}".format(
|
||||
i, len(self.depth_attentions), " ".join(prob)
|
||||
)
|
||||
logt = ["{:.4f}".format(x) for x in att.cpu().tolist()]
|
||||
xstring += " || {:17s}".format(" ".join(logt))
|
||||
prob = sorted([float(x) for x in prob])
|
||||
disc = prob[-1] - prob[-2]
|
||||
xstring += " || discrepancy={:.2f} || select={:}/{:}".format(
|
||||
disc, selc, len(prob)
|
||||
)
|
||||
discrepancy.append(disc)
|
||||
string += "\n{:}".format(xstring)
|
||||
string += "\n-----------------------------------------------"
|
||||
for i, att in enumerate(self.width_attentions):
|
||||
prob = nn.functional.softmax(att, dim=0)
|
||||
prob = prob.cpu()
|
||||
selc = prob.argmax().item()
|
||||
prob = prob.tolist()
|
||||
prob = ["{:.3f}".format(x) for x in prob]
|
||||
xstring = "{:03d}/{:03d}-th : {:}".format(
|
||||
i, len(self.width_attentions), " ".join(prob)
|
||||
)
|
||||
logt = ["{:.3f}".format(x) for x in att.cpu().tolist()]
|
||||
xstring += " || {:52s}".format(" ".join(logt))
|
||||
prob = sorted([float(x) for x in prob])
|
||||
disc = prob[-1] - prob[-2]
|
||||
xstring += " || dis={:.2f} || select={:}/{:}".format(
|
||||
disc, selc, len(prob)
|
||||
)
|
||||
discrepancy.append(disc)
|
||||
string += "\n{:}".format(xstring)
|
||||
return string, discrepancy
|
||||
|
||||
def set_tau(self, tau_max, tau_min, epoch_ratio):
|
||||
assert (
|
||||
epoch_ratio >= 0 and epoch_ratio <= 1
|
||||
), "invalid epoch-ratio : {:}".format(epoch_ratio)
|
||||
tau = tau_min + (tau_max - tau_min) * (1 + math.cos(math.pi * epoch_ratio)) / 2
|
||||
self.tau = tau
|
||||
|
||||
def get_message(self):
|
||||
return self.message
|
||||
|
||||
def forward(self, inputs):
|
||||
if self.search_mode == "basic":
|
||||
return self.basic_forward(inputs)
|
||||
elif self.search_mode == "search":
|
||||
return self.search_forward(inputs)
|
||||
else:
|
||||
raise ValueError("invalid search_mode = {:}".format(self.search_mode))
|
||||
|
||||
def search_forward(self, inputs):
|
||||
flop_width_probs = nn.functional.softmax(self.width_attentions, dim=1)
|
||||
flop_depth_probs = nn.functional.softmax(self.depth_attentions, dim=1)
|
||||
flop_depth_probs = torch.flip(
|
||||
torch.cumsum(torch.flip(flop_depth_probs, [1]), 1), [1]
|
||||
)
|
||||
selected_widths, selected_width_probs = select2withP(
|
||||
self.width_attentions, self.tau
|
||||
)
|
||||
selected_depth_probs = select2withP(self.depth_attentions, self.tau, True)
|
||||
with torch.no_grad():
|
||||
selected_widths = selected_widths.cpu()
|
||||
|
||||
x, last_channel_idx, expected_inC, flops = inputs, 0, 3, []
|
||||
feature_maps = []
|
||||
for i, layer in enumerate(self.layers):
|
||||
selected_w_index = selected_widths[
|
||||
last_channel_idx : last_channel_idx + layer.num_conv
|
||||
]
|
||||
selected_w_probs = selected_width_probs[
|
||||
last_channel_idx : last_channel_idx + layer.num_conv
|
||||
]
|
||||
layer_prob = flop_width_probs[
|
||||
last_channel_idx : last_channel_idx + layer.num_conv
|
||||
]
|
||||
x, expected_inC, expected_flop = layer(
|
||||
(x, expected_inC, layer_prob, selected_w_index, selected_w_probs)
|
||||
)
|
||||
feature_maps.append(x)
|
||||
last_channel_idx += layer.num_conv
|
||||
if i in self.depth_info: # aggregate the information
|
||||
choices = self.depth_info[i]["choices"]
|
||||
xstagei = self.depth_info[i]["stage"]
|
||||
# print ('iL={:}, choices={:}, stage={:}, probs={:}'.format(i, choices, xstagei, selected_depth_probs[xstagei].cpu().tolist()))
|
||||
# for A, W in zip(choices, selected_depth_probs[xstagei]):
|
||||
# print('Size = {:}, W = {:}'.format(feature_maps[A].size(), W))
|
||||
possible_tensors = []
|
||||
max_C = max(feature_maps[A].size(1) for A in choices)
|
||||
for tempi, A in enumerate(choices):
|
||||
xtensor = ChannelWiseInter(feature_maps[A], max_C)
|
||||
possible_tensors.append(xtensor)
|
||||
weighted_sum = sum(
|
||||
xtensor * W
|
||||
for xtensor, W in zip(
|
||||
possible_tensors, selected_depth_probs[xstagei]
|
||||
)
|
||||
)
|
||||
x = weighted_sum
|
||||
|
||||
if i in self.depth_at_i:
|
||||
xstagei, xatti = self.depth_at_i[i]
|
||||
x_expected_flop = flop_depth_probs[xstagei, xatti] * expected_flop
|
||||
else:
|
||||
x_expected_flop = expected_flop
