Move to xautodl
This commit is contained in:
117
xautodl/models/CifarDenseNet.py
Normal file
117
xautodl/models/CifarDenseNet.py
Normal file
@@ -0,0 +1,117 @@
|
||||
##################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
|
||||
##################################################
|
||||
import math, torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from .initialization import initialize_resnet
|
||||
|
||||
|
||||
class Bottleneck(nn.Module):
|
||||
def __init__(self, nChannels, growthRate):
|
||||
super(Bottleneck, self).__init__()
|
||||
interChannels = 4 * growthRate
|
||||
self.bn1 = nn.BatchNorm2d(nChannels)
|
||||
self.conv1 = nn.Conv2d(nChannels, interChannels, kernel_size=1, bias=False)
|
||||
self.bn2 = nn.BatchNorm2d(interChannels)
|
||||
self.conv2 = nn.Conv2d(
|
||||
interChannels, growthRate, kernel_size=3, padding=1, bias=False
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
out = self.conv1(F.relu(self.bn1(x)))
|
||||
out = self.conv2(F.relu(self.bn2(out)))
|
||||
out = torch.cat((x, out), 1)
|
||||
return out
|
||||
|
||||
|
||||
class SingleLayer(nn.Module):
|
||||
def __init__(self, nChannels, growthRate):
|
||||
super(SingleLayer, self).__init__()
|
||||
self.bn1 = nn.BatchNorm2d(nChannels)
|
||||
self.conv1 = nn.Conv2d(
|
||||
nChannels, growthRate, kernel_size=3, padding=1, bias=False
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
out = self.conv1(F.relu(self.bn1(x)))
|
||||
out = torch.cat((x, out), 1)
|
||||
return out
|
||||
|
||||
|
||||
class Transition(nn.Module):
|
||||
def __init__(self, nChannels, nOutChannels):
|
||||
super(Transition, self).__init__()
|
||||
self.bn1 = nn.BatchNorm2d(nChannels)
|
||||
self.conv1 = nn.Conv2d(nChannels, nOutChannels, kernel_size=1, bias=False)
|
||||
|
||||
def forward(self, x):
|
||||
out = self.conv1(F.relu(self.bn1(x)))
|
||||
out = F.avg_pool2d(out, 2)
|
||||
return out
|
||||
|
||||
|
||||
class DenseNet(nn.Module):
|
||||
def __init__(self, growthRate, depth, reduction, nClasses, bottleneck):
|
||||
super(DenseNet, self).__init__()
|
||||
|
||||
if bottleneck:
|
||||
nDenseBlocks = int((depth - 4) / 6)
|
||||
else:
|
||||
nDenseBlocks = int((depth - 4) / 3)
|
||||
|
||||
self.message = "CifarDenseNet : block : {:}, depth : {:}, reduction : {:}, growth-rate = {:}, class = {:}".format(
|
||||
"bottleneck" if bottleneck else "basic",
|
||||
depth,
|
||||
reduction,
|
||||
growthRate,
|
||||
nClasses,
|
||||
)
|
||||
|
||||
nChannels = 2 * growthRate
|
||||
self.conv1 = nn.Conv2d(3, nChannels, kernel_size=3, padding=1, bias=False)
|
||||
|
||||
self.dense1 = self._make_dense(nChannels, growthRate, nDenseBlocks, bottleneck)
|
||||
nChannels += nDenseBlocks * growthRate
|
||||
nOutChannels = int(math.floor(nChannels * reduction))
|
||||
self.trans1 = Transition(nChannels, nOutChannels)
|
||||
|
||||
nChannels = nOutChannels
|
||||
self.dense2 = self._make_dense(nChannels, growthRate, nDenseBlocks, bottleneck)
|
||||
nChannels += nDenseBlocks * growthRate
|
||||
nOutChannels = int(math.floor(nChannels * reduction))
|
||||
self.trans2 = Transition(nChannels, nOutChannels)
|
||||
|
||||
nChannels = nOutChannels
|
||||
self.dense3 = self._make_dense(nChannels, growthRate, nDenseBlocks, bottleneck)
|
||||
nChannels += nDenseBlocks * growthRate
|
||||
|
||||
self.act = nn.Sequential(
|
||||
nn.BatchNorm2d(nChannels), nn.ReLU(inplace=True), nn.AvgPool2d(8)
|
||||
)
|
||||
self.fc = nn.Linear(nChannels, nClasses)
|
||||
|
||||
self.apply(initialize_resnet)
|
||||
|
||||
def get_message(self):
|
||||
return self.message
|
||||
|
||||
def _make_dense(self, nChannels, growthRate, nDenseBlocks, bottleneck):
|
||||
layers = []
|
||||
for i in range(int(nDenseBlocks)):
|
||||
if bottleneck:
|
||||
layers.append(Bottleneck(nChannels, growthRate))
|
||||
else:
|
||||
layers.append(SingleLayer(nChannels, growthRate))
|
||||
nChannels += growthRate
|
||||
return nn.Sequential(*layers)
|
||||
|
||||
def forward(self, inputs):
|
||||
out = self.conv1(inputs)
|
||||
out = self.trans1(self.dense1(out))
|
||||
out = self.trans2(self.dense2(out))
|
||||
out = self.dense3(out)
|
||||
features = self.act(out)
|
||||
features = features.view(features.size(0), -1)
|
||||
out = self.fc(features)
|
||||
return features, out
|
180
xautodl/models/CifarResNet.py
Normal file
180
xautodl/models/CifarResNet.py
Normal file
@@ -0,0 +1,180 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from .initialization import initialize_resnet
|
||||
from .SharedUtils import additive_func
|
||||
|
||||
|
||||
class Downsample(nn.Module):
|
||||
def __init__(self, nIn, nOut, stride):
|
||||
super(Downsample, self).__init__()
|
||||
assert stride == 2 and nOut == 2 * nIn, "stride:{} IO:{},{}".format(
|
||||
stride, nIn, nOut
|
||||
)
|
||||
self.in_dim = nIn
|
||||
self.out_dim = nOut
|
||||
self.avg = nn.AvgPool2d(kernel_size=2, stride=2, padding=0)
|
||||
self.conv = nn.Conv2d(nIn, nOut, kernel_size=1, stride=1, padding=0, bias=False)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.avg(x)
|
||||
out = self.conv(x)
|
||||
return out
|
||||
|
||||
|
||||
class ConvBNReLU(nn.Module):
|
||||
def __init__(self, nIn, nOut, kernel, stride, padding, bias, relu):
|
||||
super(ConvBNReLU, self).__init__()
|
||||
self.conv = nn.Conv2d(
|
||||
nIn, nOut, kernel_size=kernel, stride=stride, padding=padding, bias=bias
|
||||
)
|
||||
self.bn = nn.BatchNorm2d(nOut)
|
||||
if relu:
|
||||
self.relu = nn.ReLU(inplace=True)
|
||||
else:
|
||||
self.relu = None
|
||||
self.out_dim = nOut
|
||||
self.num_conv = 1
|
||||
|
||||
def forward(self, x):
|
||||
conv = self.conv(x)
|
||||
bn = self.bn(conv)
|
||||
if self.relu:
|
||||
return self.relu(bn)
|
||||
else:
|
||||
return bn
|
||||
|
||||
|
||||
class ResNetBasicblock(nn.Module):
|
||||
expansion = 1
|
||||
|
||||
def __init__(self, inplanes, planes, stride):
|
||||
super(ResNetBasicblock, self).__init__()
|
||||
assert stride == 1 or stride == 2, "invalid stride {:}".format(stride)
|
||||
self.conv_a = ConvBNReLU(inplanes, planes, 3, stride, 1, False, True)
|
||||
self.conv_b = ConvBNReLU(planes, planes, 3, 1, 1, False, False)
|
||||
if stride == 2:
|
||||
self.downsample = Downsample(inplanes, planes, stride)
|
||||
elif inplanes != planes:
|
||||
self.downsample = ConvBNReLU(inplanes, planes, 1, 1, 0, False, False)
|
||||
else:
|
||||
self.downsample = None
|
||||
self.out_dim = planes
|
||||
self.num_conv = 2
|
||||
|
||||
def forward(self, inputs):
|
||||
|
||||
basicblock = self.conv_a(inputs)
|
||||
basicblock = self.conv_b(basicblock)
|
||||
|
||||
if self.downsample is not None:
|
||||
residual = self.downsample(inputs)
|
||||
else:
|
||||
residual = inputs
|
||||
out = additive_func(residual, basicblock)
|
||||
return F.relu(out, inplace=True)
|
||||
|
||||
|
||||
class ResNetBottleneck(nn.Module):
|
||||
expansion = 4
|
||||
|
||||
def __init__(self, inplanes, planes, stride):
|
||||
super(ResNetBottleneck, self).__init__()
|
||||
assert stride == 1 or stride == 2, "invalid stride {:}".format(stride)
|
||||
self.conv_1x1 = ConvBNReLU(inplanes, planes, 1, 1, 0, False, True)
|
||||
self.conv_3x3 = ConvBNReLU(planes, planes, 3, stride, 1, False, True)
|
||||
self.conv_1x4 = ConvBNReLU(
|
||||
planes, planes * self.expansion, 1, 1, 0, False, False
|
||||
)
|
||||
if stride == 2:
|
||||
self.downsample = Downsample(inplanes, planes * self.expansion, stride)
|
||||
elif inplanes != planes * self.expansion:
|
||||
self.downsample = ConvBNReLU(
|
||||
inplanes, planes * self.expansion, 1, 1, 0, False, False
|
||||
)
|
||||
else:
|
||||
self.downsample = None
|
||||
self.out_dim = planes * self.expansion
|
||||
self.num_conv = 3
|
||||
|
||||
def forward(self, inputs):
|
||||
|
||||
bottleneck = self.conv_1x1(inputs)
|
||||
bottleneck = self.conv_3x3(bottleneck)
|
||||
bottleneck = self.conv_1x4(bottleneck)
|
||||
|
||||
if self.downsample is not None:
|
||||
residual = self.downsample(inputs)
|
||||
else:
|
||||
residual = inputs
|
||||
out = additive_func(residual, bottleneck)
|
||||
return F.relu(out, inplace=True)
|
||||
|
||||
|
||||
class CifarResNet(nn.Module):
|
||||
def __init__(self, block_name, depth, num_classes, zero_init_residual):
|
||||
super(CifarResNet, self).__init__()
|
||||
|
||||
# Model type specifies number of layers for CIFAR-10 and CIFAR-100 model
|
||||
if block_name == "ResNetBasicblock":
|
||||
block = ResNetBasicblock
|
||||
assert (depth - 2) % 6 == 0, "depth should be one of 20, 32, 44, 56, 110"
|
||||
layer_blocks = (depth - 2) // 6
|
||||
elif block_name == "ResNetBottleneck":
|
||||
block = ResNetBottleneck
|
||||
assert (depth - 2) % 9 == 0, "depth should be one of 164"
|
||||
layer_blocks = (depth - 2) // 9
|
||||
else:
|
||||
raise ValueError("invalid block : {:}".format(block_name))
|
||||
|
||||
self.message = "CifarResNet : Block : {:}, Depth : {:}, Layers for each block : {:}".format(
|
||||
block_name, depth, layer_blocks
|
||||
)
|
||||
self.num_classes = num_classes
|
||||
self.channels = [16]
|
||||
self.layers = nn.ModuleList([ConvBNReLU(3, 16, 3, 1, 1, False, True)])
|
||||
for stage in range(3):
|
||||
for iL in range(layer_blocks):
|
||||
iC = self.channels[-1]
|
||||
planes = 16 * (2 ** stage)
|
||||
stride = 2 if stage > 0 and iL == 0 else 1
|
||||
module = block(iC, planes, stride)
|
||||
self.channels.append(module.out_dim)
|
||||
self.layers.append(module)
|
||||
self.message += "\nstage={:}, ilayer={:02d}/{:02d}, block={:03d}, iC={:3d}, oC={:3d}, stride={:}".format(
|
||||
stage,
|
||||
iL,
|
||||
layer_blocks,
|
||||
len(self.layers) - 1,
|
||||
iC,
|
||||
module.out_dim,
|
||||
stride,
|
||||
)
|
||||
|
||||
self.avgpool = nn.AvgPool2d(8)
|
||||
self.classifier = nn.Linear(module.out_dim, num_classes)
|
||||
assert (
|
||||
sum(x.num_conv for x in self.layers) + 1 == depth
|
||||
), "invalid depth check {:} vs {:}".format(
|
||||
sum(x.num_conv for x in self.layers) + 1, depth
|
||||
)
|
||||
|
||||
self.apply(initialize_resnet)
|
||||
if zero_init_residual:
|
||||
for m in self.modules():
|
||||
if isinstance(m, ResNetBasicblock):
|
||||
nn.init.constant_(m.conv_b.bn.weight, 0)
|
||||
elif isinstance(m, ResNetBottleneck):
|
||||
nn.init.constant_(m.conv_1x4.bn.weight, 0)
|
||||
|
||||
def get_message(self):
|
||||
return self.message
|
||||
|
||||
def forward(self, inputs):
|
||||
x = inputs
|
||||
for i, layer in enumerate(self.layers):
|
||||
x = layer(x)
|
||||
features = self.avgpool(x)
|
||||
features = features.view(features.size(0), -1)
|
||||
logits = self.classifier(features)
|
||||
return features, logits
|
115
xautodl/models/CifarWideResNet.py
Normal file
115
xautodl/models/CifarWideResNet.py
Normal file
@@ -0,0 +1,115 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from .initialization import initialize_resnet
|
||||
|
||||
|
||||
class WideBasicblock(nn.Module):
|
||||
def __init__(self, inplanes, planes, stride, dropout=False):
|
||||
super(WideBasicblock, self).__init__()
|
||||
|
||||
self.bn_a = nn.BatchNorm2d(inplanes)
|
||||
self.conv_a = nn.Conv2d(
|
||||
inplanes, planes, kernel_size=3, stride=stride, padding=1, bias=False
|
||||
)
|
||||
|
||||
self.bn_b = nn.BatchNorm2d(planes)
|
||||
if dropout:
|
||||
self.dropout = nn.Dropout2d(p=0.5, inplace=True)
|
||||
else:
|
||||
self.dropout = None
|
||||
self.conv_b = nn.Conv2d(
|
||||
planes, planes, kernel_size=3, stride=1, padding=1, bias=False
|
||||
)
|
||||
|
||||
if inplanes != planes:
|
||||
self.downsample = nn.Conv2d(
|
||||
inplanes, planes, kernel_size=1, stride=stride, padding=0, bias=False
|
||||
)
|
||||
else:
|
||||
self.downsample = None
|
||||
|
||||
def forward(self, x):
|
||||
|
||||
basicblock = self.bn_a(x)
|
||||
basicblock = F.relu(basicblock)
|
||||
basicblock = self.conv_a(basicblock)
|
||||
|
||||
basicblock = self.bn_b(basicblock)
|
||||
basicblock = F.relu(basicblock)
|
||||
if self.dropout is not None:
|
||||
basicblock = self.dropout(basicblock)
|
||||
basicblock = self.conv_b(basicblock)
|
||||
|
||||
if self.downsample is not None:
|
||||
x = self.downsample(x)
|
||||
|
||||
return x + basicblock
|
||||
|
||||
|
||||
class CifarWideResNet(nn.Module):
|
||||
"""
|
||||
ResNet optimized for the Cifar dataset, as specified in
|
||||
https://arxiv.org/abs/1512.03385.pdf
|
||||
"""
|
||||
|
||||
def __init__(self, depth, widen_factor, num_classes, dropout):
|
||||
super(CifarWideResNet, self).__init__()
|
||||
|
||||
# Model type specifies number of layers for CIFAR-10 and CIFAR-100 model
|
||||
assert (depth - 4) % 6 == 0, "depth should be one of 20, 32, 44, 56, 110"
|
||||
layer_blocks = (depth - 4) // 6
|
||||
print(
|
||||
"CifarPreResNet : Depth : {} , Layers for each block : {}".format(
|
||||
depth, layer_blocks
|
||||
)
|
||||
)
|
||||
|
||||
self.num_classes = num_classes
|
||||
self.dropout = dropout
|
||||
self.conv_3x3 = nn.Conv2d(3, 16, kernel_size=3, stride=1, padding=1, bias=False)
|
||||
|
||||
self.message = "Wide ResNet : depth={:}, widen_factor={:}, class={:}".format(
|
||||
depth, widen_factor, num_classes
|
||||
)
|
||||
self.inplanes = 16
|
||||
self.stage_1 = self._make_layer(
|
||||
WideBasicblock, 16 * widen_factor, layer_blocks, 1
|
||||
)
|
||||
self.stage_2 = self._make_layer(
|
||||
WideBasicblock, 32 * widen_factor, layer_blocks, 2
|
||||
)
|
||||
self.stage_3 = self._make_layer(
|
||||
WideBasicblock, 64 * widen_factor, layer_blocks, 2
|
||||
)
|
||||
self.lastact = nn.Sequential(
|
||||
nn.BatchNorm2d(64 * widen_factor), nn.ReLU(inplace=True)
|
||||
)
|
||||
self.avgpool = nn.AvgPool2d(8)
|
||||
self.classifier = nn.Linear(64 * widen_factor, num_classes)
|
||||
|
||||
self.apply(initialize_resnet)
|
||||
|
||||
def get_message(self):
|
||||
return self.message
|
||||
|
||||
def _make_layer(self, block, planes, blocks, stride):
|
||||
|
||||
layers = []
|
||||
layers.append(block(self.inplanes, planes, stride, self.dropout))
|
||||
self.inplanes = planes
|
||||
for i in range(1, blocks):
|
||||
layers.append(block(self.inplanes, planes, 1, self.dropout))
|
||||
|
||||
return nn.Sequential(*layers)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.conv_3x3(x)
|
||||
x = self.stage_1(x)
|
||||
x = self.stage_2(x)
|
||||
x = self.stage_3(x)
|
||||
x = self.lastact(x)
|
||||
x = self.avgpool(x)
|
||||
features = x.view(x.size(0), -1)
|
||||
outs = self.classifier(features)
|
||||
return features, outs
|
117
xautodl/models/ImageNet_MobileNetV2.py
Normal file
117
xautodl/models/ImageNet_MobileNetV2.py
Normal file
@@ -0,0 +1,117 @@
|
||||
# MobileNetV2: Inverted Residuals and Linear Bottlenecks, CVPR 2018
|
||||
from torch import nn
|
||||
from .initialization import initialize_resnet
|
||||
|
||||
|
||||
class ConvBNReLU(nn.Module):
|
||||
def __init__(self, in_planes, out_planes, kernel_size=3, stride=1, groups=1):
|
||||
super(ConvBNReLU, self).__init__()
|
||||
padding = (kernel_size - 1) // 2
|
||||
self.conv = nn.Conv2d(
|
||||
in_planes,
|
||||
out_planes,
|
||||
kernel_size,
|
||||
stride,
|
||||
padding,
|
||||
groups=groups,
|
||||
bias=False,
|
||||
)
|
||||
self.bn = nn.BatchNorm2d(out_planes)
|
||||
