Move to xautodl
This commit is contained in:
251
xautodl/models/cell_searchs/search_cells.py
Normal file
251
xautodl/models/cell_searchs/search_cells.py
Normal file
@@ -0,0 +1,251 @@
|
||||
##################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
|
||||
##################################################
|
||||
import math, random, torch
|
||||
import warnings
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from copy import deepcopy
|
||||
from ..cell_operations import OPS
|
||||
|
||||
|
||||
# This module is used for NAS-Bench-201, represents a small search space with a complete DAG
|
||||
class NAS201SearchCell(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
C_in,
|
||||
C_out,
|
||||
stride,
|
||||
max_nodes,
|
||||
op_names,
|
||||
affine=False,
|
||||
track_running_stats=True,
|
||||
):
|
||||
super(NAS201SearchCell, self).__init__()
|
||||
|
||||
self.op_names = deepcopy(op_names)
|
||||
self.edges = nn.ModuleDict()
|
||||
self.max_nodes = max_nodes
|
||||
self.in_dim = C_in
|
||||
self.out_dim = C_out
|
||||
for i in range(1, max_nodes):
|
||||
for j in range(i):
|
||||
node_str = "{:}<-{:}".format(i, j)
|
||||
if j == 0:
|
||||
xlists = [
|
||||
OPS[op_name](C_in, C_out, stride, affine, track_running_stats)
|
||||
for op_name in op_names
|
||||
]
|
||||
else:
|
||||
xlists = [
|
||||
OPS[op_name](C_in, C_out, 1, affine, track_running_stats)
|
||||
for op_name in op_names
|
||||
]
|
||||
self.edges[node_str] = nn.ModuleList(xlists)
|
||||
self.edge_keys = sorted(list(self.edges.keys()))
|
||||
self.edge2index = {key: i for i, key in enumerate(self.edge_keys)}
|
||||
self.num_edges = len(self.edges)
|
||||
|
||||
def extra_repr(self):
|
||||
string = "info :: {max_nodes} nodes, inC={in_dim}, outC={out_dim}".format(
|
||||
**self.__dict__
|
||||
)
|
||||
return string
|
||||
|
||||
def forward(self, inputs, weightss):
|
||||
nodes = [inputs]
|
||||
for i in range(1, self.max_nodes):
|
||||
inter_nodes = []
|
||||
for j in range(i):
|
||||
node_str = "{:}<-{:}".format(i, j)
|
||||
weights = weightss[self.edge2index[node_str]]
|
||||
inter_nodes.append(
|
||||
sum(
|
||||
layer(nodes[j]) * w
|
||||
for layer, w in zip(self.edges[node_str], weights)
|
||||
)
|
||||
)
|
||||
nodes.append(sum(inter_nodes))
|
||||
return nodes[-1]
|
||||
|
||||
# GDAS
|
||||
def forward_gdas(self, inputs, hardwts, index):
|
||||
nodes = [inputs]
|
||||
for i in range(1, self.max_nodes):
|
||||
inter_nodes = []
|
||||
for j in range(i):
|
||||
node_str = "{:}<-{:}".format(i, j)
|
||||
weights = hardwts[self.edge2index[node_str]]
|
||||
argmaxs = index[self.edge2index[node_str]].item()
|
||||
weigsum = sum(
|
||||
weights[_ie] * edge(nodes[j]) if _ie == argmaxs else weights[_ie]
|
||||
for _ie, edge in enumerate(self.edges[node_str])
|
||||
)
|
||||
inter_nodes.append(weigsum)
|
||||
nodes.append(sum(inter_nodes))
|
||||
return nodes[-1]
|
||||
|
||||
# joint
|
||||
def forward_joint(self, inputs, weightss):
|
||||
nodes = [inputs]
|
||||
for i in range(1, self.max_nodes):
|
||||
inter_nodes = []
|
||||
for j in range(i):
|
||||
node_str = "{:}<-{:}".format(i, j)
|
||||
weights = weightss[self.edge2index[node_str]]
|
||||
# aggregation = sum( layer(nodes[j]) * w for layer, w in zip(self.edges[node_str], weights) ) / weights.numel()
|
||||
aggregation = sum(
|
||||
layer(nodes[j]) * w
|
||||
for layer, w in zip(self.edges[node_str], weights)
|
||||
)
|
||||
inter_nodes.append(aggregation)
|
||||
nodes.append(sum(inter_nodes))
|
||||
return nodes[-1]
|
||||
|
||||
# uniform random sampling per iteration, SETN
|
||||
def forward_urs(self, inputs):
|
||||
nodes = [inputs]
|
||||
for i in range(1, self.max_nodes):
|
||||
while True: # to avoid select zero for all ops
|
||||
sops, has_non_zero = [], False
|
||||
for j in range(i):
|
||||
node_str = "{:}<-{:}".format(i, j)
|
||||
candidates = self.edges[node_str]
|
||||
select_op = random.choice(candidates)
|
||||
sops.append(select_op)
|
||||
if not hasattr(select_op, "is_zero") or select_op.is_zero is False:
|
||||
has_non_zero = True
|
||||
if has_non_zero:
|
||||
break
|
||||
inter_nodes = []
|
||||
for j, select_op in enumerate(sops):
|
||||
inter_nodes.append(select_op(nodes[j]))
|
||||
nodes.append(sum(inter_nodes))
|
||||
return nodes[-1]
|
||||
|
||||
# select the argmax
|