|
||||
flops.append(x_expected_flop)
|
||||
flops.append(expected_inC * (self.classifier.out_features * 1.0 / 1e6))
|
||||
features = self.avgpool(x)
|
||||
features = features.view(features.size(0), -1)
|
||||
logits = linear_forward(features, self.classifier)
|
||||
return logits, torch.stack([sum(flops)])
|
||||
|
||||
def basic_forward(self, inputs):
|
||||
if self.InShape is None:
|
||||
self.InShape = (inputs.size(-2), inputs.size(-1))
|
||||
x = inputs
|
||||
for i, layer in enumerate(self.layers):
|
||||
x = layer(x)
|
||||
features = self.avgpool(x)
|
||||
features = features.view(features.size(0), -1)
|
||||
logits = self.classifier(features)
|
||||
return features, logits
|
466
xautodl/models/shape_searchs/SearchSimResNet_width.py
Normal file
466
xautodl/models/shape_searchs/SearchSimResNet_width.py
Normal file
@@ -0,0 +1,466 @@
|
||||
##################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
|
||||
##################################################
|
||||
import math, torch
|
||||
import torch.nn as nn
|
||||
from ..initialization import initialize_resnet
|
||||
from ..SharedUtils import additive_func
|
||||
from .SoftSelect import select2withP, ChannelWiseInter
|
||||
from .SoftSelect import linear_forward
|
||||
from .SoftSelect import get_width_choices as get_choices
|
||||
|
||||
|
||||
def conv_forward(inputs, conv, choices):
|
||||
iC = conv.in_channels
|
||||
fill_size = list(inputs.size())
|
||||
fill_size[1] = iC - fill_size[1]
|
||||
filled = torch.zeros(fill_size, device=inputs.device)
|
||||
xinputs = torch.cat((inputs, filled), dim=1)
|
||||
outputs = conv(xinputs)
|
||||
selecteds = [outputs[:, :oC] for oC in choices]
|
||||
return selecteds
|
||||
|
||||
|
||||
class ConvBNReLU(nn.Module):
|
||||
num_conv = 1
|
||||
|
||||
def __init__(
|
||||
self, nIn, nOut, kernel, stride, padding, bias, has_avg, has_bn, has_relu
|
||||
):
|
||||
super(ConvBNReLU, self).__init__()
|
||||
self.InShape = None
|
||||
self.OutShape = None
|
||||
self.choices = get_choices(nOut)
|
||||
self.register_buffer("choices_tensor", torch.Tensor(self.choices))
|
||||
|
||||
if has_avg:
|
||||
self.avg = nn.AvgPool2d(kernel_size=2, stride=2, padding=0)
|
||||
else:
|
||||
self.avg = None
|
||||
self.conv = nn.Conv2d(
|
||||
nIn,
|
||||
nOut,
|
||||
kernel_size=kernel,
|
||||
stride=stride,
|
||||
padding=padding,
|
||||
dilation=1,
|
||||
groups=1,
|
||||
bias=bias,
|
||||
)
|
||||
# if has_bn : self.bn = nn.BatchNorm2d(nOut)
|
||||
# else : self.bn = None
|
||||
self.has_bn = has_bn
|
||||
self.BNs = nn.ModuleList()
|
||||
for i, _out in enumerate(self.choices):
|
||||
self.BNs.append(nn.BatchNorm2d(_out))
|
||||
if has_relu:
|
||||
self.relu = nn.ReLU(inplace=True)
|
||||
else:
|
||||
self.relu = None
|
||||
self.in_dim = nIn
|
||||
self.out_dim = nOut
|
||||
self.search_mode = "basic"
|
||||
|
||||
def get_flops(self, channels, check_range=True, divide=1):
|
||||
iC, oC = channels
|
||||
if check_range:
|
||||
assert (
|
||||
iC <= self.conv.in_channels and oC <= self.conv.out_channels
|
||||
), "{:} vs {:} | {:} vs {:}".format(
|
||||
iC, self.conv.in_channels, oC, self.conv.out_channels
|
||||
)
|
||||
assert (
|
||||
isinstance(self.InShape, tuple) and len(self.InShape) == 2
|
||||
), "invalid in-shape : {:}".format(self.InShape)
|
||||
assert (
|
||||
isinstance(self.OutShape, tuple) and len(self.OutShape) == 2
|
||||
), "invalid out-shape : {:}".format(self.OutShape)
|
||||
# conv_per_position_flops = self.conv.kernel_size[0] * self.conv.kernel_size[1] * iC * oC / self.conv.groups
|
||||
conv_per_position_flops = (
|
||||
self.conv.kernel_size[0] * self.conv.kernel_size[1] * 1.0 / self.conv.groups
|
||||
)
|
||||
all_positions = self.OutShape[0] * self.OutShape[1]
|
||||
flops = (conv_per_position_flops * all_positions / divide) * iC * oC
|
||||
if self.conv.bias is not None:
|
||||
flops += all_positions / divide
|
||||
return flops
|
||||
|
||||
def get_range(self):
|
||||
return [self.choices]
|
||||
|
||||
def forward(self, inputs):
|
||||
if self.search_mode == "basic":
|
||||
return self.basic_forward(inputs)
|
||||
elif self.search_mode == "search":
|
||||
return self.search_forward(inputs)
|
||||
else:
|
||||