self.relu = nn.ReLU6(inplace=True)
|
||||
|
||||
def forward(self, x):
|
||||
out = self.conv(x)
|
||||
out = self.bn(out)
|
||||
out = self.relu(out)
|
||||
return out
|
||||
|
||||
|
||||
class InvertedResidual(nn.Module):
|
||||
def __init__(self, inp, oup, stride, expand_ratio):
|
||||
super(InvertedResidual, self).__init__()
|
||||
self.stride = stride
|
||||
assert stride in [1, 2]
|
||||
|
||||
hidden_dim = int(round(inp * expand_ratio))
|
||||
self.use_res_connect = self.stride == 1 and inp == oup
|
||||
|
||||
layers = []
|
||||
if expand_ratio != 1:
|
||||
# pw
|
||||
layers.append(ConvBNReLU(inp, hidden_dim, kernel_size=1))
|
||||
layers.extend(
|
||||
[
|
||||
# dw
|
||||
ConvBNReLU(hidden_dim, hidden_dim, stride=stride, groups=hidden_dim),
|
||||
# pw-linear
|
||||
nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False),
|
||||
nn.BatchNorm2d(oup),
|
||||
]
|
||||
)
|
||||
self.conv = nn.Sequential(*layers)
|
||||
|
||||
def forward(self, x):
|
||||
if self.use_res_connect:
|
||||
return x + self.conv(x)
|
||||
else:
|
||||
return self.conv(x)
|
||||
|
||||
|
||||
class MobileNetV2(nn.Module):
|
||||
def __init__(
|
||||
self, num_classes, width_mult, input_channel, last_channel, block_name, dropout
|
||||
):
|
||||
super(MobileNetV2, self).__init__()
|
||||
if block_name == "InvertedResidual":
|
||||
block = InvertedResidual
|
||||
else:
|
||||
raise ValueError("invalid block name : {:}".format(block_name))
|
||||
inverted_residual_setting = [
|
||||
# t, c, n, s
|
||||
[1, 16, 1, 1],
|
||||
[6, 24, 2, 2],
|
||||
[6, 32, 3, 2],
|
||||
[6, 64, 4, 2],
|
||||
[6, 96, 3, 1],
|
||||
[6, 160, 3, 2],
|
||||
[6, 320, 1, 1],
|
||||
]
|
||||
|
||||
# building first layer
|
||||
input_channel = int(input_channel * width_mult)
|
||||
self.last_channel = int(last_channel * max(1.0, width_mult))
|
||||
features = [ConvBNReLU(3, input_channel, stride=2)]
|
||||
# building inverted residual blocks
|
||||
for t, c, n, s in inverted_residual_setting:
|
||||
output_channel = int(c * width_mult)
|
||||
for i in range(n):
|
||||
stride = s if i == 0 else 1
|
||||
features.append(
|
||||
block(input_channel, output_channel, stride, expand_ratio=t)
|
||||
)
|
||||
input_channel = output_channel
|
||||
# building last several layers
|
||||
features.append(ConvBNReLU(input_channel, self.last_channel, kernel_size=1))
|
||||
# make it nn.Sequential
|
||||
self.features = nn.Sequential(*features)
|
||||
|
||||
# building classifier
|
||||
self.classifier = nn.Sequential(
|
||||
nn.Dropout(dropout),
|
||||
nn.Linear(self.last_channel, num_classes),
|
||||
)
|
||||
self.message = "MobileNetV2 : width_mult={:}, in-C={:}, last-C={:}, block={:}, dropout={:}".format(
|
||||
width_mult, input_channel, last_channel, block_name, dropout
|
||||
)
|
||||
|
||||
# weight initialization
|
||||
self.apply(initialize_resnet)
|
||||
|
||||
def get_message(self):
|
||||
return self.message
|
||||
|
||||
def forward(self, inputs):
|
||||
features = self.features(inputs)
|
||||
vectors = features.mean([2, 3])
|
||||
predicts = self.classifier(vectors)
|
||||
return features, predicts
|
217
xautodl/models/ImageNet_ResNet.py
Normal file
217
xautodl/models/ImageNet_ResNet.py
Normal file
@@ -0,0 +1,217 @@
|
||||
# Deep Residual Learning for Image Recognition, CVPR 2016
|
||||
import torch.nn as nn
|
||||
from .initialization import initialize_resnet
|
||||
|
||||
|
||||
def conv3x3(in_planes, out_planes, stride=1, groups=1):
|
||||
return nn.Conv2d(
|
||||
in_planes,
|
||||
out_planes,
|
||||
kernel_size=3,
|
||||
stride=stride,
|
||||
padding=1,
|
||||
groups=groups,
|
||||
bias=False,
|
||||
)
|
||||
|
||||
|
||||
def conv1x1(in_planes, out_planes, stride=1):
|
||||
return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)
|
||||
|
||||
|
||||
class BasicBlock(nn.Module):
|
||||
expansion = 1
|
||||
|
||||
def __init__(
|
||||
self, inplanes, planes, stride=1, downsample=None, groups=1, base_width=64
|
||||
):
|
||||
super(BasicBlock, self).__init__()
|
||||
if groups != 1 or base_width != 64:
|
||||
raise ValueError("BasicBlock only supports groups=1 and base_width=64")
|
||||
# Both self.conv1 and self.downsample layers downsample the input when stride != 1
|
||||
self.conv1 = conv3x3(inplanes, planes, stride)
|
||||
self.bn1 = nn.BatchNorm2d(planes)
|
||||
self.relu = nn.ReLU(inplace=True)
|
||||
self.conv2 = conv3x3(planes, planes)
|
||||
self.bn2 = nn.BatchNorm2d(planes)
|
||||
self.downsample = downsample
|
||||
self.stride = stride
|
||||
|
||||
def forward(self, x):
|
||||
identity = x
|
||||
|
||||
out = self.conv1(x)
|
||||
out = self.bn1(out)
|
||||
out = self.relu(out)
|
||||
|
||||
out = self.conv2(out)
|
||||
out = self.bn2(out)
|
||||
|
||||
if self.downsample is not None:
|
||||
identity = self.downsample(x)
|
||||
|
||||
out += identity
|
||||
out = self.relu(out)
|
||||
|
||||
return out
|
||||
|
||||
|
||||
class Bottleneck(nn.Module):
|
||||
expansion = 4
|
||||
|
||||
def __init__(
|
||||
self, inplanes, planes, stride=1, downsample=None, groups=1, base_width=64
|
||||
):
|
||||
super(Bottleneck, self).__init__()
|
||||
width = int(planes * (base_width / 64.0)) * groups
|
||||
# Both self.conv2 and self.downsample layers downsample the input when stride != 1
|
||||
self.conv1 = conv1x1(inplanes, width)
|
||||
self.bn1 = nn.BatchNorm2d(width)
|
||||
self.conv2 = conv3x3(width, width, stride, groups)
|
||||
self.bn2 = nn.BatchNorm2d(width)
|
||||
self.conv3 = conv1x1(width, planes * self.expansion)
|
||||
self.bn3 = nn.BatchNorm2d(planes * self.expansion)
|
||||
self.relu = nn.ReLU(inplace=True)
|
||||
self.downsample = downsample
|
||||
self.stride = stride
|
||||
|
||||
def forward(self, x):
|
||||
identity = x
|
||||
|
||||
out = self.conv1(x)
|
||||
out = self.bn1(out)
|
||||
out = self.relu(out)
|
||||
|
||||
out = self.conv2(out)
|
||||
out = self.bn2(out)
|
||||
out = self.relu(out)
|
||||
|
||||
out = self.conv3(out)
|
||||
out = self.bn3(out)
|
||||
|
||||
if self.downsample is not None:
|
||||
identity = self.downsample(x)
|
||||
|
||||
out += identity
|
||||
out = self.relu(out)
|
||||
|
||||
return out
|
||||
|
||||
|
||||
class ResNet(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
block_name,
|
||||
layers,
|
||||
deep_stem,
|
||||
num_classes,
|
||||
zero_init_residual,
|
||||
groups,
|
||||
width_per_group,
|
||||
):
|
||||
super(ResNet, self).__init__()
|
||||
|
||||
# planes = [int(width_per_group * groups * 2 ** i) for i in range(4)]
|
||||
if block_name == "BasicBlock":
|
||||
block = BasicBlock
|
||||
elif block_name == "Bottleneck":
|
||||
block = Bottleneck
|
||||
else:
|
||||
raise ValueError("invalid block-name : {:}".format(block_name))
|
||||
|
||||
if not deep_stem:
|
||||
self.conv = nn.Sequential(
|
||||
nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False),
|
||||
nn.BatchNorm2d(64),
|
||||
nn.ReLU(inplace=True),
|
||||
)
|
||||
else:
|
||||
self.conv = nn.Sequential(
|
||||
nn.Conv2d(3, 32, kernel_size=3, stride=2, padding=1, bias=False),
|
||||
nn.BatchNorm2d(32),
|
||||
nn.ReLU(inplace=True),
|
||||
nn.Conv2d(32, 32, kernel_size=3, stride=1, padding=1, bias=False),
|
||||
nn.BatchNorm2d(32),
|
||||
nn.ReLU(inplace=True),
|
||||
nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1, bias=False),
|
||||
nn.BatchNorm2d(64),
|
||||
nn.ReLU(inplace=True),
|
||||
)
|
||||
self.inplanes = 64
|
||||
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
|
||||
self.layer1 = self._make_layer(
|
||||
block, 64, layers[0], stride=1, groups=groups, base_width=width_per_group
|
||||
)
|
||||
self.layer2 = self._make_layer(
|
||||
block, 128, layers[1], stride=2, groups=groups, base_width=width_per_group
|
||||
)
|
||||
self.layer3 = self._make_layer(
|
||||
block, 256, layers[2], stride=2, groups=groups, base_width=width_per_group
|
||||
)
|
||||
self.layer4 = self._make_layer(
|
||||
block, 512, layers[3], stride=2, groups=groups, base_width=width_per_group
|
||||
)
|
||||
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
|
||||
self.fc = nn.Linear(512 * block.expansion, num_classes)
|
||||
self.message = (
|
||||
"block = {:}, layers = {:}, deep_stem = {:}, num_classes = {:}".format(
|
||||
block, layers, deep_stem, num_classes
|
||||
)
|
||||
)
|
||||
|
||||
self.apply(initialize_resnet)
|
||||
|
||||
# Zero-initialize the last BN in each residual branch,
|
||||
# so that the residual branch starts with zeros, and each residual block behaves like an identity.
|
||||
# This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677
|
||||
if zero_init_residual:
|
||||
for m in self.modules():
|
||||
if isinstance(m, Bottleneck):
|
||||
nn.init.constant_(m.bn3.weight, 0)
|
||||
elif isinstance(m, BasicBlock):
|
||||
nn.init.constant_(m.bn2.weight, 0)
|
||||
|
||||
def _make_layer(self, block, planes, blocks, stride, groups, base_width):
|
||||
downsample = None
|
||||
if stride != 1 or self.inplanes != planes * block.expansion:
|
||||
if stride == 2:
|
||||
downsample = nn.Sequential(
|
||||
nn.AvgPool2d(kernel_size=2, stride=2, padding=0),
|
||||
conv1x1(self.inplanes, planes * block.expansion, 1),
|
||||
nn.BatchNorm2d(planes * block.expansion),
|
||||
)
|
||||
elif stride == 1:
|
||||
downsample = nn.Sequential(
|
||||
conv1x1(self.inplanes, planes * block.expansion, stride),
|
||||
nn.BatchNorm2d(planes * block.expansion),
|
||||
)
|
||||
else:
|
||||
raise ValueError("invalid stride [{:}] for downsample".format(stride))
|
||||
|
||||
layers = []
|
||||
layers.append(
|
||||
block(self.inplanes, planes, stride, downsample, groups, base_width)
|
||||
)
|
||||
self.inplanes = planes * block.expansion
|
||||
for _ in range(1, blocks):
|
||||
layers.append(block(self.inplanes, planes, 1, None, groups, base_width))
|
||||
|
||||
return nn.Sequential(*layers)
|
||||
|
||||
def get_message(self):
|
||||
return self.message
|
||||
|
||||
def forward(self, x):
|
||||
x = self.conv(x)
|
||||
x = self.maxpool(x)
|
||||
|
||||
x = self.layer1(x)
|
||||
x = self.layer2(x)
|
||||
x = self.layer3(x)
|
||||
x = self.layer4(x)
|
||||
|
||||
features = self.avgpool(x)
|
||||
features = features.view(features.size(0), -1)
|
||||
logits = self.fc(features)
|
||||
|
||||
return features, logits
|
37
xautodl/models/SharedUtils.py
Normal file
37
xautodl/models/SharedUtils.py
Normal file
@@ -0,0 +1,37 @@
|
||||
#####################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 #
|
||||
#####################################################
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
|
||||
def additive_func(A, B):
|
||||
assert A.dim() == B.dim() and A.size(0) == B.size(0), "{:} vs {:}".format(
|
||||
A.size(), B.size()
|
||||
)
|
||||
C = min(A.size(1), B.size(1))
|
||||
if A.size(1) == B.size(1):
|
||||
return A + B
|
||||
elif A.size(1) < B.size(1):
|
||||
out = B.clone()
|
||||
out[:, :C] += A
|
||||
return out
|
||||
else:
|
||||
out = A.clone()
|
||||
out[:, :C] += B
|
||||
return out
|
||||
|
||||
|
||||
def change_key(key, value):
|
||||
def func(m):
|
||||
if hasattr(m, key):
|
||||
setattr(m, key, value)
|
||||
|
||||
return func
|
||||
|
||||
|
||||
def parse_channel_info(xstring):
|
||||
blocks = xstring.split(" ")
|
||||
blocks = [x.split("-") for x in blocks]
|
||||
blocks = [[int(_) for _ in x] for x in blocks]
|
||||
return blocks
|
326
xautodl/models/__init__.py
Normal file
326
xautodl/models/__init__.py
Normal file
@@ -0,0 +1,326 @@
|
||||
##################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
|
||||
##################################################
|
||||
from os import path as osp
|
||||
from typing import List, Text
|
||||
import torch
|
||||
|
||||
__all__ = [
|
||||
"change_key",
|
||||
"get_cell_based_tiny_net",
|
||||
"get_search_spaces",
|
||||
"get_cifar_models",
|
||||
"get_imagenet_models",
|
||||
"obtain_model",
|
||||
"obtain_search_model",
|
||||
"load_net_from_checkpoint",
|
||||
"CellStructure",
|
||||
"CellArchitectures",
|
||||
]
|
||||
|
||||
# useful modules
|
||||
from config_utils import dict2config
|
||||
from models.SharedUtils import change_key
|
||||
from models.cell_searchs import CellStructure, CellArchitectures
|
||||
|
||||
|
||||
# Cell-based NAS Models
|
||||
def get_cell_based_tiny_net(config):
|
||||
if isinstance(config, dict):
|
||||
config = dict2config(config, None) # to support the argument being a dict
|
||||
super_type = getattr(config, "super_type", "basic")
|
||||
group_names = ["DARTS-V1", "DARTS-V2", "GDAS", "SETN", "ENAS", "RANDOM", "generic"]
|
||||
if super_type == "basic" and config.name in group_names:
|
||||
from .cell_searchs import nas201_super_nets as nas_super_nets
|
||||
|
||||
try:
|
||||
return nas_super_nets[config.name](
|
||||
config.C,
|
||||
config.N,
|
||||
config.max_nodes,
|
||||
config.num_classes,
|
||||
config.space,
|
||||
config.affine,
|
||||
config.track_running_stats,
|
||||
)
|
||||
except:
|
||||
return nas_super_nets[config.name](
|
||||
config.C, config.N, config.max_nodes, config.num_classes, config.space
|
||||
)
|
||||
elif super_type == "search-shape":
|
||||
from .shape_searchs import GenericNAS301Model
|
||||
|
||||
genotype = CellStructure.str2structure(config.genotype)
|
||||
return GenericNAS301Model(
|
||||
config.candidate_Cs,
|
||||
config.max_num_Cs,
|
||||
genotype,
|
||||
config.num_classes,
|
||||
config.affine,
|
||||
config.track_running_stats,
|
||||
)
|
||||
elif super_type == "nasnet-super":
|
||||
from .cell_searchs import nasnet_super_nets as nas_super_nets
|
||||
|
||||
return nas_super_nets[config.name](
|
||||
config.C,
|
||||
config.N,
|
||||
config.steps,
|
||||
config.multiplier,
|
||||
config.stem_multiplier,
|
||||
config.num_classes,
|
||||
config.space,
|
||||
config.affine,
|
||||
config.track_running_stats,
|
||||
)
|
||||
elif config.name == "infer.tiny":
|
||||
from .cell_infers import TinyNetwork
|
||||
|
||||
if hasattr(config, "genotype"):
|
||||
genotype = config.genotype
|
||||
elif hasattr(config, "arch_str"):
|
||||
genotype = CellStructure.str2structure(config.arch_str)
|
||||
else:
|
||||
raise ValueError(
|
||||
"Can not find genotype from this config : {:}".format(config)
|
||||
)
|
||||
return TinyNetwork(config.C, config.N, genotype, config.num_classes)
|
||||
elif config.name == "infer.shape.tiny":
|
||||
from .shape_infers import DynamicShapeTinyNet
|
||||
|
||||
if isinstance(config.channels, str):
|
||||
channels = tuple([int(x) for x in config.channels.split(":")])
|
||||
else:
|
||||
channels = config.channels
|
||||
genotype = CellStructure.str2structure(config.genotype)
|
||||
return DynamicShapeTinyNet(channels, genotype, config.num_classes)
|
||||
elif config.name == "infer.nasnet-cifar":
|
||||
from .cell_infers import NASNetonCIFAR
|
||||
|
||||
raise NotImplementedError
|
||||
else:
|
||||
raise ValueError("invalid network name : {:}".format(config.name))
|
||||
|
||||
|
||||
# obtain the search space, i.e., a dict mapping the operation name into a python-function for this op
|
||||
def get_search_spaces(xtype, name) -> List[Text]:
|
||||
if xtype == "cell" or xtype == "tss": # The topology search space.
