Move to xautodl
This commit is contained in:
199
xautodl/models/cell_searchs/search_model_gdas_frc_nasnet.py
Normal file
199
xautodl/models/cell_searchs/search_model_gdas_frc_nasnet.py
Normal file
@@ -0,0 +1,199 @@
|
||||
###########################################################################
|
||||
# Searching for A Robust Neural Architecture in Four GPU Hours, CVPR 2019 #
|
||||
###########################################################################
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from copy import deepcopy
|
||||
from models.cell_searchs.search_cells import NASNetSearchCell as SearchCell
|
||||
from models.cell_operations import RAW_OP_CLASSES
|
||||
|
||||
|
||||
# The macro structure is based on NASNet
|
||||
class NASNetworkGDAS_FRC(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
C,
|
||||
N,
|
||||
steps,
|
||||
multiplier,
|
||||
stem_multiplier,
|
||||
num_classes,
|
||||
search_space,
|
||||
affine,
|
||||
track_running_stats,
|
||||
):
|
||||
super(NASNetworkGDAS_FRC, self).__init__()
|
||||
self._C = C
|
||||
self._layerN = N
|
||||
self._steps = steps
|
||||
self._multiplier = multiplier
|
||||
self.stem = nn.Sequential(
|
||||
nn.Conv2d(3, C * stem_multiplier, kernel_size=3, padding=1, bias=False),
|
||||
nn.BatchNorm2d(C * stem_multiplier),
|
||||
)
|
||||
|
||||
# config for each layer
|
||||
layer_channels = (
|
||||
[C] * N + [C * 2] + [C * 2] * (N - 1) + [C * 4] + [C * 4] * (N - 1)
|
||||
)
|
||||
layer_reductions = (
|
||||
[False] * N + [True] + [False] * (N - 1) + [True] + [False] * (N - 1)
|
||||
)
|
||||
|
||||
num_edge, edge2index = None, None
|
||||
C_prev_prev, C_prev, C_curr, reduction_prev = (
|
||||
C * stem_multiplier,
|
||||
C * stem_multiplier,
|
||||
C,
|
||||
False,
|
||||
)
|
||||
|
||||
self.cells = nn.ModuleList()
|
||||
for index, (C_curr, reduction) in enumerate(
|
||||
zip(layer_channels, layer_reductions)
|
||||
):
|
||||
if reduction:
|
||||
cell = RAW_OP_CLASSES["gdas_reduction"](
|
||||
C_prev_prev,
|
||||
C_prev,
|
||||
C_curr,
|
||||
reduction_prev,
|
||||
affine,
|
||||
track_running_stats,
|
||||
)
|
||||
else:
|
||||
cell = SearchCell(
|
||||
search_space,
|
||||
steps,
|
||||
multiplier,
|
||||
C_prev_prev,
|
||||
C_prev,
|
||||
C_curr,
|
||||
reduction,
|
||||
reduction_prev,
|
||||
affine,
|
||||
track_running_stats,
|
||||
)
|
||||
if num_edge is None:
|
||||
num_edge, edge2index = cell.num_edges, cell.edge2index
|
||||
else:
|
||||
assert (
|
||||
reduction
|
||||
or num_edge == cell.num_edges
|
||||
and edge2index == cell.edge2index
|
||||
), "invalid {:} vs. {:}.".format(num_edge, cell.num_edges)
|
||||
self.cells.append(cell)
|
||||
C_prev_prev, C_prev, reduction_prev = (
|
||||
C_prev,
|
||||
cell.multiplier * C_curr,
|
||||
reduction,
|
||||
)
|
||||
self.op_names = deepcopy(search_space)
|
||||
self._Layer = len(self.cells)
|
||||
self.edge2index = edge2index
|
||||
self.lastact = nn.Sequential(nn.BatchNorm2d(C_prev), nn.ReLU(inplace=True))
|
||||
self.global_pooling = nn.AdaptiveAvgPool2d(1)
|
||||
self.classifier = nn.Linear(C_prev, num_classes)
|
||||
self.arch_parameters = nn.Parameter(
|
||||