raise ValueError("invalid search_mode = {:}".format(self.search_mode))
|
||||
|
||||
def search_forward(self, tuple_inputs):
|
||||
assert (
|
||||
isinstance(tuple_inputs, tuple) and len(tuple_inputs) == 5
|
||||
), "invalid type input : {:}".format(type(tuple_inputs))
|
||||
inputs, expected_inC, probability, index, prob = tuple_inputs
|
||||
index, prob = torch.squeeze(index).tolist(), torch.squeeze(prob)
|
||||
probability = torch.squeeze(probability)
|
||||
assert len(index) == 2, "invalid length : {:}".format(index)
|
||||
# compute expected flop
|
||||
# coordinates = torch.arange(self.x_range[0], self.x_range[1]+1).type_as(probability)
|
||||
expected_outC = (self.choices_tensor * probability).sum()
|
||||
expected_flop = self.get_flops([expected_inC, expected_outC], False, 1e6)
|
||||
if self.avg:
|
||||
out = self.avg(inputs)
|
||||
else:
|
||||
out = inputs
|
||||
# convolutional layer
|
||||
out_convs = conv_forward(out, self.conv, [self.choices[i] for i in index])
|
||||
out_bns = [self.BNs[idx](out_conv) for idx, out_conv in zip(index, out_convs)]
|
||||
# merge
|
||||
out_channel = max([x.size(1) for x in out_bns])
|
||||
outA = ChannelWiseInter(out_bns[0], out_channel)
|
||||
outB = ChannelWiseInter(out_bns[1], out_channel)
|
||||
out = outA * prob[0] + outB * prob[1]
|
||||
# out = additive_func(out_bns[0]*prob[0], out_bns[1]*prob[1])
|
||||
|
||||
if self.relu:
|
||||
out = self.relu(out)
|
||||
else:
|
||||
out = out
|
||||
return out, expected_outC, expected_flop
|
||||
|
||||
def basic_forward(self, inputs):
|
||||
if self.avg:
|
||||
out = self.avg(inputs)
|
||||
else:
|
||||
out = inputs
|
||||
conv = self.conv(out)
|
||||
if self.has_bn:
|
||||
out = self.BNs[-1](conv)
|
||||
else:
|
||||
out = conv
|
||||
if self.relu:
|
||||
out = self.relu(out)
|
||||
else:
|
||||
out = out
|
||||
if self.InShape is None:
|
||||
self.InShape = (inputs.size(-2), inputs.size(-1))
|
||||
self.OutShape = (out.size(-2), out.size(-1))
|
||||
return out
|
||||
|
||||
|
||||
class SimBlock(nn.Module):
|
||||
expansion = 1
|
||||
num_conv = 1
|
||||
|
||||
def __init__(self, inplanes, planes, stride):
|
||||
super(SimBlock, self).__init__()
|
||||
assert stride == 1 or stride == 2, "invalid stride {:}".format(stride)
|
||||
self.conv = ConvBNReLU(
|
||||
inplanes,
|
||||
planes,
|
||||
3,
|
||||
stride,
|
||||
1,
|
||||
False,
|
||||
has_avg=False,
|
||||
has_bn=True,
|
||||
has_relu=True,
|
||||
)
|
||||
if stride == 2:
|
||||
self.downsample = ConvBNReLU(
|
||||
inplanes,
|
||||
planes,
|
||||
1,
|
||||
1,
|
||||
0,
|
||||
False,
|
||||
has_avg=True,
|
||||
has_bn=False,
|
||||
has_relu=False,
|
||||
)
|
||||
elif inplanes != planes:
|
||||
self.downsample = ConvBNReLU(
|
||||
inplanes,
|
||||
planes,
|
||||
1,
|
||||
1,
|
||||
0,
|
||||
False,
|
||||
has_avg=False,
|
||||
has_bn=True,
|
||||
has_relu=False,
|
||||
)
|
||||
else:
|
||||
self.downsample = None
|
||||
self.out_dim = planes
|
||||
self.search_mode = "basic"
|
||||
|
||||
def get_range(self):
|
||||
return self.conv.get_range()
|
||||
|
||||
def get_flops(self, channels):
|
||||
assert len(channels) == 2, "invalid channels : {:}".format(channels)
|
||||
flop_A = self.conv.get_flops([channels[0], channels[1]])
|
||||
if hasattr(self.downsample, "get_flops"):
|
||||
flop_C = self.downsample.get_flops([channels[0], channels[-1]])
|
||||
else:
|
||||
flop_C = 0
|
||||
if (
|
||||
channels[0] != channels[-1] and self.downsample is None
|
||||
): # this short-cut will be added during the infer-train
|
||||
flop_C = (
|
||||
channels[0]
|
||||
* channels[-1]
|
||||
* self.conv.OutShape[0]
|
||||
* self.conv.OutShape[1]
|
||||
)
|
||||
return flop_A + flop_C
|
||||
|
||||
def forward(self, inputs):
|
||||
if self.search_mode == "basic":
|
||||
return self.basic_forward(inputs)
|
||||
elif self.search_mode == "search":
|
||||
return self.search_forward(inputs)
|
||||
else:
|
||||
raise ValueError("invalid search_mode = {:}".format(self.search_mode))
|
||||
|
||||
def search_forward(self, tuple_inputs):
|
||||
assert (
|
||||
isinstance(tuple_inputs, tuple) and len(tuple_inputs) == 5
|
||||
), "invalid type input : {:}".format(type(tuple_inputs))
|
||||
inputs, expected_inC, probability, indexes, probs = tuple_inputs