|
||||
from .cell_operations import SearchSpaceNames
|
||||
|
||||
assert name in SearchSpaceNames, "invalid name [{:}] in {:}".format(
|
||||
name, SearchSpaceNames.keys()
|
||||
)
|
||||
return SearchSpaceNames[name]
|
||||
elif xtype == "sss": # The size search space.
|
||||
if name in ["nats-bench", "nats-bench-size"]:
|
||||
return {"candidates": [8, 16, 24, 32, 40, 48, 56, 64], "numbers": 5}
|
||||
else:
|
||||
raise ValueError("Invalid name : {:}".format(name))
|
||||
else:
|
||||
raise ValueError("invalid search-space type is {:}".format(xtype))
|
||||
|
||||
|
||||
def get_cifar_models(config, extra_path=None):
|
||||
super_type = getattr(config, "super_type", "basic")
|
||||
if super_type == "basic":
|
||||
from .CifarResNet import CifarResNet
|
||||
from .CifarDenseNet import DenseNet
|
||||
from .CifarWideResNet import CifarWideResNet
|
||||
|
||||
if config.arch == "resnet":
|
||||
return CifarResNet(
|
||||
config.module, config.depth, config.class_num, config.zero_init_residual
|
||||
)
|
||||
elif config.arch == "densenet":
|
||||
return DenseNet(
|
||||
config.growthRate,
|
||||
config.depth,
|
||||
config.reduction,
|
||||
config.class_num,
|
||||
config.bottleneck,
|
||||
)
|
||||
elif config.arch == "wideresnet":
|
||||
return CifarWideResNet(
|
||||
config.depth, config.wide_factor, config.class_num, config.dropout
|
||||
)
|
||||
else:
|
||||
raise ValueError("invalid module type : {:}".format(config.arch))
|
||||
elif super_type.startswith("infer"):
|
||||
from .shape_infers import InferWidthCifarResNet
|
||||
from .shape_infers import InferDepthCifarResNet
|
||||
from .shape_infers import InferCifarResNet
|
||||
from .cell_infers import NASNetonCIFAR
|
||||
|
||||
assert len(super_type.split("-")) == 2, "invalid super_type : {:}".format(
|
||||
super_type
|
||||
)
|
||||
infer_mode = super_type.split("-")[1]
|
||||
if infer_mode == "width":
|
||||
return InferWidthCifarResNet(
|
||||
config.module,
|
||||
config.depth,
|
||||
config.xchannels,
|
||||
config.class_num,
|
||||
config.zero_init_residual,
|
||||
)
|
||||
elif infer_mode == "depth":
|
||||
return InferDepthCifarResNet(
|
||||
config.module,
|
||||
config.depth,
|
||||
config.xblocks,
|
||||
config.class_num,
|
||||
config.zero_init_residual,
|
||||
)
|
||||
elif infer_mode == "shape":
|
||||
return InferCifarResNet(
|
||||
config.module,
|
||||
config.depth,
|
||||
config.xblocks,
|
||||
config.xchannels,
|
||||
config.class_num,
|
||||
config.zero_init_residual,
|
||||
)
|
||||
elif infer_mode == "nasnet.cifar":
|
||||
genotype = config.genotype
|
||||
if extra_path is not None: # reload genotype by extra_path
|
||||
if not osp.isfile(extra_path):
|
||||
raise ValueError("invalid extra_path : {:}".format(extra_path))
|
||||
xdata = torch.load(extra_path)
|
||||
current_epoch = xdata["epoch"]
|
||||
genotype = xdata["genotypes"][current_epoch - 1]
|
||||
C = config.C if hasattr(config, "C") else config.ichannel
|
||||
N = config.N if hasattr(config, "N") else config.layers
|
||||
return NASNetonCIFAR(
|
||||
C, N, config.stem_multi, config.class_num, genotype, config.auxiliary
|
||||
)
|
||||
else:
|
||||
raise ValueError("invalid infer-mode : {:}".format(infer_mode))
|
||||
else:
|
||||
raise ValueError("invalid super-type : {:}".format(super_type))
|
||||
|
||||
|
||||
def get_imagenet_models(config):
|
||||
super_type = getattr(config, "super_type", "basic")
|
||||
if super_type == "basic":
|
||||
from .ImageNet_ResNet import ResNet
|
||||
from .ImageNet_MobileNetV2 import MobileNetV2
|
||||
|
||||
if config.arch == "resnet":
|
||||
return ResNet(
|
||||
config.block_name,
|
||||
config.layers,
|
||||
config.deep_stem,
|
||||
config.class_num,
|
||||
config.zero_init_residual,
|
||||
config.groups,
|
||||
config.width_per_group,
|
||||
)
|
||||
elif config.arch == "mobilenet_v2":
|
||||
return MobileNetV2(
|
||||
config.class_num,
|
||||
config.width_multi,
|
||||
config.input_channel,
|
||||
config.last_channel,
|
||||
"InvertedResidual",
|
||||
config.dropout,
|
||||
)
|
||||
else:
|
||||
raise ValueError("invalid arch : {:}".format(config.arch))
|
||||
elif super_type.startswith("infer"): # NAS searched architecture
|
||||
assert len(super_type.split("-")) == 2, "invalid super_type : {:}".format(
|
||||
super_type
|
||||
)
|
||||
infer_mode = super_type.split("-")[1]
|
||||
if infer_mode == "shape":
|
||||
from .shape_infers import InferImagenetResNet
|
||||
from .shape_infers import InferMobileNetV2
|
||||
|
||||
if config.arch == "resnet":
|
||||
return InferImagenetResNet(
|
||||
config.block_name,
|
||||
config.layers,
|
||||
config.xblocks,
|
||||
config.xchannels,
|
||||
config.deep_stem,
|
||||
config.class_num,
|
||||
config.zero_init_residual,
|
||||
)
|
||||
elif config.arch == "MobileNetV2":
|
||||
return InferMobileNetV2(
|
||||
config.class_num, config.xchannels, config.xblocks, config.dropout
|
||||
)
|
||||
else:
|
||||
raise ValueError("invalid arch-mode : {:}".format(config.arch))
|
||||
else:
|
||||
raise ValueError("invalid infer-mode : {:}".format(infer_mode))
|
||||
else:
|
||||
raise ValueError("invalid super-type : {:}".format(super_type))
|
||||
|
||||
|
||||
# Try to obtain the network by config.
|
||||
def obtain_model(config, extra_path=None):
|
||||
if config.dataset == "cifar":
|
||||
return get_cifar_models(config, extra_path)
|
||||
elif config.dataset == "imagenet":
|
||||
return get_imagenet_models(config)
|
||||
else:
|
||||
raise ValueError("invalid dataset in the model config : {:}".format(config))
|
||||
|
||||
|
||||
def obtain_search_model(config):
|
||||
if config.dataset == "cifar":
|
||||
if config.arch == "resnet":
|
||||
from .shape_searchs import SearchWidthCifarResNet
|
||||
from .shape_searchs import SearchDepthCifarResNet
|
||||
from .shape_searchs import SearchShapeCifarResNet
|
||||
|
||||
if config.search_mode == "width":
|
||||
return SearchWidthCifarResNet(
|
||||
config.module, config.depth, config.class_num
|
||||
)
|
||||
elif config.search_mode == "depth":
|
||||
return SearchDepthCifarResNet(
|
||||
config.module, config.depth, config.class_num
|
||||
)
|
||||
elif config.search_mode == "shape":
|
||||
return SearchShapeCifarResNet(
|
||||
config.module, config.depth, config.class_num
|
||||
)
|
||||
else:
|
||||
raise ValueError("invalid search mode : {:}".format(config.search_mode))
|
||||
elif config.arch == "simres":
|
||||
from .shape_searchs import SearchWidthSimResNet
|
||||
|
||||
if config.search_mode == "width":
|
||||
return SearchWidthSimResNet(config.depth, config.class_num)
|
||||
else:
|
||||
raise ValueError("invalid search mode : {:}".format(config.search_mode))
|
||||
else:
|
||||
raise ValueError(
|
||||
"invalid arch : {:} for dataset [{:}]".format(
|
||||
config.arch, config.dataset
|
||||
)
|
||||
)
|
||||
elif config.dataset == "imagenet":
|
||||
from .shape_searchs import SearchShapeImagenetResNet
|
||||
|
||||
assert config.search_mode == "shape", "invalid search-mode : {:}".format(
|
||||
config.search_mode
|
||||
)
|
||||
if config.arch == "resnet":
|
||||
return SearchShapeImagenetResNet(
|
||||
config.block_name, config.layers, config.deep_stem, config.class_num
|
||||
)
|
||||
else:
|
||||
raise ValueError("invalid model config : {:}".format(config))
|
||||
else:
|
||||
raise ValueError("invalid dataset in the model config : {:}".format(config))
|
||||
|
||||
|
||||
def load_net_from_checkpoint(checkpoint):
|
||||
assert osp.isfile(checkpoint), "checkpoint {:} does not exist".format(checkpoint)
|
||||
checkpoint = torch.load(checkpoint)
|
||||
model_config = dict2config(checkpoint["model-config"], None)
|
||||
model = obtain_model(model_config)
|
||||
model.load_state_dict(checkpoint["base-model"])
|
||||
return model
|
5
xautodl/models/cell_infers/__init__.py
Normal file
5
xautodl/models/cell_infers/__init__.py
Normal file
@@ -0,0 +1,5 @@
|
||||
#####################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 #
|
||||
#####################################################
|
||||
from .tiny_network import TinyNetwork
|
||||
from .nasnet_cifar import NASNetonCIFAR
|
155
xautodl/models/cell_infers/cells.py
Normal file
155
xautodl/models/cell_infers/cells.py
Normal file
@@ -0,0 +1,155 @@
|
||||
#####################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 #
|
||||
#####################################################
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from copy import deepcopy
|
||||
|
||||
from models.cell_operations import OPS
|
||||
|
||||
|
||||
# Cell for NAS-Bench-201
|
||||
class InferCell(nn.Module):
|
||||
def __init__(
|
||||
self, genotype, C_in, C_out, stride, affine=True, track_running_stats=True
|
||||
):
|
||||
super(InferCell, self).__init__()
|
||||
|
||||
self.layers = nn.ModuleList()
|
||||
self.node_IN = []
|
||||
self.node_IX = []
|
||||
self.genotype = deepcopy(genotype)
|
||||
for i in range(1, len(genotype)):
|
||||
node_info = genotype[i - 1]
|
||||
cur_index = []
|
||||
cur_innod = []
|
||||
for (op_name, op_in) in node_info:
|
||||
if op_in == 0:
|
||||
layer = OPS[op_name](
|
||||
C_in, C_out, stride, affine, track_running_stats
|
||||
)
|
||||
else:
|
||||
layer = OPS[op_name](C_out, C_out, 1, affine, track_running_stats)
|
||||
cur_index.append(len(self.layers))
|
||||
cur_innod.append(op_in)
|
||||
self.layers.append(layer)
|
||||
self.node_IX.append(cur_index)
|
||||
self.node_IN.append(cur_innod)
|
||||
self.nodes = len(genotype)
|
||||
self.in_dim = C_in
|
||||
self.out_dim = C_out
|
||||
|
||||
def extra_repr(self):
|
||||
string = "info :: nodes={nodes}, inC={in_dim}, outC={out_dim}".format(
|
||||
**self.__dict__
|
||||
)
|
||||
laystr = []
|
||||
for i, (node_layers, node_innods) in enumerate(zip(self.node_IX, self.node_IN)):
|
||||
y = [
|
||||
"I{:}-L{:}".format(_ii, _il)
|
||||
for _il, _ii in zip(node_layers, node_innods)
|
||||
]
|
||||
x = "{:}<-({:})".format(i + 1, ",".join(y))
|
||||
laystr.append(x)
|
||||
return (
|
||||
string
|
||||
+ ", [{:}]".format(" | ".join(laystr))
|
||||
+ ", {:}".format(self.genotype.tostr())
|
||||
)
|
||||
|
||||
def forward(self, inputs):
|
||||
nodes = [inputs]
|
||||
for i, (node_layers, node_innods) in enumerate(zip(self.node_IX, self.node_IN)):
|
||||
node_feature = sum(
|
||||
self.layers[_il](nodes[_ii])
|
||||
for _il, _ii in zip(node_layers, node_innods)
|
||||
)
|
||||
nodes.append(node_feature)
|
||||
return nodes[-1]
|
||||
|
||||
|
||||
# Learning Transferable Architectures for Scalable Image Recognition, CVPR 2018
|
||||
class NASNetInferCell(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
genotype,
|
||||
C_prev_prev,
|
||||
C_prev,
|
||||
C,
|
||||
reduction,
|
||||
reduction_prev,
|
||||
affine,
|
||||
track_running_stats,
|
||||
):
|
||||
super(NASNetInferCell, self).__init__()
|
||||
self.reduction = reduction
|
||||
if reduction_prev:
|
||||
self.preprocess0 = OPS["skip_connect"](
|
||||
C_prev_prev, C, 2, affine, track_running_stats
|
||||
)
|
||||
else:
|
||||
self.preprocess0 = OPS["nor_conv_1x1"](
|
||||
C_prev_prev, C, 1, affine, track_running_stats
|
||||
)
|
||||
self.preprocess1 = OPS["nor_conv_1x1"](
|
||||
C_prev, C, 1, affine, track_running_stats
|
||||
)
|
||||
|
||||
if not reduction:
|
||||
nodes, concats = genotype["normal"], genotype["normal_concat"]
|
||||
else:
|
||||
nodes, concats = genotype["reduce"], genotype["reduce_concat"]
|
||||
self._multiplier = len(concats)
|
||||
self._concats = concats
|
||||
self._steps = len(nodes)
|
||||
self._nodes = nodes
|
||||
self.edges = nn.ModuleDict()
|
||||
for i, node in enumerate(nodes):
|
||||
for in_node in node:
|
||||
name, j = in_node[0], in_node[1]
|
||||
stride = 2 if reduction and j < 2 else 1
|
||||
node_str = "{:}<-{:}".format(i + 2, j)
|
||||
self.edges[node_str] = OPS[name](
|
||||
C, C, stride, affine, track_running_stats
|
||||
)