1e-3 * torch.randn(num_edge, len(search_space))
|
||||
)
|
||||
self.tau = 10
|
||||
|
||||
def get_weights(self):
|
||||
xlist = list(self.stem.parameters()) + list(self.cells.parameters())
|
||||
xlist += list(self.lastact.parameters()) + list(
|
||||
self.global_pooling.parameters()
|
||||
)
|
||||
xlist += list(self.classifier.parameters())
|
||||
return xlist
|
||||
|
||||
def set_tau(self, tau):
|
||||
self.tau = tau
|
||||
|
||||
def get_tau(self):
|
||||
return self.tau
|
||||
|
||||
def get_alphas(self):
|
||||
return [self.arch_parameters]
|
||||
|
||||
def show_alphas(self):
|
||||
with torch.no_grad():
|
||||
A = "arch-normal-parameters :\n{:}".format(
|
||||
nn.functional.softmax(self.arch_parameters, dim=-1).cpu()
|
||||
)
|
||||
return "{:}".format(A)
|
||||
|
||||
def get_message(self):
|
||||
string = self.extra_repr()
|
||||
for i, cell in enumerate(self.cells):
|
||||
string += "\n {:02d}/{:02d} :: {:}".format(
|
||||
i, len(self.cells), cell.extra_repr()
|
||||
)
|
||||
return string
|
||||
|
||||
def extra_repr(self):
|
||||
return "{name}(C={_C}, N={_layerN}, steps={_steps}, multiplier={_multiplier}, L={_Layer})".format(
|
||||
name=self.__class__.__name__, **self.__dict__
|
||||
)
|
||||
|
||||
def genotype(self):
|
||||
def _parse(weights):
|
||||
gene = []
|
||||
for i in range(self._steps):
|
||||
edges = []
|
||||
for j in range(2 + i):
|
||||
node_str = "{:}<-{:}".format(i, j)
|
||||
ws = weights[self.edge2index[node_str]]
|
||||
for k, op_name in enumerate(self.op_names):
|
||||
if op_name == "none":
|
||||
continue
|
||||
edges.append((op_name, j, ws[k]))
|
||||
edges = sorted(edges, key=lambda x: -x[-1])
|
||||
selected_edges = edges[:2]
|
||||
gene.append(tuple(selected_edges))
|
||||
return gene
|
||||
|
||||
with torch.no_grad():
|
||||
gene_normal = _parse(
|
||||
torch.softmax(self.arch_parameters, dim=-1).cpu().numpy()
|
||||
)
|
||||
return {
|
||||
"normal": gene_normal,
|
||||
"normal_concat": list(
|
||||
range(2 + self._steps - self._multiplier, self._steps + 2)
|
||||
),
|
||||
}
|
||||
|
||||
def forward(self, inputs):
|
||||
def get_gumbel_prob(xins):
|
||||
while True:
|
||||
gumbels = -torch.empty_like(xins).exponential_().log()
|
||||
logits = (xins.log_softmax(dim=1) + gumbels) / self.tau
|
||||
probs = nn.functional.softmax(logits, dim=1)
|
||||
index = probs.max(-1, keepdim=True)[1]
|
||||
one_h = torch.zeros_like(logits).scatter_(-1, index, 1.0)
|
||||
hardwts = one_h - probs.detach() + probs
|
||||
if (
|
||||
(torch.isinf(gumbels).any())
|
||||
or (torch.isinf(probs).any())
|
||||
or (torch.isnan(probs).any())
|
||||
):
|
||||
continue
|
||||
else:
|
||||
break
|
||||
return hardwts, index
|
||||
|
||||
hardwts, index = get_gumbel_prob(self.arch_parameters)
|
||||
|
||||
s0 = s1 = self.stem(inputs)
|
||||
for i, cell in enumerate(self.cells):
|
||||
if cell.reduction:
|
||||
s0, s1 = s1, cell(s0, s1)
|
||||
else:
|
||||
s0, s1 = s1, cell.forward_gdas(s0, s1, hardwts, index)
|
||||
out = self.lastact(s1)
|
||||
out = self.global_pooling(out)
|
||||
out = out.view(out.size(0), -1)
|
||||
logits = self.classifier(out)
|
||||
|
||||
return out, logits
|
Reference in New Issue
Block a user