|
||||
assert (
|
||||
indexes.size(0) == 1 and probs.size(0) == 1 and probability.size(0) == 1
|
||||
), "invalid size : {:}, {:}, {:}".format(
|
||||
indexes.size(), probs.size(), probability.size()
|
||||
)
|
||||
out, expected_next_inC, expected_flop = self.conv(
|
||||
(inputs, expected_inC, probability[0], indexes[0], probs[0])
|
||||
)
|
||||
if self.downsample is not None:
|
||||
residual, _, expected_flop_c = self.downsample(
|
||||
(inputs, expected_inC, probability[-1], indexes[-1], probs[-1])
|
||||
)
|
||||
else:
|
||||
residual, expected_flop_c = inputs, 0
|
||||
out = additive_func(residual, out)
|
||||
return (
|
||||
nn.functional.relu(out, inplace=True),
|
||||
expected_next_inC,
|
||||
sum([expected_flop, expected_flop_c]),
|
||||
)
|
||||
|
||||
def basic_forward(self, inputs):
|
||||
basicblock = self.conv(inputs)
|
||||
if self.downsample is not None:
|
||||
residual = self.downsample(inputs)
|
||||
else:
|
||||
residual = inputs
|
||||
out = additive_func(residual, basicblock)
|
||||
return nn.functional.relu(out, inplace=True)
|
||||
|
||||
|
||||
class SearchWidthSimResNet(nn.Module):
|
||||
def __init__(self, depth, num_classes):
|
||||
super(SearchWidthSimResNet, self).__init__()
|
||||
|
||||
assert (
|
||||
depth - 2
|
||||
) % 3 == 0, "depth should be one of 5, 8, 11, 14, ... instead of {:}".format(
|
||||
depth
|
||||
)
|
||||
layer_blocks = (depth - 2) // 3
|
||||
self.message = (
|
||||
"SearchWidthSimResNet : Depth : {:} , Layers for each block : {:}".format(
|
||||
depth, layer_blocks
|
||||
)
|
||||
)
|
||||
self.num_classes = num_classes
|
||||
self.channels = [16]
|
||||
self.layers = nn.ModuleList(
|
||||
[
|
||||
ConvBNReLU(
|
||||
3, 16, 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=True
|
||||
)
|
||||
]
|
||||
)
|
||||
self.InShape = None
|
||||
for stage in range(3):
|
||||
for iL in range(layer_blocks):
|
||||
iC = self.channels[-1]
|
||||
planes = 16 * (2 ** stage)
|
||||
stride = 2 if stage > 0 and iL == 0 else 1
|
||||
module = SimBlock(iC, planes, stride)
|
||||
self.channels.append(module.out_dim)
|
||||
self.layers.append(module)
|
||||
self.message += "\nstage={:}, ilayer={:02d}/{:02d}, block={:03d}, iC={:3d}, oC={:3d}, stride={:}".format(
|
||||
stage,
|
||||
iL,
|
||||
layer_blocks,
|
||||
len(self.layers) - 1,
|
||||
iC,
|
||||
module.out_dim,
|
||||
stride,
|
||||
)
|
||||
|
||||
self.avgpool = nn.AvgPool2d(8)
|
||||
self.classifier = nn.Linear(module.out_dim, num_classes)
|
||||
self.InShape = None
|
||||
self.tau = -1
|
||||
self.search_mode = "basic"
|
||||
# assert sum(x.num_conv for x in self.layers) + 1 == depth, 'invalid depth check {:} vs {:}'.format(sum(x.num_conv for x in self.layers)+1, depth)
|
||||
|
||||
# parameters for width
|
||||
self.Ranges = []
|
||||
self.layer2indexRange = []
|
||||
for i, layer in enumerate(self.layers):
|
||||
start_index = len(self.Ranges)
|
||||
self.Ranges += layer.get_range()
|
||||
self.layer2indexRange.append((start_index, len(self.Ranges)))
|
||||
assert len(self.Ranges) + 1 == depth, "invalid depth check {:} vs {:}".format(
|
||||
len(self.Ranges) + 1, depth
|
||||
)
|
||||
|
||||
self.register_parameter(
|
||||
"width_attentions",
|
||||
nn.Parameter(torch.Tensor(len(self.Ranges), get_choices(None))),
|
||||
)
|
||||
nn.init.normal_(self.width_attentions, 0, 0.01)
|
||||
self.apply(initialize_resnet)
|
||||
|
||||
def arch_parameters(self):
|
||||
return [self.width_attentions]
|
||||
|
||||
def base_parameters(self):
|
||||
return (
|
||||
list(self.layers.parameters())
|
||||
+ list(self.avgpool.parameters())
|
||||
+ list(self.classifier.parameters())
|
||||
)
|
||||
|
||||
def get_flop(self, mode, config_dict, extra_info):
|
||||
if config_dict is not None:
|
||||
config_dict = config_dict.copy()
|
||||
# weights = [F.softmax(x, dim=0) for x in self.width_attentions]
|
||||
channels = [3]
|
||||
for i, weight in enumerate(self.width_attentions):
|
||||
if mode == "genotype":
|
||||
with torch.no_grad():
|
||||
probe = nn.functional.softmax(weight, dim=0)
|
||||
C = self.Ranges[i][torch.argmax(probe).item()]
|
||||
elif mode == "max":
|
||||
C = self.Ranges[i][-1]
|
||||
elif mode == "fix":
|
||||