|
||||
|
||||
# [TODO] to support drop_prob in this function..
|
||||
def forward(self, s0, s1, unused_drop_prob):
|
||||
s0 = self.preprocess0(s0)
|
||||
s1 = self.preprocess1(s1)
|
||||
|
||||
states = [s0, s1]
|
||||
for i, node in enumerate(self._nodes):
|
||||
clist = []
|
||||
for in_node in node:
|
||||
name, j = in_node[0], in_node[1]
|
||||
node_str = "{:}<-{:}".format(i + 2, j)
|
||||
op = self.edges[node_str]
|
||||
clist.append(op(states[j]))
|
||||
states.append(sum(clist))
|
||||
return torch.cat([states[x] for x in self._concats], dim=1)
|
||||
|
||||
|
||||
class AuxiliaryHeadCIFAR(nn.Module):
|
||||
def __init__(self, C, num_classes):
|
||||
"""assuming input size 8x8"""
|
||||
super(AuxiliaryHeadCIFAR, self).__init__()
|
||||
self.features = nn.Sequential(
|
||||
nn.ReLU(inplace=True),
|
||||
nn.AvgPool2d(
|
||||
5, stride=3, padding=0, count_include_pad=False
|
||||
), # image size = 2 x 2
|
||||
nn.Conv2d(C, 128, 1, bias=False),
|
||||
nn.BatchNorm2d(128),
|
||||
nn.ReLU(inplace=True),
|
||||
nn.Conv2d(128, 768, 2, bias=False),
|
||||
nn.BatchNorm2d(768),
|
||||
nn.ReLU(inplace=True),
|
||||
)
|
||||
self.classifier = nn.Linear(768, num_classes)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.features(x)
|
||||
x = self.classifier(x.view(x.size(0), -1))
|
||||
return x
|
117
xautodl/models/cell_infers/nasnet_cifar.py
Normal file
117
xautodl/models/cell_infers/nasnet_cifar.py
Normal file
@@ -0,0 +1,117 @@
|
||||
#####################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 #
|
||||
#####################################################
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from copy import deepcopy
|
||||
from .cells import NASNetInferCell as InferCell, AuxiliaryHeadCIFAR
|
||||
|
||||
|
||||
# The macro structure is based on NASNet
|
||||
class NASNetonCIFAR(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
C,
|
||||
N,
|
||||
stem_multiplier,
|
||||
num_classes,
|
||||
genotype,
|
||||
auxiliary,
|
||||
affine=True,
|
||||
track_running_stats=True,
|
||||
):
|
||||
super(NASNetonCIFAR, self).__init__()
|
||||
self._C = C
|
||||
self._layerN = N
|
||||
self.stem = nn.Sequential(
|
||||
nn.Conv2d(3, C * stem_multiplier, kernel_size=3, padding=1, bias=False),
|
||||
nn.BatchNorm2d(C * stem_multiplier),
|
||||
)
|
||||
|
||||
# config for each layer
|
||||
layer_channels = (
|
||||
[C] * N + [C * 2] + [C * 2] * (N - 1) + [C * 4] + [C * 4] * (N - 1)
|
||||
)
|
||||
layer_reductions = (
|
||||
[False] * N + [True] + [False] * (N - 1) + [True] + [False] * (N - 1)
|
||||
)
|
||||
|
||||
C_prev_prev, C_prev, C_curr, reduction_prev = (
|
||||
C * stem_multiplier,
|
||||
C * stem_multiplier,
|
||||
C,
|
||||
False,
|
||||
)
|
||||
self.auxiliary_index = None
|
||||
self.auxiliary_head = None
|
||||
self.cells = nn.ModuleList()
|
||||
for index, (C_curr, reduction) in enumerate(
|
||||
zip(layer_channels, layer_reductions)
|
||||
):
|
||||
cell = InferCell(
|
||||
genotype,
|
||||
C_prev_prev,
|
||||
C_prev,
|
||||
C_curr,
|
||||
reduction,
|
||||
reduction_prev,
|
||||
affine,
|
||||
track_running_stats,
|
||||
)
|
||||
self.cells.append(cell)
|
||||
C_prev_prev, C_prev, reduction_prev = (
|
||||
C_prev,
|
||||
cell._multiplier * C_curr,
|
||||
reduction,
|
||||
)
|
||||
if reduction and C_curr == C * 4 and auxiliary:
|
||||
self.auxiliary_head = AuxiliaryHeadCIFAR(C_prev, num_classes)
|
||||
self.auxiliary_index = index
|
||||
self._Layer = len(self.cells)
|
||||
self.lastact = nn.Sequential(nn.BatchNorm2d(C_prev), nn.ReLU(inplace=True))
|
||||
self.global_pooling = nn.AdaptiveAvgPool2d(1)
|
||||
self.classifier = nn.Linear(C_prev, num_classes)
|
||||
self.drop_path_prob = -1
|
||||
|
||||
def update_drop_path(self, drop_path_prob):
|
||||
self.drop_path_prob = drop_path_prob
|
||||
|
||||
def auxiliary_param(self):
|
||||
if self.auxiliary_head is None:
|
||||
return []
|
||||
else:
|
||||
return list(self.auxiliary_head.parameters())
|
||||
|
||||
def get_message(self):
|
||||
string = self.extra_repr()
|
||||
for i, cell in enumerate(self.cells):
|
||||
string += "\n {:02d}/{:02d} :: {:}".format(
|
||||
i, len(self.cells), cell.extra_repr()
|
||||
)
|
||||
return string
|
||||
|
||||
def extra_repr(self):
|
||||
return "{name}(C={_C}, N={_layerN}, L={_Layer})".format(
|
||||
name=self.__class__.__name__, **self.__dict__
|
||||
)
|
||||
|
||||
def forward(self, inputs):
|
||||
stem_feature, logits_aux = self.stem(inputs), None
|
||||
cell_results = [stem_feature, stem_feature]
|
||||
for i, cell in enumerate(self.cells):
|
||||
cell_feature = cell(cell_results[-2], cell_results[-1], self.drop_path_prob)
|
||||
cell_results.append(cell_feature)
|
||||
if (
|
||||
self.auxiliary_index is not None
|
||||
and i == self.auxiliary_index
|
||||
and self.training
|
||||
):
|
||||
logits_aux = self.auxiliary_head(cell_results[-1])
|
||||
out = self.lastact(cell_results[-1])
|
||||
out = self.global_pooling(out)
|
||||
out = out.view(out.size(0), -1)
|
||||
logits = self.classifier(out)
|
||||
if logits_aux is None:
|
||||
return out, logits
|
||||
else:
|
||||
return out, [logits, logits_aux]
|
63
xautodl/models/cell_infers/tiny_network.py
Normal file
63
xautodl/models/cell_infers/tiny_network.py
Normal file
@@ -0,0 +1,63 @@
|
||||
#####################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 #
|
||||
#####################################################
|
||||
import torch.nn as nn
|
||||
from ..cell_operations import ResNetBasicblock
|
||||
from .cells import InferCell
|
||||
|
||||
|
||||
# The macro structure for architectures in NAS-Bench-201
|
||||
class TinyNetwork(nn.Module):
|
||||
def __init__(self, C, N, genotype, num_classes):
|
||||
super(TinyNetwork, self).__init__()
|
||||
self._C = C
|
||||
self._layerN = N
|
||||
|
||||
self.stem = nn.Sequential(
|
||||
nn.Conv2d(3, C, kernel_size=3, padding=1, bias=False), nn.BatchNorm2d(C)
|
||||
)
|
||||
|
||||
layer_channels = [C] * N + [C * 2] + [C * 2] * N + [C * 4] + [C * 4] * N
|
||||
layer_reductions = [False] * N + [True] + [False] * N + [True] + [False] * N
|
||||
|
||||
C_prev = C
|
||||
self.cells = nn.ModuleList()
|
||||
for index, (C_curr, reduction) in enumerate(
|
||||
zip(layer_channels, layer_reductions)
|
||||
):
|
||||
if reduction:
|
||||
cell = ResNetBasicblock(C_prev, C_curr, 2, True)
|
||||
else:
|
||||
cell = InferCell(genotype, C_prev, C_curr, 1)
|
||||
self.cells.append(cell)
|
||||
C_prev = cell.out_dim
|
||||
self._Layer = len(self.cells)
|
||||
|
||||
self.lastact = nn.Sequential(nn.BatchNorm2d(C_prev), nn.ReLU(inplace=True))
|
||||
self.global_pooling = nn.AdaptiveAvgPool2d(1)
|
||||
self.classifier = nn.Linear(C_prev, num_classes)
|
||||
|
||||
def get_message(self):
|
||||
string = self.extra_repr()
|
||||
for i, cell in enumerate(self.cells):
|
||||
string += "\n {:02d}/{:02d} :: {:}".format(
|
||||
i, len(self.cells), cell.extra_repr()
|
||||
)
|
||||
return string
|
||||
|
||||
def extra_repr(self):
|
||||
return "{name}(C={_C}, N={_layerN}, L={_Layer})".format(
|
||||
name=self.__class__.__name__, **self.__dict__
|
||||
)
|
||||
|
||||
def forward(self, inputs):
|
||||
feature = self.stem(inputs)
|
||||
for i, cell in enumerate(self.cells):
|
||||
feature = cell(feature)
|
||||
|
||||
out = self.lastact(feature)
|
||||
out = self.global_pooling(out)
|
||||
out = out.view(out.size(0), -1)
|
||||
logits = self.classifier(out)
|
||||
|
||||
return out, logits
|
553
xautodl/models/cell_operations.py
Normal file
553
xautodl/models/cell_operations.py
Normal file
@@ -0,0 +1,553 @@
|
||||
##################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
|
||||
##################################################
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
__all__ = ["OPS", "RAW_OP_CLASSES", "ResNetBasicblock", "SearchSpaceNames"]
|
||||
|
||||
OPS = {
|
||||
"none": lambda C_in, C_out, stride, affine, track_running_stats: Zero(
|
||||
C_in, C_out, stride
|
||||
),
|
||||
"avg_pool_3x3": lambda C_in, C_out, stride, affine, track_running_stats: POOLING(
|
||||
C_in, C_out, stride, "avg", affine, track_running_stats
|
||||
),
|
||||
"max_pool_3x3": lambda C_in, C_out, stride, affine, track_running_stats: POOLING(
|
||||
C_in, C_out, stride, "max", affine, track_running_stats
|
||||
),
|
||||
"nor_conv_7x7": lambda C_in, C_out, stride, affine, track_running_stats: ReLUConvBN(
|
||||
C_in,
|
||||
C_out,
|
||||
(7, 7),
|
||||
(stride, stride),
|
||||
(3, 3),
|
||||
(1, 1),
|
||||
affine,
|
||||
track_running_stats,
|
||||
),
|
||||
"nor_conv_3x3": lambda C_in, C_out, stride, affine, track_running_stats: ReLUConvBN(
|
||||
C_in,
|
||||
C_out,
|
||||
(3, 3),
|
||||
(stride, stride),
|
||||
(1, 1),
|
||||
(1, 1),
|
||||
affine,
|
||||
track_running_stats,
|
||||
),
|
||||
"nor_conv_1x1": lambda C_in, C_out, stride, affine, track_running_stats: ReLUConvBN(
|
||||
C_in,
|
||||
C_out,
|
||||
(1, 1),
|
||||
(stride, stride),
|
||||
(0, 0),
|
||||
(1, 1),
|
||||
affine,
|
||||
track_running_stats,
|
||||
),
|
||||
"dua_sepc_3x3": lambda C_in, C_out, stride, affine, track_running_stats: DualSepConv(
|
||||
C_in,
|
||||
C_out,
|
||||
(3, 3),
|
||||
(stride, stride),
|
||||
(1, 1),
|
||||
(1, 1),
|
||||
affine,
|
||||
track_running_stats,
|
||||
),
|
||||
"dua_sepc_5x5": lambda C_in, C_out, stride, affine, track_running_stats: DualSepConv(
|
||||
C_in,
|
||||
C_out,
|
||||
(5, 5),
|
||||
(stride, stride),
|
||||
(2, 2),
|
||||
(1, 1),
|
||||
affine,
|
||||
track_running_stats,
|
||||
),
|
||||
"dil_sepc_3x3": lambda C_in, C_out, stride, affine, track_running_stats: SepConv(
|
||||
C_in,
|
||||
C_out,
|
||||
(3, 3),
|
||||
(stride, stride),
|
||||
(2, 2),
|
||||
(2, 2),
|
||||
affine,
|
||||
track_running_stats,
|
||||
),
|
||||
"dil_sepc_5x5": lambda C_in, C_out, stride, affine, track_running_stats: SepConv(
|
||||
C_in,
|
||||
C_out,
|
||||
(5, 5),
|
||||
(stride, stride),
|
||||
(4, 4),
|
||||
(2, 2),
|
||||
affine,
|
||||
track_running_stats,
|
||||
),
|
||||
"skip_connect": lambda C_in, C_out, stride, affine, track_running_stats: Identity()
|
||||
if stride == 1 and C_in == C_out
|
||||
else FactorizedReduce(C_in, C_out, stride, affine, track_running_stats),
|
||||
}
|
||||
|
||||
CONNECT_NAS_BENCHMARK = ["none", "skip_connect", "nor_conv_3x3"]
|
||||
NAS_BENCH_201 = ["none", "skip_connect", "nor_conv_1x1", "nor_conv_3x3", "avg_pool_3x3"]
|
||||
DARTS_SPACE = [
|
||||
"none",
|
||||
"skip_connect",
|
||||
"dua_sepc_3x3",
|
||||
"dua_sepc_5x5",
|
||||
"dil_sepc_3x3",
|
||||
"dil_sepc_5x5",
|
||||
"avg_pool_3x3",
|
||||
"max_pool_3x3",
|
||||
]
|
||||
|
||||
SearchSpaceNames = {
|
||||
"connect-nas": CONNECT_NAS_BENCHMARK,
|
||||
"nats-bench": NAS_BENCH_201,
|
||||
"nas-bench-201": NAS_BENCH_201,
|
||||
"darts": DARTS_SPACE,
|
||||
}
|
||||
|
||||
|
||||
class ReLUConvBN(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
C_in,
|
||||
C_out,
|
||||
kernel_size,
|
||||
stride,
|
||||
padding,
|
||||
dilation,
|
||||
affine,
|
||||
track_running_stats=True,
|
||||
):
|
||||
super(ReLUConvBN, self).__init__()
|
||||
self.op = nn.Sequential(
|
||||
nn.ReLU(inplace=False),
|
||||
nn.Conv2d(
|
||||
C_in,
|
||||
C_out,
|
||||
kernel_size,
|
||||
stride=stride,
|
||||
padding=padding,
|
||||
dilation=dilation,
|
||||
bias=not affine,
|
||||
),
|
||||
nn.BatchNorm2d(
|
||||
C_out, affine=affine, track_running_stats=track_running_stats
|
||||
),
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
return self.op(x)
|
||||
|
||||
|
||||
class SepConv(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
C_in,
|
||||
C_out,
|
||||
kernel_size,
|
||||
stride,
|
||||
padding,
|