||||
def forward_select(self, inputs, weightss):
|
||||
nodes = [inputs]
|
||||
for i in range(1, self.max_nodes):
|
||||
inter_nodes = []
|
||||
for j in range(i):
|
||||
node_str = "{:}<-{:}".format(i, j)
|
||||
weights = weightss[self.edge2index[node_str]]
|
||||
inter_nodes.append(
|
||||
self.edges[node_str][weights.argmax().item()](nodes[j])
|
||||
)
|
||||
# inter_nodes.append( sum( layer(nodes[j]) * w for layer, w in zip(self.edges[node_str], weights) ) )
|
||||
nodes.append(sum(inter_nodes))
|
||||
return nodes[-1]
|
||||
|
||||
# forward with a specific structure
|
||||
def forward_dynamic(self, inputs, structure):
|
||||
nodes = [inputs]
|
||||
for i in range(1, self.max_nodes):
|
||||
cur_op_node = structure.nodes[i - 1]
|
||||
inter_nodes = []
|
||||
for op_name, j in cur_op_node:
|
||||
node_str = "{:}<-{:}".format(i, j)
|
||||
op_index = self.op_names.index(op_name)
|
||||
inter_nodes.append(self.edges[node_str][op_index](nodes[j]))
|
||||
nodes.append(sum(inter_nodes))
|
||||
return nodes[-1]
|
||||
|
||||
|
||||
class MixedOp(nn.Module):
|
||||
def __init__(self, space, C, stride, affine, track_running_stats):
|
||||
super(MixedOp, self).__init__()
|
||||
self._ops = nn.ModuleList()
|
||||
for primitive in space:
|
||||
op = OPS[primitive](C, C, stride, affine, track_running_stats)
|
||||
self._ops.append(op)
|
||||
|
||||
def forward_gdas(self, x, weights, index):
|
||||
return self._ops[index](x) * weights[index]
|
||||
|
||||
def forward_darts(self, x, weights):
|
||||
return sum(w * op(x) for w, op in zip(weights, self._ops))
|
||||
|
||||
|
||||
# Learning Transferable Architectures for Scalable Image Recognition, CVPR 2018
|
||||
class NASNetSearchCell(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
space,
|
||||
steps,
|
||||
multiplier,
|
||||
C_prev_prev,
|
||||
C_prev,
|
||||
C,
|
||||
reduction,
|
||||
reduction_prev,
|
||||
affine,
|
||||
track_running_stats,
|
||||
):
|
||||
super(NASNetSearchCell, self).__init__()
|
||||
self.reduction = reduction
|
||||
self.op_names = deepcopy(space)
|
||||
if reduction_prev:
|
||||
self.preprocess0 = OPS["skip_connect"](
|
||||
C_prev_prev, C, 2, affine, track_running_stats
|
||||
)
|
||||
else:
|
||||
self.preprocess0 = OPS["nor_conv_1x1"](
|
||||
C_prev_prev, C, 1, affine, track_running_stats
|
||||
)
|
||||
self.preprocess1 = OPS["nor_conv_1x1"](
|
||||
C_prev, C, 1, affine, track_running_stats
|
||||
)
|
||||
self._steps = steps
|
||||
self._multiplier = multiplier
|
||||
|
||||
self._ops = nn.ModuleList()
|
||||
self.edges = nn.ModuleDict()
|
||||
for i in range(self._steps):
|
||||
for j in range(2 + i):
|
||||
node_str = "{:}<-{:}".format(
|
||||
i, j
|
||||
) # indicate the edge from node-(j) to node-(i+2)
|
||||
stride = 2 if reduction and j < 2 else 1
|
||||
op = MixedOp(space, C, stride, affine, track_running_stats)
|
||||
self.edges[node_str] = op
|
||||
self.edge_keys = sorted(list(self.edges.keys()))
|
||||
self.edge2index = {key: i for i, key in enumerate(self.edge_keys)}
|
||||
self.num_edges = len(self.edges)
|
||||
|
||||
@property
|
||||
def multiplier(self):
|
||||
return self._multiplier
|
||||
|
||||
def forward_gdas(self, s0, s1, weightss, indexs):
|
||||
s0 = self.preprocess0(s0)
|
||||
s1 = self.preprocess1(s1)
|
||||
|
||||
states = [s0, s1]
|
||||
for i in range(self._steps):
|
||||
clist = []
|
||||
for j, h in enumerate(states):
|
||||
node_str = "{:}<-{:}".format(i, j)
|
||||
op = self.edges[node_str]
|
||||
weights = weightss[self.edge2index[node_str]]
|
||||
index = indexs[self.edge2index[node_str]].item()
|
||||
clist.append(op.forward_gdas(h, weights, index))
|
||||
states.append(sum(clist))
|
||||
|
||||
return torch.cat(states[-self._multiplier :], dim=1)
|
||||
|
||||
def forward_darts(self, s0, s1, weightss):
|
||||
s0 = self.preprocess0(s0)
|
||||
s1 = self.preprocess1(s1)
|
||||
|
||||
states = [s0, s1]
|
||||
for i in range(self._steps):
|
||||
clist = []
|
||||
for j, h in enumerate(states):
|
||||
node_str = "{:}<-{:}".format(i, j)
|
||||
op = self.edges[node_str]
|
||||
weights = weightss[self.edge2index[node_str]]
|
||||
clist.append(op.forward_darts(h, weights))
|
||||
states.append(sum(clist))
|
||||
|
||||
return torch.cat(states[-self._multiplier :], dim=1)
|
Reference in New Issue
Block a user