C = int(math.sqrt(extra_info) * self.Ranges[i][-1])
|
||||
elif mode == "random":
|
||||
assert isinstance(extra_info, float), "invalid extra_info : {:}".format(
|
||||
extra_info
|
||||
)
|
||||
with torch.no_grad():
|
||||
prob = nn.functional.softmax(weight, dim=0)
|
||||
approximate_C = int(math.sqrt(extra_info) * self.Ranges[i][-1])
|
||||
for j in range(prob.size(0)):
|
||||
prob[j] = 1 / (
|
||||
abs(j - (approximate_C - self.Ranges[i][j])) + 0.2
|
||||
)
|
||||
C = self.Ranges[i][torch.multinomial(prob, 1, False).item()]
|
||||
else:
|
||||
raise ValueError("invalid mode : {:}".format(mode))
|
||||
channels.append(C)
|
||||
flop = 0
|
||||
for i, layer in enumerate(self.layers):
|
||||
s, e = self.layer2indexRange[i]
|
||||
xchl = tuple(channels[s : e + 1])
|
||||
flop += layer.get_flops(xchl)
|
||||
# the last fc layer
|
||||
flop += channels[-1] * self.classifier.out_features
|
||||
if config_dict is None:
|
||||
return flop / 1e6
|
||||
else:
|
||||
config_dict["xchannels"] = channels
|
||||
config_dict["super_type"] = "infer-width"
|
||||
config_dict["estimated_FLOP"] = flop / 1e6
|
||||
return flop / 1e6, config_dict
|
||||
|
||||
def get_arch_info(self):
|
||||
string = "for width, there are {:} attention probabilities.".format(
|
||||
len(self.width_attentions)
|
||||
)
|
||||
discrepancy = []
|
||||
with torch.no_grad():
|
||||
for i, att in enumerate(self.width_attentions):
|
||||
prob = nn.functional.softmax(att, dim=0)
|
||||
prob = prob.cpu()
|
||||
selc = prob.argmax().item()
|
||||
prob = prob.tolist()
|
||||
prob = ["{:.3f}".format(x) for x in prob]
|
||||
xstring = "{:03d}/{:03d}-th : {:}".format(
|
||||
i, len(self.width_attentions), " ".join(prob)
|
||||
)
|
||||
logt = ["{:.3f}".format(x) for x in att.cpu().tolist()]
|
||||
xstring += " || {:52s}".format(" ".join(logt))
|
||||
prob = sorted([float(x) for x in prob])
|
||||
disc = prob[-1] - prob[-2]
|
||||
xstring += " || dis={:.2f} || select={:}/{:}".format(
|
||||
disc, selc, len(prob)
|
||||
)
|
||||
discrepancy.append(disc)
|
||||
string += "\n{:}".format(xstring)
|
||||
return string, discrepancy
|
||||
|
||||
def set_tau(self, tau_max, tau_min, epoch_ratio):
|
||||
assert (
|
||||
epoch_ratio >= 0 and epoch_ratio <= 1
|
||||
), "invalid epoch-ratio : {:}".format(epoch_ratio)
|
||||
tau = tau_min + (tau_max - tau_min) * (1 + math.cos(math.pi * epoch_ratio)) / 2
|
||||
self.tau = tau
|
||||
|
||||
def get_message(self):
|
||||
return self.message
|
||||
|
||||
def forward(self, inputs):
|
||||
if self.search_mode == "basic":
|
||||
return self.basic_forward(inputs)
|
||||
elif self.search_mode == "search":
|
||||
return self.search_forward(inputs)
|
||||
else:
|
||||
raise ValueError("invalid search_mode = {:}".format(self.search_mode))
|
||||
|
||||
def search_forward(self, inputs):
|
||||
flop_probs = nn.functional.softmax(self.width_attentions, dim=1)
|
||||
selected_widths, selected_probs = select2withP(self.width_attentions, self.tau)
|
||||
with torch.no_grad():
|
||||
selected_widths = selected_widths.cpu()
|
||||
|
||||
x, last_channel_idx, expected_inC, flops = inputs, 0, 3, []
|
||||
for i, layer in enumerate(self.layers):
|
||||
selected_w_index = selected_widths[
|
||||
last_channel_idx : last_channel_idx + layer.num_conv
|
||||
]
|
||||
selected_w_probs = selected_probs[
|
||||
last_channel_idx : last_channel_idx + layer.num_conv
|
||||
]
|
||||
layer_prob = flop_probs[
|
||||
last_channel_idx : last_channel_idx + layer.num_conv
|
||||
]
|
||||
x, expected_inC, expected_flop = layer(
|
||||
(x, expected_inC, layer_prob, selected_w_index, selected_w_probs)
|
||||
)
|
||||
last_channel_idx += layer.num_conv
|
||||
flops.append(expected_flop)
|
||||
flops.append(expected_inC * (self.classifier.out_features * 1.0 / 1e6))
|
||||
features = self.avgpool(x)
|
||||
features = features.view(features.size(0), -1)
|
||||
logits = linear_forward(features, self.classifier)
|
||||
return logits, torch.stack([sum(flops)])
|
||||
|
||||
def basic_forward(self, inputs):
|
||||
if self.InShape is None:
|
||||
self.InShape = (inputs.size(-2), inputs.size(-1))
|
||||
x = inputs
|
||||
for i, layer in enumerate(self.layers):
|
||||
x = layer(x)
|
||||
features = self.avgpool(x)
|