||||
dilation,
|
||||
affine,
|
||||
track_running_stats=True,
|
||||
):
|
||||
super(SepConv, self).__init__()
|
||||
self.op = nn.Sequential(
|
||||
nn.ReLU(inplace=False),
|
||||
nn.Conv2d(
|
||||
C_in,
|
||||
C_in,
|
||||
kernel_size=kernel_size,
|
||||
stride=stride,
|
||||
padding=padding,
|
||||
dilation=dilation,
|
||||
groups=C_in,
|
||||
bias=False,
|
||||
),
|
||||
nn.Conv2d(C_in, C_out, kernel_size=1, padding=0, bias=not affine),
|
||||
nn.BatchNorm2d(
|
||||
C_out, affine=affine, track_running_stats=track_running_stats
|
||||
),
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
return self.op(x)
|
||||
|
||||
|
||||
class DualSepConv(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
C_in,
|
||||
C_out,
|
||||
kernel_size,
|
||||
stride,
|
||||
padding,
|
||||
dilation,
|
||||
affine,
|
||||
track_running_stats=True,
|
||||
):
|
||||
super(DualSepConv, self).__init__()
|
||||
self.op_a = SepConv(
|
||||
C_in,
|
||||
C_in,
|
||||
kernel_size,
|
||||
stride,
|
||||
padding,
|
||||
dilation,
|
||||
affine,
|
||||
track_running_stats,
|
||||
)
|
||||
self.op_b = SepConv(
|
||||
C_in, C_out, kernel_size, 1, padding, dilation, affine, track_running_stats
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.op_a(x)
|
||||
x = self.op_b(x)
|
||||
return x
|
||||
|
||||
|
||||
class ResNetBasicblock(nn.Module):
|
||||
def __init__(self, inplanes, planes, stride, affine=True, track_running_stats=True):
|
||||
super(ResNetBasicblock, self).__init__()
|
||||
assert stride == 1 or stride == 2, "invalid stride {:}".format(stride)
|
||||
self.conv_a = ReLUConvBN(
|
||||
inplanes, planes, 3, stride, 1, 1, affine, track_running_stats
|
||||
)
|
||||
self.conv_b = ReLUConvBN(
|
||||
planes, planes, 3, 1, 1, 1, affine, track_running_stats
|
||||
)
|
||||
if stride == 2:
|
||||
self.downsample = nn.Sequential(
|
||||
nn.AvgPool2d(kernel_size=2, stride=2, padding=0),
|
||||
nn.Conv2d(
|
||||
inplanes, planes, kernel_size=1, stride=1, padding=0, bias=False
|
||||
),
|
||||
)
|
||||
elif inplanes != planes:
|
||||
self.downsample = ReLUConvBN(
|
||||
inplanes, planes, 1, 1, 0, 1, affine, track_running_stats
|
||||
)
|
||||
else:
|
||||
self.downsample = None
|
||||
self.in_dim = inplanes
|
||||
self.out_dim = planes
|
||||
self.stride = stride
|
||||
self.num_conv = 2
|
||||
|
||||
def extra_repr(self):
|
||||
string = "{name}(inC={in_dim}, outC={out_dim}, stride={stride})".format(
|
||||
name=self.__class__.__name__, **self.__dict__
|
||||
)
|
||||
return string
|
||||
|
||||
def forward(self, inputs):
|
||||
|
||||
basicblock = self.conv_a(inputs)
|
||||
basicblock = self.conv_b(basicblock)
|
||||
|
||||
if self.downsample is not None:
|
||||
residual = self.downsample(inputs)
|
||||
else:
|
||||
residual = inputs
|
||||
return residual + basicblock
|
||||
|
||||
|
||||
class POOLING(nn.Module):
|
||||
def __init__(
|
||||
self, C_in, C_out, stride, mode, affine=True, track_running_stats=True
|
||||
):
|
||||
super(POOLING, self).__init__()
|
||||
if C_in == C_out:
|
||||
self.preprocess = None
|
||||
else:
|
||||
self.preprocess = ReLUConvBN(
|
||||
C_in, C_out, 1, 1, 0, 1, affine, track_running_stats
|
||||
)
|
||||
if mode == "avg":
|
||||
self.op = nn.AvgPool2d(3, stride=stride, padding=1, count_include_pad=False)
|
||||
elif mode == "max":
|
||||
self.op = nn.MaxPool2d(3, stride=stride, padding=1)
|
||||
else:
|
||||
raise ValueError("Invalid mode={:} in POOLING".format(mode))
|
||||
|
||||
def forward(self, inputs):
|
||||
if self.preprocess:
|
||||
x = self.preprocess(inputs)
|
||||
else:
|
||||
x = inputs
|
||||
return self.op(x)
|
||||
|
||||
|
||||
class Identity(nn.Module):
|
||||
def __init__(self):
|
||||
super(Identity, self).__init__()
|
||||
|
||||
def forward(self, x):
|
||||
return x
|
||||
|
||||
|
||||
class Zero(nn.Module):
|
||||
def __init__(self, C_in, C_out, stride):
|
||||
super(Zero, self).__init__()
|
||||
self.C_in = C_in
|
||||
self.C_out = C_out
|
||||
self.stride = stride
|
||||
self.is_zero = True
|
||||
|
||||
def forward(self, x):
|
||||
if self.C_in == self.C_out:
|
||||
if self.stride == 1:
|
||||
return x.mul(0.0)
|
||||
else:
|
||||
return x[:, :, :: self.stride, :: self.stride].mul(0.0)
|
||||
else:
|
||||
shape = list(x.shape)
|
||||
shape[1] = self.C_out
|
||||
zeros = x.new_zeros(shape, dtype=x.dtype, device=x.device)
|
||||
return zeros
|
||||
|
||||
def extra_repr(self):
|
||||
return "C_in={C_in}, C_out={C_out}, stride={stride}".format(**self.__dict__)
|
||||
|
||||
|
||||
class FactorizedReduce(nn.Module):
|
||||
def __init__(self, C_in, C_out, stride, affine, track_running_stats):
|
||||
super(FactorizedReduce, self).__init__()
|
||||
self.stride = stride
|
||||
self.C_in = C_in
|
||||
self.C_out = C_out
|
||||
self.relu = nn.ReLU(inplace=False)
|
||||
if stride == 2:
|
||||
# assert C_out % 2 == 0, 'C_out : {:}'.format(C_out)
|
||||
C_outs = [C_out // 2, C_out - C_out // 2]
|
||||
self.convs = nn.ModuleList()
|
||||
for i in range(2):
|
||||
self.convs.append(
|
||||
nn.Conv2d(
|
||||
C_in, C_outs[i], 1, stride=stride, padding=0, bias=not affine
|
||||
)
|
||||
)
|
||||
self.pad = nn.ConstantPad2d((0, 1, 0, 1), 0)
|
||||
elif stride == 1:
|
||||
self.conv = nn.Conv2d(
|
||||
C_in, C_out, 1, stride=stride, padding=0, bias=not affine
|
||||
)
|
||||
else:
|
||||
raise ValueError("Invalid stride : {:}".format(stride))
|
||||
self.bn = nn.BatchNorm2d(
|
||||
C_out, affine=affine, track_running_stats=track_running_stats
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
if self.stride == 2:
|
||||
x = self.relu(x)
|
||||
y = self.pad(x)
|
||||
out = torch.cat([self.convs[0](x), self.convs[1](y[:, :, 1:, 1:])], dim=1)
|
||||
else:
|
||||
out = self.conv(x)
|
||||
out = self.bn(out)
|
||||
return out
|
||||
|
||||
def extra_repr(self):
|
||||
return "C_in={C_in}, C_out={C_out}, stride={stride}".format(**self.__dict__)
|
||||
|
||||
|
||||
# Auto-ReID: Searching for a Part-Aware ConvNet for Person Re-Identification, ICCV 2019
|
||||
class PartAwareOp(nn.Module):
|
||||
def __init__(self, C_in, C_out, stride, part=4):
|
||||
super().__init__()
|
||||
self.part = 4
|
||||
self.hidden = C_in // 3
|
||||
self.avg_pool = nn.AdaptiveAvgPool2d(1)
|
||||
self.local_conv_list = nn.ModuleList()
|
||||
for i in range(self.part):
|
||||
self.local_conv_list.append(
|
||||
nn.Sequential(
|
||||
nn.ReLU(),
|
||||
nn.Conv2d(C_in, self.hidden, 1),
|
||||
nn.BatchNorm2d(self.hidden, affine=True),
|
||||
)
|
||||
)
|
||||
self.W_K = nn.Linear(self.hidden, self.hidden)
|
||||
self.W_Q = nn.Linear(self.hidden, self.hidden)
|
||||
|
||||
if stride == 2:
|
||||
self.last = FactorizedReduce(C_in + self.hidden, C_out, 2)
|
||||
elif stride == 1:
|
||||
self.last = FactorizedReduce(C_in + self.hidden, C_out, 1)
|
||||
else:
|
||||
raise ValueError("Invalid Stride : {:}".format(stride))
|
||||
|
||||
def forward(self, x):
|
||||
batch, C, H, W = x.size()
|
||||
assert H >= self.part, "input size too small : {:} vs {:}".format(
|
||||
x.shape, self.part
|
||||
)
|
||||
IHs = [0]
|
||||
for i in range(self.part):
|
||||
IHs.append(min(H, int((i + 1) * (float(H) / self.part))))
|
||||
local_feat_list = []
|
||||
for i in range(self.part):
|
||||
feature = x[:, :, IHs[i] : IHs[i + 1], :]
|
||||
xfeax = self.avg_pool(feature)
|
||||
xfea = self.local_conv_list[i](xfeax)
|
||||
local_feat_list.append(xfea)
|
||||
part_feature = torch.cat(local_feat_list, dim=2).view(batch, -1, self.part)
|
||||
part_feature = part_feature.transpose(1, 2).contiguous()
|
||||
part_K = self.W_K(part_feature)
|
||||
part_Q = self.W_Q(part_feature).transpose(1, 2).contiguous()
|
||||
weight_att = torch.bmm(part_K, part_Q)
|
||||
attention = torch.softmax(weight_att, dim=2)
|
||||
aggreateF = torch.bmm(attention, part_feature).transpose(1, 2).contiguous()
|
||||
features = []
|
||||
for i in range(self.part):
|
||||
feature = aggreateF[:, :, i : i + 1].expand(
|
||||
batch, self.hidden, IHs[i + 1] - IHs[i]
|
||||
)
|
||||
feature = feature.view(batch, self.hidden, IHs[i + 1] - IHs[i], 1)
|
||||
features.append(feature)
|
||||
features = torch.cat(features, dim=2).expand(batch, self.hidden, H, W)
|
||||
final_fea = torch.cat((x, features), dim=1)
|
||||
outputs = self.last(final_fea)
|
||||
return outputs
|
||||
|
||||
|
||||
def drop_path(x, drop_prob):
|
||||
if drop_prob > 0.0:
|
||||
keep_prob = 1.0 - drop_prob
|
||||
mask = x.new_zeros(x.size(0), 1, 1, 1)
|
||||
mask = mask.bernoulli_(keep_prob)
|
||||
x = torch.div(x, keep_prob)
|
||||
x.mul_(mask)
|
||||
return x
|
||||
|
||||
|
||||
# Searching for A Robust Neural Architecture in Four GPU Hours
|
||||
class GDAS_Reduction_Cell(nn.Module):
|
||||
def __init__(
|
||||
self, C_prev_prev, C_prev, C, reduction_prev, affine, track_running_stats
|
||||
):
|
||||
super(GDAS_Reduction_Cell, self).__init__()
|
||||
if reduction_prev:
|
||||
self.preprocess0 = FactorizedReduce(
|
||||
C_prev_prev, C, 2, affine, track_running_stats
|
||||
)
|
||||
else:
|
||||
self.preprocess0 = ReLUConvBN(
|
||||
C_prev_prev, C, 1, 1, 0, 1, affine, track_running_stats
|
||||
)
|
||||
self.preprocess1 = ReLUConvBN(
|
||||
C_prev, C, 1, 1, 0, 1, affine, track_running_stats
|
||||
)
|
||||
|
||||
self.reduction = True
|
||||
self.ops1 = nn.ModuleList(
|
||||
[
|
||||
nn.Sequential(
|
||||
nn.ReLU(inplace=False),
|
||||
nn.Conv2d(
|
||||
C,
|
||||
C,
|
||||
(1, 3),
|
||||
stride=(1, 2),
|
||||
padding=(0, 1),
|
||||
groups=8,
|
||||
bias=not affine,
|
||||
),
|
||||
nn.Conv2d(
|
||||
C,
|
||||
C,
|
||||
(3, 1),
|
||||
stride=(2, 1),
|
||||
padding=(1, 0),
|
||||
groups=8,
|
||||
bias=not affine,
|
||||
),
|
||||
nn.BatchNorm2d(
|
||||
C, affine=affine, track_running_stats=track_running_stats
|
||||
),
|
||||
nn.ReLU(inplace=False),
|
||||
nn.Conv2d(C, C, 1, stride=1, padding=0, bias=not affine),
|
||||
nn.BatchNorm2d(
|
||||
C, affine=affine, track_running_stats=track_running_stats
|
||||
),
|
||||
),
|
||||
nn.Sequential(
|
||||
nn.ReLU(inplace=False),
|
||||
nn.Conv2d(
|
||||
C,
|
||||
C,
|
||||
(1, 3),
|
||||
stride=(1, 2),
|
||||
padding=(0, 1),
|
||||
groups=8,
|
||||
bias=not affine,
|
||||
),
|
||||
nn.Conv2d(
|
||||
C,
|
||||
C,
|
||||
(3, 1),
|
||||
stride=(2, 1),
|
||||
padding=(1, 0),
|
||||
groups=8,
|
||||
bias=not affine,
|
||||
),
|
||||
nn.BatchNorm2d(
|
||||
C, affine=affine, track_running_stats=track_running_stats
|
||||
),
|
||||
nn.ReLU(inplace=False),
|
||||
nn.Conv2d(C, C, 1, stride=1, padding=0, bias=not affine),
|
||||
nn.BatchNorm2d(
|
||||
C, affine=affine, track_running_stats=track_running_stats
|
||||
),
|
||||
),
|
||||
]
|
||||
)
|
||||
|
||||
self.ops2 = nn.ModuleList(
|
||||
[
|
||||
nn.Sequential(
|
||||
nn.MaxPool2d(3, stride=2, padding=1),
|
||||
nn.BatchNorm2d(
|
||||
C, affine=affine, track_running_stats=track_running_stats
|
||||
),
|
||||
),
|
||||
nn.Sequential(
|
||||
nn.MaxPool2d(3, stride=2, padding=1),
|
||||
nn.BatchNorm2d(
|
||||
C, affine=affine, track_running_stats=track_running_stats
|
||||
),
|
||||
),
|
||||
]
|
||||
)
|
||||
|
||||
@property
|
||||
def multiplier(self):
|
||||
return 4
|
||||
|
||||
def forward(self, s0, s1, drop_prob=-1):
|
||||
s0 = self.preprocess0(s0)
|
||||
s1 = self.preprocess1(s1)
|
||||
|
||||
X0 = self.ops1[0](s0)
|
||||
X1 = self.ops1[1](s1)
|
||||
if self.training and drop_prob > 0.0:
|
||||
X0, X1 = drop_path(X0, drop_prob), drop_path(X1, drop_prob)
|
||||
|
||||
# X2 = self.ops2[0] (X0+X1)
|
||||
X2 = self.ops2[0](s0)
|
||||
X3 = self.ops2[1](s1)
|
||||
if self.training and drop_prob > 0.0:
|
||||
X2, X3 = drop_path(X2, drop_prob), drop_path(X3, drop_prob)
|
||||
return torch.cat([X0, X1, X2, X3], dim=1)