||||
features = features.view(features.size(0), -1)
|
||||
logits = self.classifier(features)
|
||||
return features, logits
|
128
xautodl/models/shape_searchs/SoftSelect.py
Normal file
128
xautodl/models/shape_searchs/SoftSelect.py
Normal file
@@ -0,0 +1,128 @@
|
||||
##################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
|
||||
##################################################
|
||||
import math, torch
|
||||
import torch.nn as nn
|
||||
|
||||
|
||||
def select2withP(logits, tau, just_prob=False, num=2, eps=1e-7):
|
||||
if tau <= 0:
|
||||
new_logits = logits
|
||||
probs = nn.functional.softmax(new_logits, dim=1)
|
||||
else:
|
||||
while True: # a trick to avoid the gumbels bug
|
||||
gumbels = -torch.empty_like(logits).exponential_().log()
|
||||
new_logits = (logits.log_softmax(dim=1) + gumbels) / tau
|
||||
probs = nn.functional.softmax(new_logits, dim=1)
|
||||
if (
|
||||
(not torch.isinf(gumbels).any())
|
||||
and (not torch.isinf(probs).any())
|
||||
and (not torch.isnan(probs).any())
|
||||
):
|
||||
break
|
||||
|
||||
if just_prob:
|
||||
return probs
|
||||
|
||||
# with torch.no_grad(): # add eps for unexpected torch error
|
||||
# probs = nn.functional.softmax(new_logits, dim=1)
|
||||
# selected_index = torch.multinomial(probs + eps, 2, False)
|
||||
with torch.no_grad(): # add eps for unexpected torch error
|
||||
probs = probs.cpu()
|
||||
selected_index = torch.multinomial(probs + eps, num, False).to(logits.device)
|
||||
selected_logit = torch.gather(new_logits, 1, selected_index)
|
||||
selcted_probs = nn.functional.softmax(selected_logit, dim=1)
|
||||
return selected_index, selcted_probs
|
||||
|
||||
|
||||
def ChannelWiseInter(inputs, oC, mode="v2"):
|
||||
if mode == "v1":
|
||||
return ChannelWiseInterV1(inputs, oC)
|
||||
elif mode == "v2":
|
||||
return ChannelWiseInterV2(inputs, oC)
|
||||
else:
|
||||
raise ValueError("invalid mode : {:}".format(mode))
|
||||
|
||||
|
||||
def ChannelWiseInterV1(inputs, oC):
|
||||
assert inputs.dim() == 4, "invalid dimension : {:}".format(inputs.size())
|
||||
|
||||
def start_index(a, b, c):
|
||||
return int(math.floor(float(a * c) / b))
|
||||
|
||||
def end_index(a, b, c):
|
||||
return int(math.ceil(float((a + 1) * c) / b))
|
||||
|
||||
batch, iC, H, W = inputs.size()
|
||||
outputs = torch.zeros((batch, oC, H, W), dtype=inputs.dtype, device=inputs.device)
|
||||
if iC == oC:
|
||||
return inputs
|
||||
for ot in range(oC):
|
||||
istartT, iendT = start_index(ot, oC, iC), end_index(ot, oC, iC)
|
||||
values = inputs[:, istartT:iendT].mean(dim=1)
|
||||
outputs[:, ot, :, :] = values
|
||||
return outputs
|
||||
|
||||
|
||||
def ChannelWiseInterV2(inputs, oC):
|
||||
assert inputs.dim() == 4, "invalid dimension : {:}".format(inputs.size())
|
||||
batch, C, H, W = inputs.size()
|
||||
if C == oC:
|
||||
return inputs
|
||||
else:
|
||||
return nn.functional.adaptive_avg_pool3d(inputs, (oC, H, W))
|
||||
# inputs_5D = inputs.view(batch, 1, C, H, W)
|
||||
# otputs_5D = nn.functional.interpolate(inputs_5D, (oC,H,W), None, 'area', None)
|
||||
# otputs = otputs_5D.view(batch, oC, H, W)
|
||||
# otputs_5D = nn.functional.interpolate(inputs_5D, (oC,H,W), None, 'trilinear', False)
|
||||
# return otputs
|
||||
|
||||
|
||||
def linear_forward(inputs, linear):
|
||||
if linear is None:
|
||||
return inputs
|
||||
iC = inputs.size(1)
|
||||
weight = linear.weight[:, :iC]
|
||||
if linear.bias is None:
|
||||
bias = None
|
||||
else:
|
||||
bias = linear.bias
|
||||
return nn.functional.linear(inputs, weight, bias)
|
||||
|
||||
|
||||
def get_width_choices(nOut):
|
||||
xsrange = [0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]
|
||||
if nOut is None:
|
||||
return len(xsrange)
|
||||
else:
|
||||
Xs = [int(nOut * i) for i in xsrange]
|
||||
# xs = [ int(nOut * i // 10) for i in range(2, 11)]
|
||||
# Xs = [x for i, x in enumerate(xs) if i+1 == len(xs) or xs[i+1] > x+1]
|
||||
Xs = sorted(list(set(Xs)))
|
||||
return tuple(Xs)
|
||||
|
||||
|
||||
def get_depth_choices(nDepth):
|
||||
if nDepth is None:
|
||||
return 3
|
||||
else:
|
||||
assert nDepth >= 3, "nDepth should be greater than 2 vs {:}".format(nDepth)
|
||||
if nDepth == 1:
|
||||
return (1, 1, 1)
|
||||
elif nDepth == 2:
|
||||
return (1, 1, 2)
|
||||
elif nDepth >= 3:
|
||||
return (nDepth // 3, nDepth * 2 // 3, nDepth)
|
||||
else:
|
||||
raise ValueError("invalid Depth : {:}".format(nDepth))
|
||||
|
||||
|
||||
def drop_path(x, drop_prob):
|
||||
if drop_prob > 0.0:
|
||||
keep_prob = 1.0 - drop_prob
|
||||
mask = x.new_zeros(x.size(0), 1, 1, 1)
|
||||
mask = mask.bernoulli_(keep_prob)
|
||||
x = x * (mask / keep_prob)
|
||||
# x.div_(keep_prob)
|
||||
# x.mul_(mask)
|
||||
return x
|
9
xautodl/models/shape_searchs/__init__.py
Normal file
9
xautodl/models/shape_searchs/__init__.py
Normal file
@@ -0,0 +1,9 @@
|
||||
##################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
|
||||
##################################################
|
||||
from .SearchCifarResNet_width import SearchWidthCifarResNet
|
||||
from .SearchCifarResNet_depth import SearchDepthCifarResNet
|
||||
from .SearchCifarResNet import SearchShapeCifarResNet
|
||||
from .SearchSimResNet_width import SearchWidthSimResNet
|
||||
from .SearchImagenetResNet import SearchShapeImagenetResNet
|
||||
from .generic_size_tiny_cell_model import GenericNAS301Model
|
209
xautodl/models/shape_searchs/generic_size_tiny_cell_model.py
Normal file
209
xautodl/models/shape_searchs/generic_size_tiny_cell_model.py
Normal file
@@ -0,0 +1,209 @@
|
||||
#####################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 #
|
||||
#####################################################
|
||||
# Here, we utilized three techniques to search for the number of channels:
|
||||
# - channel-wise interpolation from "Network Pruning via Transformable Architecture Search, NeurIPS 2019"
|
||||
# - masking + Gumbel-Softmax (mask_gumbel) from "FBNetV2: Differentiable Neural Architecture Search for Spatial and Channel Dimensions, CVPR 2020"
|
||||
# - masking + sampling (mask_rl) from "Can Weight Sharing Outperform Random Architecture Search? An Investigation With TuNAS, CVPR 2020"
|
||||
from typing import List, Text, Any
|
||||
import random, torch
|
||||
import torch.nn as nn
|
||||
|
||||
from models.cell_operations import ResNetBasicblock
|
||||
from models.cell_infers.cells import InferCell
|
||||
from models.shape_searchs.SoftSelect import select2withP, ChannelWiseInter
|
||||
|
||||
|
||||
class GenericNAS301Model(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
candidate_Cs: List[int],
|
||||
max_num_Cs: int,
|
||||
genotype: Any,
|
||||
num_classes: int,
|
||||
affine: bool,
|
||||
track_running_stats: bool,
|
||||
):
|
||||
super(GenericNAS301Model, self).__init__()
|
||||
self._max_num_Cs = max_num_Cs
|
||||
self._candidate_Cs = candidate_Cs
|
||||
if max_num_Cs % 3 != 2:
|
||||
raise ValueError("invalid number of layers : {:}".format(max_num_Cs))
|
||||
self._num_stage = N = max_num_Cs // 3
|
||||
self._max_C = max(candidate_Cs)
|
||||
|
||||
stem = nn.Sequential(
|
||||
nn.Conv2d(3, self._max_C, kernel_size=3, padding=1, bias=not affine),
|
||||
nn.BatchNorm2d(
|
||||
self._max_C, affine=affine, track_running_stats=track_running_stats
|
||||
),
|
||||
)
|
||||
|
||||
layer_reductions = [False] * N + [True] + [False] * N + [True] + [False] * N
|
||||
|
||||
c_prev = self._max_C
|
||||
self._cells = nn.ModuleList()
|
||||
self._cells.append(stem)
|
||||
for index, reduction in enumerate(layer_reductions):
|
||||
if reduction:
|
||||
cell = ResNetBasicblock(c_prev, self._max_C, 2, True)
|
||||
else:
|
||||
cell = InferCell(
|
||||
genotype, c_prev, self._max_C, 1, affine, track_running_stats
|
||||
)
|
||||
self._cells.append(cell)
|
||||
c_prev = cell.out_dim
|
||||
self._num_layer = len(self._cells)
|
||||
|
||||
self.lastact = nn.Sequential(
|
||||
nn.BatchNorm2d(
|
||||
c_prev, affine=affine, track_running_stats=track_running_stats
|
||||
),
|
||||
nn.ReLU(inplace=True),
|
||||
)
|
||||
self.global_pooling = nn.AdaptiveAvgPool2d(1)
|
||||
self.classifier = nn.Linear(c_prev, num_classes)
|
||||
# algorithm related
|
||||
self.register_buffer("_tau", torch.zeros(1))
|
||||
self._algo = None
|
||||
self._warmup_ratio = None
|
||||
|
||||
def set_algo(self, algo: Text):
|
||||
# used for searching
|
||||
assert self._algo is None, "This functioin can only be called once."