|
||||
|
||||
|
||||
# To manage the useful classes in this file.
|
||||
RAW_OP_CLASSES = {"gdas_reduction": GDAS_Reduction_Cell}
|
33
xautodl/models/cell_searchs/__init__.py
Normal file
33
xautodl/models/cell_searchs/__init__.py
Normal file
@@ -0,0 +1,33 @@
|
||||
##################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
|
||||
##################################################
|
||||
# The macro structure is defined in NAS-Bench-201
|
||||
from .search_model_darts import TinyNetworkDarts
|
||||
from .search_model_gdas import TinyNetworkGDAS
|
||||
from .search_model_setn import TinyNetworkSETN
|
||||
from .search_model_enas import TinyNetworkENAS
|
||||
from .search_model_random import TinyNetworkRANDOM
|
||||
from .generic_model import GenericNAS201Model
|
||||
from .genotypes import Structure as CellStructure, architectures as CellArchitectures
|
||||
|
||||
# NASNet-based macro structure
|
||||
from .search_model_gdas_nasnet import NASNetworkGDAS
|
||||
from .search_model_gdas_frc_nasnet import NASNetworkGDAS_FRC
|
||||
from .search_model_darts_nasnet import NASNetworkDARTS
|
||||
|
||||
|
||||
nas201_super_nets = {
|
||||
"DARTS-V1": TinyNetworkDarts,
|
||||
"DARTS-V2": TinyNetworkDarts,
|
||||
"GDAS": TinyNetworkGDAS,
|
||||
"SETN": TinyNetworkSETN,
|
||||
"ENAS": TinyNetworkENAS,
|
||||
"RANDOM": TinyNetworkRANDOM,
|
||||
"generic": GenericNAS201Model,
|
||||
}
|
||||
|
||||
nasnet_super_nets = {
|
||||
"GDAS": NASNetworkGDAS,
|
||||
"GDAS_FRC": NASNetworkGDAS_FRC,
|
||||
"DARTS": NASNetworkDARTS,
|
||||
}
|
14
xautodl/models/cell_searchs/_test_module.py
Normal file
14
xautodl/models/cell_searchs/_test_module.py
Normal file
@@ -0,0 +1,14 @@
|
||||
##################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
|
||||
##################################################
|
||||
import torch
|
||||
from search_model_enas_utils import Controller
|
||||
|
||||
|
||||
def main():
|
||||
controller = Controller(6, 4)
|
||||
predictions = controller()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
362
xautodl/models/cell_searchs/generic_model.py
Normal file
362
xautodl/models/cell_searchs/generic_model.py
Normal file
@@ -0,0 +1,362 @@
|
||||
#####################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020.07 #
|
||||
#####################################################
|
||||
import torch, random
|
||||
import torch.nn as nn
|
||||
from copy import deepcopy
|
||||
from typing import Text
|
||||
from torch.distributions.categorical import Categorical
|
||||
|
||||
from ..cell_operations import ResNetBasicblock, drop_path
|
||||
from .search_cells import NAS201SearchCell as SearchCell
|
||||
from .genotypes import Structure
|
||||
|
||||
|
||||
class Controller(nn.Module):
|
||||
# we refer to https://github.com/TDeVries/enas_pytorch/blob/master/models/controller.py
|
||||
def __init__(
|
||||
self,
|
||||
edge2index,
|
||||
op_names,
|
||||
max_nodes,
|
||||
lstm_size=32,
|
||||
lstm_num_layers=2,
|
||||
tanh_constant=2.5,
|
||||
temperature=5.0,
|
||||
):
|
||||
super(Controller, self).__init__()
|
||||
# assign the attributes
|
||||
self.max_nodes = max_nodes
|
||||
self.num_edge = len(edge2index)
|
||||
self.edge2index = edge2index
|
||||
self.num_ops = len(op_names)
|
||||
self.op_names = op_names
|
||||
self.lstm_size = lstm_size
|
||||
self.lstm_N = lstm_num_layers
|
||||
self.tanh_constant = tanh_constant
|
||||
self.temperature = temperature
|
||||
# create parameters
|
||||
self.register_parameter(
|
||||
"input_vars", nn.Parameter(torch.Tensor(1, 1, lstm_size))
|
||||
)
|
||||
self.w_lstm = nn.LSTM(
|
||||
input_size=self.lstm_size,
|
||||
hidden_size=self.lstm_size,
|
||||
num_layers=self.lstm_N,
|
||||
)
|
||||
self.w_embd = nn.Embedding(self.num_ops, self.lstm_size)
|
||||
self.w_pred = nn.Linear(self.lstm_size, self.num_ops)
|
||||
|
||||
nn.init.uniform_(self.input_vars, -0.1, 0.1)
|
||||
nn.init.uniform_(self.w_lstm.weight_hh_l0, -0.1, 0.1)
|
||||
nn.init.uniform_(self.w_lstm.weight_ih_l0, -0.1, 0.1)
|
||||
nn.init.uniform_(self.w_embd.weight, -0.1, 0.1)
|
||||
nn.init.uniform_(self.w_pred.weight, -0.1, 0.1)
|
||||
|
||||
def convert_structure(self, _arch):
|
||||
genotypes = []
|
||||
for i in range(1, self.max_nodes):
|
||||
xlist = []
|
||||
for j in range(i):
|
||||
node_str = "{:}<-{:}".format(i, j)
|
||||
op_index = _arch[self.edge2index[node_str]]
|
||||
op_name = self.op_names[op_index]
|
||||
xlist.append((op_name, j))
|
||||
genotypes.append(tuple(xlist))
|
||||
return Structure(genotypes)
|
||||
|
||||
def forward(self):
|
||||
|
||||
inputs, h0 = self.input_vars, None
|
||||
log_probs, entropys, sampled_arch = [], [], []
|
||||
for iedge in range(self.num_edge):
|
||||
outputs, h0 = self.w_lstm(inputs, h0)
|
||||
|
||||
logits = self.w_pred(outputs)
|
||||
logits = logits / self.temperature
|
||||
logits = self.tanh_constant * torch.tanh(logits)
|
||||
# distribution
|
||||
op_distribution = Categorical(logits=logits)
|
||||
op_index = op_distribution.sample()
|
||||
sampled_arch.append(op_index.item())
|
||||
|
||||
op_log_prob = op_distribution.log_prob(op_index)
|
||||
log_probs.append(op_log_prob.view(-1))
|
||||
op_entropy = op_distribution.entropy()
|
||||
entropys.append(op_entropy.view(-1))
|
||||
|
||||
# obtain the input embedding for the next step
|
||||
inputs = self.w_embd(op_index)
|
||||
return (
|
||||
torch.sum(torch.cat(log_probs)),
|
||||
torch.sum(torch.cat(entropys)),
|
||||
self.convert_structure(sampled_arch),
|
||||
)
|
||||
|
||||
|
||||
class GenericNAS201Model(nn.Module):
|
||||
def __init__(
|
||||
self, C, N, max_nodes, num_classes, search_space, affine, track_running_stats
|
||||
):
|
||||
super(GenericNAS201Model, self).__init__()
|
||||
self._C = C
|
||||
self._layerN = N
|
||||
self._max_nodes = max_nodes
|
||||
self._stem = nn.Sequential(
|
||||
nn.Conv2d(3, C, kernel_size=3, padding=1, bias=False), nn.BatchNorm2d(C)
|
||||
)
|
||||
layer_channels = [C] * N + [C * 2] + [C * 2] * N + [C * 4] + [C * 4] * N
|
||||
layer_reductions = [False] * N + [True] + [False] * N + [True] + [False] * N
|
||||
C_prev, num_edge, edge2index = C, None, None
|
||||
self._cells = nn.ModuleList()
|
||||
for index, (C_curr, reduction) in enumerate(
|
||||
zip(layer_channels, layer_reductions)
|
||||
):
|
||||
if reduction:
|
||||
cell = ResNetBasicblock(C_prev, C_curr, 2)
|
||||
else:
|
||||
cell = SearchCell(
|
||||
C_prev,
|
||||
C_curr,
|
||||
1,
|
||||
max_nodes,
|
||||
search_space,
|
||||
affine,
|
||||
track_running_stats,
|
||||
)
|
||||
if num_edge is None:
|
||||
num_edge, edge2index = cell.num_edges, cell.edge2index
|
||||
else:
|
||||
assert (
|
||||
num_edge == cell.num_edges and edge2index == cell.edge2index
|
||||
), "invalid {:} vs. {:}.".format(num_edge, cell.num_edges)
|
||||
self._cells.append(cell)
|
||||
C_prev = cell.out_dim
|
||||
self._op_names = deepcopy(search_space)
|
||||
self._Layer = len(self._cells)
|
||||
self.edge2index = edge2index
|
||||
self.lastact = nn.Sequential(
|
||||
nn.BatchNorm2d(
|
||||
C_prev, affine=affine, track_running_stats=track_running_stats
|
||||
),
|
||||
nn.ReLU(inplace=True),
|
||||
)
|
||||
self.global_pooling = nn.AdaptiveAvgPool2d(1)
|
||||
self.classifier = nn.Linear(C_prev, num_classes)
|
||||
self._num_edge = num_edge
|
||||
# algorithm related
|
||||
self.arch_parameters = nn.Parameter(
|
||||
1e-3 * torch.randn(num_edge, len(search_space))
|
||||
)
|
||||
self._mode = None
|
||||
self.dynamic_cell = None
|
||||
self._tau = None
|
||||
self._algo = None
|
||||
self._drop_path = None
|
||||
self.verbose = False
|
||||
|
||||
def set_algo(self, algo: Text):
|
||||
# used for searching
|
||||
assert self._algo is None, "This functioin can only be called once."
|
||||
self._algo = algo
|
||||
if algo == "enas":
|
||||
self.controller = Controller(
|
||||
self.edge2index, self._op_names, self._max_nodes
|
||||
)
|
||||
else:
|
||||
self.arch_parameters = nn.Parameter(
|
||||
1e-3 * torch.randn(self._num_edge, len(self._op_names))
|
||||
)
|
||||
if algo == "gdas":
|
||||
self._tau = 10
|
||||
|
||||
def set_cal_mode(self, mode, dynamic_cell=None):
|
||||
assert mode in ["gdas", "enas", "urs", "joint", "select", "dynamic"]
|
||||
self._mode = mode
|
||||
if mode == "dynamic":
|
||||
self.dynamic_cell = deepcopy(dynamic_cell)
|
||||
else:
|
||||
self.dynamic_cell = None
|
||||
|
||||
def set_drop_path(self, progress, drop_path_rate):
|
||||
if drop_path_rate is None:
|
||||
self._drop_path = None
|
||||
elif progress is None:
|
||||
self._drop_path = drop_path_rate
|
||||
else:
|
||||
self._drop_path = progress * drop_path_rate
|
||||
|
||||
@property
|
||||
def mode(self):
|
||||
return self._mode
|
||||
|
||||
@property
|
||||
def drop_path(self):
|
||||
return self._drop_path
|
||||
|
||||
@property
|
||||
def weights(self):
|
||||
xlist = list(self._stem.parameters())
|
||||
xlist += list(self._cells.parameters())
|
||||
xlist += list(self.lastact.parameters())
|
||||
xlist += list(self.global_pooling.parameters())
|
||||
xlist += list(self.classifier.parameters())
|
||||
return xlist
|
||||
|
||||
def set_tau(self, tau):
|
||||
self._tau = tau
|
||||
|
||||
@property
|
||||
def tau(self):
|
||||
return self._tau
|
||||
|
||||
@property
|
||||
def alphas(self):
|
||||
if self._algo == "enas":
|
||||
return list(self.controller.parameters())
|
||||
else:
|
||||
return [self.arch_parameters]
|
||||
|
||||
@property
|
||||
def message(self):
|
||||
string = self.extra_repr()
|
||||
for i, cell in enumerate(self._cells):
|
||||
string += "\n {:02d}/{:02d} :: {:}".format(
|
||||
i, len(self._cells), cell.extra_repr()
|
||||
)
|
||||
return string
|
||||
|
||||
def show_alphas(self):
|
||||
with torch.no_grad():
|
||||
if self._algo == "enas":
|
||||
return "w_pred :\n{:}".format(self.controller.w_pred.weight)
|
||||
else:
|
||||
return "arch-parameters :\n{:}".format(
|
||||
nn.functional.softmax(self.arch_parameters, dim=-1).cpu()
|
||||
)
|
||||
|
||||
def extra_repr(self):
|
||||
return "{name}(C={_C}, Max-Nodes={_max_nodes}, N={_layerN}, L={_Layer}, alg={_algo})".format(
|
||||
name=self.__class__.__name__, **self.__dict__
|
||||
)
|
||||
|
||||
@property
|
||||
def genotype(self):
|
||||
genotypes = []
|
||||
for i in range(1, self._max_nodes):
|
||||
xlist = []
|
||||
for j in range(i):
|
||||
node_str = "{:}<-{:}".format(i, j)
|
||||
with torch.no_grad():
|
||||
weights = self.arch_parameters[self.edge2index[node_str]]
|
||||
op_name = self._op_names[weights.argmax().item()]
|
||||
xlist.append((op_name, j))
|
||||
genotypes.append(tuple(xlist))
|
||||
return Structure(genotypes)
|
||||
|
||||
def dync_genotype(self, use_random=False):
|
||||
genotypes = []
|
||||
with torch.no_grad():
|
||||
alphas_cpu = nn.functional.softmax(self.arch_parameters, dim=-1)
|
||||
for i in range(1, self._max_nodes):
|
||||
xlist = []
|
||||
for j in range(i):
|
||||
node_str = "{:}<-{:}".format(i, j)
|
||||
if use_random:
|
||||
op_name = random.choice(self._op_names)
|
||||
else:
|
||||
weights = alphas_cpu[self.edge2index[node_str]]
|
||||
op_index = torch.multinomial(weights, 1).item()
|
||||
op_name = self._op_names[op_index]
|
||||
xlist.append((op_name, j))
|
||||
genotypes.append(tuple(xlist))
|
||||
return Structure(genotypes)
|
||||
|
||||
def get_log_prob(self, arch):
|
||||
with torch.no_grad():
|
||||
logits = nn.functional.log_softmax(self.arch_parameters, dim=-1)
|
||||
select_logits = []
|
||||
for i, node_info in enumerate(arch.nodes):
|
||||
for op, xin in node_info:
|
||||
node_str = "{:}<-{:}".format(i + 1, xin)
|
||||
op_index = self._op_names.index(op)
|
||||
select_logits.append(logits[self.edge2index[node_str], op_index])
|
||||
return sum(select_logits).item()
|
||||
|
||||
def return_topK(self, K, use_random=False):
|
||||
archs = Structure.gen_all(self._op_names, self._max_nodes, False)
|
||||
pairs = [(self.get_log_prob(arch), arch) for arch in archs]
|
||||
if K < 0 or K >= len(archs):
|
||||
K = len(archs)
|
||||
if use_random:
|
||||
return random.sample(archs, K)
|
||||
else:
|
||||
sorted_pairs = sorted(pairs, key=lambda x: -x[0])
|
||||
return_pairs = [sorted_pairs[_][1] for _ in range(K)]
|
||||
return return_pairs
|
||||
|
||||
def normalize_archp(self):
|
||||
if self.mode == "gdas":
|
||||
while True:
|
||||
gumbels = -torch.empty_like(self.arch_parameters).exponential_().log()
|
||||
logits = (self.arch_parameters.log_softmax(dim=1) + gumbels) / self.tau
|
||||
probs = nn.functional.softmax(logits, dim=1)
|
||||
index = probs.max(-1, keepdim=True)[1]
|
||||
one_h = torch.zeros_like(logits).scatter_(-1, index, 1.0)
|
||||
hardwts = one_h - probs.detach() + probs
|
||||
if (
|
||||
(torch.isinf(gumbels).any())
|
||||
or (torch.isinf(probs).any())
|
||||
or (torch.isnan(probs).any())
|
||||
):
|
||||
continue
|
||||
else:
|
||||
break
|
||||
with torch.no_grad():
|
||||
hardwts_cpu = hardwts.detach().cpu()
|
||||
return hardwts, hardwts_cpu, index, "GUMBEL"
|
||||
else:
|
||||
alphas = nn.functional.softmax(self.arch_parameters, dim=-1)
|
||||
index = alphas.max(-1, keepdim=True)[1]
|
||||
with torch.no_grad():
|
||||
alphas_cpu = alphas.detach().cpu()
|
||||
return alphas, alphas_cpu, index, "SOFTMAX"
|
||||
|
||||
def forward(self, inputs):
|
||||
alphas, alphas_cpu, index, verbose_str = self.normalize_archp()
|
||||
feature = self._stem(inputs)
|
||||
for i, cell in enumerate(self._cells):
|
||||
if isinstance(cell, SearchCell):
|
||||
if self.mode == "urs":
|
||||
feature = cell.forward_urs(feature)
|
||||
if self.verbose:
|
||||
verbose_str += "-forward_urs"
|
||||
elif self.mode == "select":
|
||||
feature = cell.forward_select(feature, alphas_cpu)
|
||||
if self.verbose:
|
||||
verbose_str += "-forward_select"
|
||||
elif self.mode == "joint":
|
||||
feature = cell.forward_joint(feature, alphas)
|
||||
if self.verbose:
|
||||
verbose_str += "-forward_joint"
|
||||
elif self.mode == "dynamic":
|
||||
feature = cell.forward_dynamic(feature, self.dynamic_cell)
|
||||
if self.verbose:
|
||||
verbose_str += "-forward_dynamic"
|
||||
elif self.mode == "gdas":
|
||||
feature = cell.forward_gdas(feature, alphas, index)
|
||||
if self.verbose:
|
||||
verbose_str += "-forward_gdas"
|
||||
else:
|
||||
raise ValueError("invalid mode={:}".format(self.mode))
|
||||
else:
|
||||
feature = cell(feature)
|
||||
if self.drop_path is not None:
|
||||
feature = drop_path(feature, self.drop_path)
|
||||
if self.verbose and random.random() < 0.001:
|
||||
print(verbose_str)
|
||||
out = self.lastact(feature)
|
||||
out = self.global_pooling(out)
|
||||
out = out.view(out.size(0), -1)
|
||||
logits = self.classifier(out)
|
||||
return out, logits
|
274
xautodl/models/cell_searchs/genotypes.py
Normal file
274
xautodl/models/cell_searchs/genotypes.py
Normal file
@@ -0,0 +1,274 @@
|
||||
##################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
|
||||
##################################################
|
||||
from copy import deepcopy
|
||||
|
||||
|
||||
def get_combination(space, num):
|
||||
combs = []
|
||||
for i in range(num):
|
||||
if i == 0:
|
||||
for func in space:
|
||||
combs.append([(func, i)])
|
||||
else:
|
||||
new_combs = []
|
||||
for string in combs:
|
||||
for func in space:
|
||||
xstring = string + [(func, i)]
|
||||
new_combs.append(xstring)
|
||||
combs = new_combs
|
||||
return combs
|
||||
|
||||
|
||||
class Structure:
|
||||
def __init__(self, genotype):
|
||||
assert isinstance(genotype, list) or isinstance(
|
||||
genotype, tuple
|
||||
), "invalid class of genotype : {:}".format(type(genotype))
|
||||
self.node_num = len(genotype) + 1
|
||||
self.nodes = []
|
||||
self.node_N = []
|
||||
for idx, node_info in enumerate(genotype):
|
||||
assert isinstance(node_info, list) or isinstance(
|
||||
node_info, tuple
|
||||
), "invalid class of node_info : {:}".format(type(node_info))
|
||||
assert len(node_info) >= 1, "invalid length : {:}".format(len(node_info))
|
||||
for node_in in node_info:
|
||||
assert isinstance(node_in, list) or isinstance(
|
||||
node_in, tuple
|
||||
), "invalid class of in-node : {:}".format(type(node_in))
|
||||
assert (
|
||||
len(node_in) == 2 and node_in[1] <= idx
|
||||
), "invalid in-node : {:}".format(node_in)
|
||||
self.node_N.append(len(node_info))
|
||||
self.nodes.append(tuple(deepcopy(node_info)))
|
||||
|
||||
def tolist(self, remove_str):