|
||||
assert algo in ["mask_gumbel", "mask_rl", "tas"], "invalid algo : {:}".format(
|
||||
algo
|
||||
)
|
||||
self._algo = algo
|
||||
self._arch_parameters = nn.Parameter(
|
||||
1e-3 * torch.randn(self._max_num_Cs, len(self._candidate_Cs))
|
||||
)
|
||||
# if algo == 'mask_gumbel' or algo == 'mask_rl':
|
||||
self.register_buffer(
|
||||
"_masks", torch.zeros(len(self._candidate_Cs), max(self._candidate_Cs))
|
||||
)
|
||||
for i in range(len(self._candidate_Cs)):
|
||||
self._masks.data[i, : self._candidate_Cs[i]] = 1
|
||||
|
||||
@property
|
||||
def tau(self):
|
||||
return self._tau
|
||||
|
||||
def set_tau(self, tau):
|
||||
self._tau.data[:] = tau
|
||||
|
||||
@property
|
||||
def warmup_ratio(self):
|
||||
return self._warmup_ratio
|
||||
|
||||
def set_warmup_ratio(self, ratio: float):
|
||||
self._warmup_ratio = ratio
|
||||
|
||||
@property
|
||||
def weights(self):
|
||||
xlist = list(self._cells.parameters())
|
||||
xlist += list(self.lastact.parameters())
|
||||
xlist += list(self.global_pooling.parameters())
|
||||
xlist += list(self.classifier.parameters())
|
||||
return xlist
|
||||
|
||||
@property
|
||||
def alphas(self):
|
||||
return [self._arch_parameters]
|
||||
|
||||
def show_alphas(self):
|
||||
with torch.no_grad():
|
||||
return "arch-parameters :\n{:}".format(
|
||||
nn.functional.softmax(self._arch_parameters, dim=-1).cpu()
|
||||
)
|
||||
|
||||
@property
|
||||
def random(self):
|
||||
cs = []
|
||||
for i in range(self._max_num_Cs):
|
||||
index = random.randint(0, len(self._candidate_Cs) - 1)
|
||||
cs.append(str(self._candidate_Cs[index]))
|
||||
return ":".join(cs)
|
||||
|
||||
@property
|
||||
def genotype(self):
|
||||
cs = []
|
||||
for i in range(self._max_num_Cs):
|
||||
with torch.no_grad():
|
||||
index = self._arch_parameters[i].argmax().item()
|
||||
cs.append(str(self._candidate_Cs[index]))
|
||||
return ":".join(cs)
|
||||
|
||||
def get_message(self) -> Text:
|
||||
string = self.extra_repr()
|
||||
for i, cell in enumerate(self._cells):
|
||||
string += "\n {:02d}/{:02d} :: {:}".format(
|
||||
i, len(self._cells), cell.extra_repr()
|
||||
)
|
||||
return string
|
||||
|
||||
def extra_repr(self):
|
||||
return "{name}(candidates={_candidate_Cs}, num={_max_num_Cs}, N={_num_stage}, L={_num_layer})".format(
|
||||
name=self.__class__.__name__, **self.__dict__
|
||||
)
|
||||
|
||||
def forward(self, inputs):
|
||||
feature = inputs
|
||||
|
||||
log_probs = []
|
||||
for i, cell in enumerate(self._cells):
|
||||
feature = cell(feature)
|
||||
# apply different searching algorithms
|
||||
idx = max(0, i - 1)
|
||||
if self._warmup_ratio is not None:
|
||||
if random.random() < self._warmup_ratio:
|
||||
mask = self._masks[-1]
|
||||
else:
|
||||
mask = self._masks[random.randint(0, len(self._masks) - 1)]
|
||||
feature = feature * mask.view(1, -1, 1, 1)
|
||||
elif self._algo == "mask_gumbel":
|
||||
weights = nn.functional.gumbel_softmax(
|
||||
self._arch_parameters[idx : idx + 1], tau=self.tau, dim=-1
|
||||
)
|
||||
mask = torch.matmul(weights, self._masks).view(1, -1, 1, 1)
|
||||
feature = feature * mask
|
||||
elif self._algo == "tas":
|
||||
selected_cs, selected_probs = select2withP(
|
||||
self._arch_parameters[idx : idx + 1], self.tau, num=2
|
||||
)
|
||||
with torch.no_grad():
|
||||
i1, i2 = selected_cs.cpu().view(-1).tolist()
|
||||
c1, c2 = self._candidate_Cs[i1], self._candidate_Cs[i2]
|
||||
out_channel = max(c1, c2)
|
||||
out1 = ChannelWiseInter(feature[:, :c1], out_channel)
|
||||
out2 = ChannelWiseInter(feature[:, :c2], out_channel)
|
||||
out = out1 * selected_probs[0, 0] + out2 * selected_probs[0, 1]
|
||||
if feature.shape[1] == out.shape[1]:
|
||||
feature = out
|
||||
else:
|
||||
miss = torch.zeros(
|
||||
feature.shape[0],
|
||||
feature.shape[1] - out.shape[1],
|
||||
feature.shape[2],
|
||||
feature.shape[3],
|
||||
device=feature.device,
|
||||
)
|
||||
feature = torch.cat((out, miss), dim=1)
|
||||
elif self._algo == "mask_rl":
|
||||
prob = nn.functional.softmax(
|
||||
self._arch_parameters[idx : idx + 1], dim=-1
|
||||
)
|
||||
dist = torch.distributions.Categorical(prob)
|
||||
action = dist.sample()
|
||||
log_probs.append(dist.log_prob(action))
|
||||
mask = self._masks[action.item()].view(1, -1, 1, 1)
|
||||
feature = feature * mask
|
||||
else:
|
||||
raise ValueError("invalid algorithm : {:}".format(self._algo))
|
||||
|
||||
out = self.lastact(feature)
|
||||
out = self.global_pooling(out)
|
||||
out = out.view(out.size(0), -1)
|
||||
logits = self.classifier(out)
|
||||
|
||||
return out, logits, log_probs
|
20
xautodl/models/shape_searchs/test.py
Normal file
20
xautodl/models/shape_searchs/test.py
Normal file
@@ -0,0 +1,20 @@
|
||||
##################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
|
||||
##################################################
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from SoftSelect import ChannelWiseInter
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
tensors = torch.rand((16, 128, 7, 7))
|
||||
|
||||
for oc in range(200, 210):
|
||||
out_v1 = ChannelWiseInter(tensors, oc, "v1")
|
||||
out_v2 = ChannelWiseInter(tensors, oc, "v2")
|
||||
assert (out_v1 == out_v2).any().item() == 1
|
||||
for oc in range(48, 160):
|
||||
out_v1 = ChannelWiseInter(tensors, oc, "v1")
|
||||
out_v2 = ChannelWiseInter(tensors, oc, "v2")
|
||||
assert (out_v1 == out_v2).any().item() == 1
|
Reference in New Issue
Block a user