|
||||
# convert this class to the list, if remove_str is 'none', then remove the 'none' operation.
|
||||
# note that we re-order the input node in this function
|
||||
# return the-genotype-list and success [if unsuccess, it is not a connectivity]
|
||||
genotypes = []
|
||||
for node_info in self.nodes:
|
||||
node_info = list(node_info)
|
||||
node_info = sorted(node_info, key=lambda x: (x[1], x[0]))
|
||||
node_info = tuple(filter(lambda x: x[0] != remove_str, node_info))
|
||||
if len(node_info) == 0:
|
||||
return None, False
|
||||
genotypes.append(node_info)
|
||||
return genotypes, True
|
||||
|
||||
def node(self, index):
|
||||
assert index > 0 and index <= len(self), "invalid index={:} < {:}".format(
|
||||
index, len(self)
|
||||
)
|
||||
return self.nodes[index]
|
||||
|
||||
def tostr(self):
|
||||
strings = []
|
||||
for node_info in self.nodes:
|
||||
string = "|".join([x[0] + "~{:}".format(x[1]) for x in node_info])
|
||||
string = "|{:}|".format(string)
|
||||
strings.append(string)
|
||||
return "+".join(strings)
|
||||
|
||||
def check_valid(self):
|
||||
nodes = {0: True}
|
||||
for i, node_info in enumerate(self.nodes):
|
||||
sums = []
|
||||
for op, xin in node_info:
|
||||
if op == "none" or nodes[xin] is False:
|
||||
x = False
|
||||
else:
|
||||
x = True
|
||||
sums.append(x)
|
||||
nodes[i + 1] = sum(sums) > 0
|
||||
return nodes[len(self.nodes)]
|
||||
|
||||
def to_unique_str(self, consider_zero=False):
|
||||
# this is used to identify the isomorphic cell, which rerquires the prior knowledge of operation
|
||||
# two operations are special, i.e., none and skip_connect
|
||||
nodes = {0: "0"}
|
||||
for i_node, node_info in enumerate(self.nodes):
|
||||
cur_node = []
|
||||
for op, xin in node_info:
|
||||
if consider_zero is None:
|
||||
x = "(" + nodes[xin] + ")" + "@{:}".format(op)
|
||||
elif consider_zero:
|
||||
if op == "none" or nodes[xin] == "#":
|
||||
x = "#" # zero
|
||||
elif op == "skip_connect":
|
||||
x = nodes[xin]
|
||||
else:
|
||||
x = "(" + nodes[xin] + ")" + "@{:}".format(op)
|
||||
else:
|
||||
if op == "skip_connect":
|
||||
x = nodes[xin]
|
||||
else:
|
||||
x = "(" + nodes[xin] + ")" + "@{:}".format(op)
|
||||
cur_node.append(x)
|
||||
nodes[i_node + 1] = "+".join(sorted(cur_node))
|
||||
return nodes[len(self.nodes)]
|
||||
|
||||
def check_valid_op(self, op_names):
|
||||
for node_info in self.nodes:
|
||||
for inode_edge in node_info:
|
||||
# assert inode_edge[0] in op_names, 'invalid op-name : {:}'.format(inode_edge[0])
|
||||
if inode_edge[0] not in op_names:
|
||||
return False
|
||||
return True
|
||||
|
||||
def __repr__(self):
|
||||
return "{name}({node_num} nodes with {node_info})".format(
|
||||
name=self.__class__.__name__, node_info=self.tostr(), **self.__dict__
|
||||
)
|
||||
|
||||
def __len__(self):
|
||||
return len(self.nodes) + 1
|
||||
|
||||
def __getitem__(self, index):
|
||||
return self.nodes[index]
|
||||
|
||||
@staticmethod
|
||||
def str2structure(xstr):
|
||||
if isinstance(xstr, Structure):
|
||||
return xstr
|
||||
assert isinstance(xstr, str), "must take string (not {:}) as input".format(
|
||||
type(xstr)
|
||||
)
|
||||
nodestrs = xstr.split("+")
|
||||
genotypes = []
|
||||
for i, node_str in enumerate(nodestrs):
|
||||
inputs = list(filter(lambda x: x != "", node_str.split("|")))
|
||||
for xinput in inputs:
|
||||
assert len(xinput.split("~")) == 2, "invalid input length : {:}".format(
|
||||
xinput
|
||||
)
|
||||
inputs = (xi.split("~") for xi in inputs)
|
||||
input_infos = tuple((op, int(IDX)) for (op, IDX) in inputs)
|
||||
genotypes.append(input_infos)
|
||||
return Structure(genotypes)
|
||||
|
||||
@staticmethod
|
||||
def str2fullstructure(xstr, default_name="none"):
|
||||
assert isinstance(xstr, str), "must take string (not {:}) as input".format(
|
||||
type(xstr)
|
||||
)
|
||||
nodestrs = xstr.split("+")
|
||||
genotypes = []
|
||||
for i, node_str in enumerate(nodestrs):
|
||||
inputs = list(filter(lambda x: x != "", node_str.split("|")))
|
||||
for xinput in inputs:
|
||||
assert len(xinput.split("~")) == 2, "invalid input length : {:}".format(
|
||||
xinput
|
||||
)
|
||||
inputs = (xi.split("~") for xi in inputs)
|
||||
input_infos = list((op, int(IDX)) for (op, IDX) in inputs)
|
||||
all_in_nodes = list(x[1] for x in input_infos)
|
||||
for j in range(i):
|
||||
if j not in all_in_nodes:
|
||||
input_infos.append((default_name, j))
|
||||
node_info = sorted(input_infos, key=lambda x: (x[1], x[0]))
|
||||
genotypes.append(tuple(node_info))
|
||||
return Structure(genotypes)
|
||||
|
||||
@staticmethod
|
||||
def gen_all(search_space, num, return_ori):
|
||||
assert isinstance(search_space, list) or isinstance(
|
||||
search_space, tuple
|
||||
), "invalid class of search-space : {:}".format(type(search_space))
|
||||
assert (
|
||||
num >= 2
|
||||
), "There should be at least two nodes in a neural cell instead of {:}".format(
|
||||
num
|
||||
)
|
||||
all_archs = get_combination(search_space, 1)
|
||||
for i, arch in enumerate(all_archs):
|
||||
all_archs[i] = [tuple(arch)]
|
||||
|
||||
for inode in range(2, num):
|
||||
cur_nodes = get_combination(search_space, inode)
|
||||
new_all_archs = []
|
||||
for previous_arch in all_archs:
|
||||
for cur_node in cur_nodes:
|
||||
new_all_archs.append(previous_arch + [tuple(cur_node)])
|
||||
all_archs = new_all_archs
|
||||
if return_ori:
|
||||
return all_archs
|
||||
else:
|
||||
return [Structure(x) for x in all_archs]
|
||||
|
||||
|
||||
ResNet_CODE = Structure(
|
||||
[
|
||||
(("nor_conv_3x3", 0),), # node-1
|
||||
(("nor_conv_3x3", 1),), # node-2
|
||||
(("skip_connect", 0), ("skip_connect", 2)),
|
||||
] # node-3
|
||||
)
|
||||
|
||||
AllConv3x3_CODE = Structure(
|
||||
[
|
||||
(("nor_conv_3x3", 0),), # node-1
|
||||
(("nor_conv_3x3", 0), ("nor_conv_3x3", 1)), # node-2
|
||||
(("nor_conv_3x3", 0), ("nor_conv_3x3", 1), ("nor_conv_3x3", 2)),
|
||||
] # node-3
|
||||
)
|
||||
|
||||
AllFull_CODE = Structure(
|
||||
[
|
||||
(
|
||||
("skip_connect", 0),
|
||||
("nor_conv_1x1", 0),
|
||||
("nor_conv_3x3", 0),
|
||||
("avg_pool_3x3", 0),
|
||||
), # node-1
|
||||
(
|
||||
("skip_connect", 0),
|
||||
("nor_conv_1x1", 0),
|
||||
("nor_conv_3x3", 0),
|
||||
("avg_pool_3x3", 0),
|
||||
("skip_connect", 1),
|
||||
("nor_conv_1x1", 1),
|
||||
("nor_conv_3x3", 1),
|
||||
("avg_pool_3x3", 1),
|
||||
), # node-2
|
||||
(
|
||||
("skip_connect", 0),
|
||||
("nor_conv_1x1", 0),
|
||||
("nor_conv_3x3", 0),
|
||||
("avg_pool_3x3", 0),
|
||||
("skip_connect", 1),
|
||||
("nor_conv_1x1", 1),
|
||||
("nor_conv_3x3", 1),
|
||||
("avg_pool_3x3", 1),
|
||||
("skip_connect", 2),
|
||||
("nor_conv_1x1", 2),
|
||||
("nor_conv_3x3", 2),
|
||||
("avg_pool_3x3", 2),
|
||||
),
|
||||
] # node-3
|
||||
)
|
||||
|
||||
AllConv1x1_CODE = Structure(
|
||||
[
|
||||
(("nor_conv_1x1", 0),), # node-1
|
||||
(("nor_conv_1x1", 0), ("nor_conv_1x1", 1)), # node-2
|
||||
(("nor_conv_1x1", 0), ("nor_conv_1x1", 1), ("nor_conv_1x1", 2)),
|
||||
] # node-3
|
||||
)
|
||||
|
||||
AllIdentity_CODE = Structure(
|
||||
[
|
||||
(("skip_connect", 0),), # node-1
|
||||
(("skip_connect", 0), ("skip_connect", 1)), # node-2
|
||||
(("skip_connect", 0), ("skip_connect", 1), ("skip_connect", 2)),
|
||||
] # node-3
|
||||
)
|
||||
|
||||
architectures = {
|
||||
"resnet": ResNet_CODE,
|
||||
"all_c3x3": AllConv3x3_CODE,
|
||||
"all_c1x1": AllConv1x1_CODE,
|
||||
"all_idnt": AllIdentity_CODE,
|
||||
"all_full": AllFull_CODE,
|
||||
}
|
251
xautodl/models/cell_searchs/search_cells.py
Normal file
251
xautodl/models/cell_searchs/search_cells.py
Normal file
@@ -0,0 +1,251 @@
|
||||
##################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
|
||||
##################################################
|
||||
import math, random, torch
|
||||
import warnings
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from copy import deepcopy
|
||||
from ..cell_operations import OPS
|
||||
|
||||
|
||||
# This module is used for NAS-Bench-201, represents a small search space with a complete DAG
|
||||
class NAS201SearchCell(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
C_in,
|
||||
C_out,
|
||||
stride,
|
||||
max_nodes,
|
||||
op_names,
|
||||
affine=False,
|
||||
track_running_stats=True,
|
||||
):
|
||||
super(NAS201SearchCell, self).__init__()
|
||||
|
||||
self.op_names = deepcopy(op_names)
|
||||
self.edges = nn.ModuleDict()
|
||||
self.max_nodes = max_nodes
|
||||
self.in_dim = C_in
|
||||
self.out_dim = C_out
|
||||
for i in range(1, max_nodes):
|
||||
for j in range(i):
|
||||
node_str = "{:}<-{:}".format(i, j)
|
||||
if j == 0:
|
||||
xlists = [
|
||||
OPS[op_name](C_in, C_out, stride, affine, track_running_stats)
|
||||
for op_name in op_names
|
||||
]
|
||||
else:
|
||||
xlists = [
|
||||
OPS[op_name](C_in, C_out, 1, affine, track_running_stats)
|
||||
for op_name in op_names
|
||||
]
|
||||
self.edges[node_str] = nn.ModuleList(xlists)
|
||||
self.edge_keys = sorted(list(self.edges.keys()))
|
||||
self.edge2index = {key: i for i, key in enumerate(self.edge_keys)}
|
||||
self.num_edges = len(self.edges)
|
||||
|
||||
def extra_repr(self):
|
||||
string = "info :: {max_nodes} nodes, inC={in_dim}, outC={out_dim}".format(
|
||||
**self.__dict__
|
||||
)
|
||||
return string
|
||||
|
||||
def forward(self, inputs, weightss):
|
||||
nodes = [inputs]
|
||||
for i in range(1, self.max_nodes):
|
||||
inter_nodes = []
|
||||
for j in range(i):
|
||||
node_str = "{:}<-{:}".format(i, j)
|
||||
weights = weightss[self.edge2index[node_str]]
|
||||
inter_nodes.append(
|
||||
sum(
|
||||
layer(nodes[j]) * w
|
||||
for layer, w in zip(self.edges[node_str], weights)
|
||||
)
|
||||
)
|
||||
nodes.append(sum(inter_nodes))
|
||||
return nodes[-1]
|
||||
|
||||
# GDAS
|
||||
def forward_gdas(self, inputs, hardwts, index):
|
||||
nodes = [inputs]
|
||||
for i in range(1, self.max_nodes):
|
||||
inter_nodes = []
|
||||
for j in range(i):
|
||||
node_str = "{:}<-{:}".format(i, j)
|
||||
weights = hardwts[self.edge2index[node_str]]
|
||||
argmaxs = index[self.edge2index[node_str]].item()
|
||||
weigsum = sum(
|
||||
weights[_ie] * edge(nodes[j]) if _ie == argmaxs else weights[_ie]
|
||||
for _ie, edge in enumerate(self.edges[node_str])
|
||||
)
|
||||
inter_nodes.append(weigsum)
|
||||
nodes.append(sum(inter_nodes))
|
||||
return nodes[-1]
|
||||
|
||||
# joint
|
||||
def forward_joint(self, inputs, weightss):
|
||||
nodes = [inputs]
|
||||
for i in range(1, self.max_nodes):
|
||||
inter_nodes = []
|
||||
for j in range(i):
|
||||
node_str = "{:}<-{:}".format(i, j)
|
||||
weights = weightss[self.edge2index[node_str]]
|
||||
# aggregation = sum( layer(nodes[j]) * w for layer, w in zip(self.edges[node_str], weights) ) / weights.numel()
|
||||
aggregation = sum(
|
||||
layer(nodes[j]) * w
|
||||
for layer, w in zip(self.edges[node_str], weights)
|
||||
)
|
||||
inter_nodes.append(aggregation)
|
||||
nodes.append(sum(inter_nodes))
|
||||
return nodes[-1]
|
||||
|
||||
# uniform random sampling per iteration, SETN
|
||||
def forward_urs(self, inputs):
|
||||
nodes = [inputs]
|
||||
for i in range(1, self.max_nodes):
|
||||
while True: # to avoid select zero for all ops
|
||||
sops, has_non_zero = [], False
|
||||
for j in range(i):
|
||||
node_str = "{:}<-{:}".format(i, j)
|
||||
candidates = self.edges[node_str]
|
||||
select_op = random.choice(candidates)
|
||||
sops.append(select_op)
|
||||
if not hasattr(select_op, "is_zero") or select_op.is_zero is False:
|
||||
has_non_zero = True
|
||||
if has_non_zero:
|
||||
break
|
||||
inter_nodes = []
|
||||
for j, select_op in enumerate(sops):
|
||||
inter_nodes.append(select_op(nodes[j]))
|
||||
nodes.append(sum(inter_nodes))
|
||||
return nodes[-1]
|
||||
|
||||
# select the argmax
|
||||
def forward_select(self, inputs, weightss):
|
||||
nodes = [inputs]
|
||||
for i in range(1, self.max_nodes):
|
||||
inter_nodes = []
|
||||
for j in range(i):
|
||||
node_str = "{:}<-{:}".format(i, j)
|
||||
weights = weightss[self.edge2index[node_str]]
|
||||
inter_nodes.append(
|
||||
self.edges[node_str][weights.argmax().item()](nodes[j])
|
||||
)
|
||||
# inter_nodes.append( sum( layer(nodes[j]) * w for layer, w in zip(self.edges[node_str], weights) ) )
|
||||
nodes.append(sum(inter_nodes))
|
||||
return nodes[-1]
|
||||
|
||||
# forward with a specific structure
|
||||
def forward_dynamic(self, inputs, structure):
|
||||
nodes = [inputs]
|
||||
for i in range(1, self.max_nodes):
|
||||
cur_op_node = structure.nodes[i - 1]
|
||||
inter_nodes = []
|
||||
for op_name, j in cur_op_node:
|
||||
node_str = "{:}<-{:}".format(i, j)
|
||||
op_index = self.op_names.index(op_name)
|
||||
inter_nodes.append(self.edges[node_str][op_index](nodes[j]))
|
||||
nodes.append(sum(inter_nodes))
|
||||
return nodes[-1]
|
||||
|
||||
|
||||
class MixedOp(nn.Module):
|
||||
def __init__(self, space, C, stride, affine, track_running_stats):
|
||||
super(MixedOp, self).__init__()
|
||||
self._ops = nn.ModuleList()
|
||||
for primitive in space:
|
||||
op = OPS[primitive](C, C, stride, affine, track_running_stats)
|
||||
self._ops.append(op)
|
||||
|
||||
def forward_gdas(self, x, weights, index):
|
||||
return self._ops[index](x) * weights[index]
|
||||
|
||||
def forward_darts(self, x, weights):
|
||||
return sum(w * op(x) for w, op in zip(weights, self._ops))
|
||||
|
||||
|
||||
# Learning Transferable Architectures for Scalable Image Recognition, CVPR 2018
|
||||
class NASNetSearchCell(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
space,
|
||||
steps,
|
||||
multiplier,
|
||||
C_prev_prev,
|
||||
C_prev,
|
||||
C,
|
||||
reduction,
|
||||
reduction_prev,
|
||||
affine,
|
||||
track_running_stats,
|
||||
):
|
||||
super(NASNetSearchCell, self).__init__()
|
||||
self.reduction = reduction
|
||||
self.op_names = deepcopy(space)
|
||||
if reduction_prev:
|
||||
self.preprocess0 = OPS["skip_connect"](
|
||||
C_prev_prev, C, 2, affine, track_running_stats
|
||||
)
|
||||
else:
|
||||
self.preprocess0 = OPS["nor_conv_1x1"](
|
||||
C_prev_prev, C, 1, affine, track_running_stats
|
||||
)
|
||||
self.preprocess1 = OPS["nor_conv_1x1"](
|
||||
C_prev, C, 1, affine, track_running_stats
|
||||
)
|
||||
self._steps = steps
|
||||
self._multiplier = multiplier
|
||||
|
||||
self._ops = nn.ModuleList()
|
||||
self.edges = nn.ModuleDict()
|
||||
for i in range(self._steps):
|
||||
for j in range(2 + i):
|
||||
node_str = "{:}<-{:}".format(
|
||||
i, j
|
||||
) # indicate the edge from node-(j) to node-(i+2)
|
||||
stride = 2 if reduction and j < 2 else 1
|
||||
op = MixedOp(space, C, stride, affine, track_running_stats)
|
||||
self.edges[node_str] = op
|
||||
self.edge_keys = sorted(list(self.edges.keys()))
|
||||
self.edge2index = {key: i for i, key in enumerate(self.edge_keys)}
|
||||
self.num_edges = len(self.edges)
|
||||
|
||||
@property
|
||||
def multiplier(self):
|
||||
return self._multiplier
|
||||
|
||||
def forward_gdas(self, s0, s1, weightss, indexs):
|
||||
s0 = self.preprocess0(s0)
|
||||
s1 = self.preprocess1(s1)
|
||||
|
||||
states = [s0, s1]
|
||||
for i in range(self._steps):
|
||||
clist = []
|
||||
for j, h in enumerate(states):
|
||||
node_str = "{:}<-{:}".format(i, j)
|
||||
op = self.edges[node_str]
|
||||
weights = weightss[self.edge2index[node_str]]
|
||||
index = indexs[self.edge2index[node_str]].item()
|
||||
clist.append(op.forward_gdas(h, weights, index))
|
||||
states.append(sum(clist))
|
||||
|
||||
return torch.cat(states[-self._multiplier :], dim=1)
|
||||
|
||||
def forward_darts(self, s0, s1, weightss):
|
||||
s0 = self.preprocess0(s0)
|
||||
s1 = self.preprocess1(s1)
|
||||
|
||||
states = [s0, s1]
|
||||
for i in range(self._steps):
|
||||
clist = []
|
||||
for j, h in enumerate(states):
|
||||
node_str = "{:}<-{:}".format(i, j)
|
||||
op = self.edges[node_str]
|
||||
weights = weightss[self.edge2index[node_str]]
|
||||
clist.append(op.forward_darts(h, weights))
|
||||
states.append(sum(clist))
|
||||
|
||||
return torch.cat(states[-self._multiplier :], dim=1)
|
122
xautodl/models/cell_searchs/search_model_darts.py
Normal file
122
xautodl/models/cell_searchs/search_model_darts.py
Normal file
@@ -0,0 +1,122 @@
|
||||
##################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
|
||||
########################################################
|
||||
# DARTS: Differentiable Architecture Search, ICLR 2019 #
|
||||
########################################################
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from copy import deepcopy
|
||||
from ..cell_operations import ResNetBasicblock
|
||||
from .search_cells import NAS201SearchCell as SearchCell
|
||||
from .genotypes import Structure
|
||||
|
||||
|
||||
class TinyNetworkDarts(nn.Module):
|
||||
def __init__(
|
||||
self, C, N, max_nodes, num_classes, search_space, affine, track_running_stats
|
||||
):
|
||||
super(TinyNetworkDarts, self).__init__()
|
||||
self._C = C
|
||||
self._layerN = N
|
||||
self.max_nodes = max_nodes
|
||||
self.stem = nn.Sequential(
|
||||
nn.Conv2d(3, C, kernel_size=3, padding=1, bias=False), nn.BatchNorm2d(C)
|
||||
)
|
||||
|
||||
layer_channels = [C] * N + [C * 2] + [C * 2] * N + [C * 4] + [C * 4] * N
|
||||
layer_reductions = [False] * N + [True] + [False] * N + [True] + [False] * N
|
||||
|
||||
C_prev, num_edge, edge2index = C, None, None
|
||||
self.cells = nn.ModuleList()
|
||||
for index, (C_curr, reduction) in enumerate(
|
||||
zip(layer_channels, layer_reductions)
|
||||
):
|
||||
if reduction:
|
||||
cell = ResNetBasicblock(C_prev, C_curr, 2)
|
||||
else:
|
||||
cell = SearchCell(
|
||||
C_prev,
|
||||
C_curr,
|
||||
1,
|
||||
max_nodes,
|
||||
search_space,
|
||||
affine,
|
||||
track_running_stats,
|
||||
)
|
||||
if num_edge is None:
|
||||
num_edge, edge2index = cell.num_edges, cell.edge2index
|
||||
else:
|
||||
assert (
|
||||
num_edge == cell.num_edges and edge2index == cell.edge2index
|
||||
), "invalid {:} vs. {:}.".format(num_edge, cell.num_edges)
|
||||
self.cells.append(cell)
|
||||
C_prev = cell.out_dim
|
||||
self.op_names = deepcopy(search_space)
|
||||
self._Layer = len(self.cells)
|
||||
self.edge2index = edge2index
|
||||
self.lastact = nn.Sequential(nn.BatchNorm2d(C_prev), nn.ReLU(inplace=True))
|
||||
self.global_pooling = nn.AdaptiveAvgPool2d(1)
|
||||
self.classifier = nn.Linear(C_prev, num_classes)
|
||||
self.arch_parameters = nn.Parameter(
|
||||
1e-3 * torch.randn(num_edge, len(search_space))
|
||||
)
|
||||
|
||||
def get_weights(self):
|
||||
xlist = list(self.stem.parameters()) + list(self.cells.parameters())
|
||||
xlist += list(self.lastact.parameters()) + list(
|
||||
self.global_pooling.parameters()
|
||||
)
|
||||
xlist += list(self.classifier.parameters())
|
||||
return xlist
|
||||
|
||||
def get_alphas(self):
|
||||
return [self.arch_parameters]
|
||||
|
||||
def show_alphas(self):
|
||||
with torch.no_grad():
|
||||
return "arch-parameters :\n{:}".format(
|
||||
nn.functional.softmax(self.arch_parameters, dim=-1).cpu()
|
||||
)
|
||||
|
||||
def get_message(self):
|
||||
string = self.extra_repr()
|
||||
for i, cell in enumerate(self.cells):
|
||||
string += "\n {:02d}/{:02d} :: {:}".format(
|
||||
i, len(self.cells), cell.extra_repr()
|
||||
)
|
||||
return string
|
||||
|
||||
def extra_repr(self):
|
||||
return "{name}(C={_C}, Max-Nodes={max_nodes}, N={_layerN}, L={_Layer})".format(
|
||||
name=self.__class__.__name__, **self.__dict__
|
||||
)
|
||||
|
||||
def genotype(self):
|
||||
genotypes = []
|
||||
for i in range(1, self.max_nodes):
|
||||
xlist = []
|
||||
for j in range(i):
|
||||
node_str = "{:}<-{:}".format(i, j)
|
||||
with torch.no_grad():
|
||||
weights = self.arch_parameters[self.edge2index[node_str]]
|
||||
op_name = self.op_names[weights.argmax().item()]
|
||||
xlist.append((op_name, j))
|
||||
genotypes.append(tuple(xlist))
|
||||
return Structure(genotypes)
|
||||
|
||||
def forward(self, inputs):
|
||||
alphas = nn.functional.softmax(self.arch_parameters, dim=-1)
|
||||
|
||||
feature = self.stem(inputs)
|
||||
for i, cell in enumerate(self.cells):
|
||||
if isinstance(cell, SearchCell):
|
||||
feature = cell(feature, alphas)
|
||||
else:
|
||||
feature = cell(feature)
|
||||
|
||||
out = self.lastact(feature)
|
||||
out = self.global_pooling(out)
|
||||
out = out.view(out.size(0), -1)
|
||||
logits = self.classifier(out)
|
||||
|
||||
return out, logits
|
178
xautodl/models/cell_searchs/search_model_darts_nasnet.py
Normal file
178
xautodl/models/cell_searchs/search_model_darts_nasnet.py
Normal file
@@ -0,0 +1,178 @@
|
||||
####################
|
||||
# DARTS, ICLR 2019 #
|
||||
####################
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from copy import deepcopy
|
||||
from typing import List, Text, Dict
|
||||
from .search_cells import NASNetSearchCell as SearchCell
|
||||
|
||||
|
||||
# The macro structure is based on NASNet
|
||||
class NASNetworkDARTS(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
C: int,
|
||||
N: int,
|
||||
steps: int,
|
||||
multiplier: int,
|
||||
stem_multiplier: int,
|
||||
num_classes: int,
|
||||
search_space: List[Text],
|
||||
affine: bool,
|
||||
track_running_stats: bool,
|
||||
):
|
||||
super(NASNetworkDARTS, self).__init__()
|
||||
self._C = C
|
||||
self._layerN = N
|
||||
self._steps = steps
|
||||
self._multiplier = multiplier
|
||||
self.stem = nn.Sequential(
|
||||
nn.Conv2d(3, C * stem_multiplier, kernel_size=3, padding=1, bias=False),
|
||||
nn.BatchNorm2d(C * stem_multiplier),
|
||||
)
|
||||
|
||||
# config for each layer
|
||||
layer_channels = (
|
||||
[C] * N + [C * 2] + [C * 2] * (N - 1) + [C * 4] + [C * 4] * (N - 1)
|
||||
)
|
||||
layer_reductions = (
|
||||
[False] * N + [True] + [False] * (N - 1) + [True] + [False] * (N - 1)
|
||||
)
|
||||
|
||||
num_edge, edge2index = None, None
|
||||
C_prev_prev, C_prev, C_curr, reduction_prev = (
|
||||
C * stem_multiplier,
|
||||
C * stem_multiplier,
|
||||
C,
|
||||
False,
|
||||
)
|
||||
|
||||
self.cells = nn.ModuleList()
|
||||
for index, (C_curr, reduction) in enumerate(
|
||||
zip(layer_channels, layer_reductions)
|
||||
):
|
||||
cell = SearchCell(
|
||||
search_space,
|
||||
steps,
|
||||
multiplier,
|
||||
C_prev_prev,
|
||||
C_prev,
|
||||
C_curr,
|
||||
reduction,
|
||||
reduction_prev,
|
||||
affine,
|
||||
track_running_stats,
|
||||
)
|
||||
if num_edge is None:
|
||||
num_edge, edge2index = cell.num_edges, cell.edge2index
|
||||
else:
|
||||
assert (
|
||||
num_edge == cell.num_edges and edge2index == cell.edge2index
|
||||
), "invalid {:} vs. {:}.".format(num_edge, cell.num_edges)
|
||||
self.cells.append(cell)
|
||||
C_prev_prev, C_prev, reduction_prev = C_prev, multiplier * C_curr, reduction
|
||||
self.op_names = deepcopy(search_space)
|
||||
self._Layer = len(self.cells)
|
||||
self.edge2index = edge2index
|
||||
self.lastact = nn.Sequential(nn.BatchNorm2d(C_prev), nn.ReLU(inplace=True))
|
||||
self.global_pooling = nn.AdaptiveAvgPool2d(1)
|
||||
self.classifier = nn.Linear(C_prev, num_classes)
|
||||
self.arch_normal_parameters = nn.Parameter(
|
||||
1e-3 * torch.randn(num_edge, len(search_space))
|
||||
)
|
||||
self.arch_reduce_parameters = nn.Parameter(
|
||||
1e-3 * torch.randn(num_edge, len(search_space))
|
||||
)
|
||||
|
||||
def get_weights(self) -> List[torch.nn.Parameter]:
|
||||
xlist = list(self.stem.parameters()) + list(self.cells.parameters())
|
||||
xlist += list(self.lastact.parameters()) + list(
|
||||
self.global_pooling.parameters()
|
||||
)
|
||||
xlist += list(self.classifier.parameters())
|
||||
return xlist
|
||||
|
||||
def get_alphas(self) -> List[torch.nn.Parameter]:
|
||||
return [self.arch_normal_parameters, self.arch_reduce_parameters]
|
||||
|
||||
def show_alphas(self) -> Text:
|
||||
with torch.no_grad():
|
||||
A = "arch-normal-parameters :\n{:}".format(
|
||||
nn.functional.softmax(self.arch_normal_parameters, dim=-1).cpu()
|
||||
)
|
||||
B = "arch-reduce-parameters :\n{:}".format(
|
||||
nn.functional.softmax(self.arch_reduce_parameters, dim=-1).cpu()
|
||||
)
|
||||
return "{:}\n{:}".format(A, B)
|
||||
|
||||
def get_message(self) -> Text:
|
||||
string = self.extra_repr()
|
||||
for i, cell in enumerate(self.cells):
|
||||
string += "\n {:02d}/{:02d} :: {:}".format(
|
||||
i, len(self.cells), cell.extra_repr()
|
||||
)
|
||||
return string
|
||||
|
||||
def extra_repr(self) -> Text:
|
||||
return "{name}(C={_C}, N={_layerN}, steps={_steps}, multiplier={_multiplier}, L={_Layer})".format(
|
||||
name=self.__class__.__name__, **self.__dict__
|
||||
)
|
||||
|
||||
def genotype(self) -> Dict[Text, List]:
|
||||
def _parse(weights):
|
||||
gene = []
|
||||
for i in range(self._steps):
|
||||
edges = []
|
||||
for j in range(2 + i):
|
||||
node_str = "{:}<-{:}".format(i, j)
|
||||
ws = weights[self.edge2index[node_str]]
|
||||
for k, op_name in enumerate(self.op_names):
|
||||
if op_name == "none":
|
||||
continue
|
||||
edges.append((op_name, j, ws[k]))
|
||||
# (TODO) xuanyidong:
|
||||
# Here the selected two edges might come from the same input node.
|
||||
# And this case could be a problem that two edges will collapse into a single one
|
||||
# due to our assumption -- at most one edge from an input node during evaluation.
|
||||
edges = sorted(edges, key=lambda x: -x[-1])
|
||||
selected_edges = edges[:2]
|
||||
gene.append(tuple(selected_edges))
|
||||
return gene
|
||||
|
||||
with torch.no_grad():
|
||||
gene_normal = _parse(
|
||||
torch.softmax(self.arch_normal_parameters, dim=-1).cpu().numpy()
|
||||
)
|
||||
gene_reduce = _parse(
|
||||
torch.softmax(self.arch_reduce_parameters, dim=-1).cpu().numpy()
|
||||
)
|
||||
return {
|
||||
"normal": gene_normal,
|
||||
"normal_concat": list(
|
||||
range(2 + self._steps - self._multiplier, self._steps + 2)
|
||||
),
|
||||
"reduce": gene_reduce,
|
||||
"reduce_concat": list(
|
||||
range(2 + self._steps - self._multiplier, self._steps + 2)
|
||||
),
|
||||
}
|
||||
|
||||
def forward(self, inputs):
|
||||
|
||||
normal_w = nn.functional.softmax(self.arch_normal_parameters, dim=1)
|
||||
reduce_w = nn.functional.softmax(self.arch_reduce_parameters, dim=1)
|
||||
|
||||
s0 = s1 = self.stem(inputs)
|
||||
for i, cell in enumerate(self.cells):
|
||||
if cell.reduction:
|
||||
ww = reduce_w
|
||||
else:
|
||||
ww = normal_w
|
||||
s0, s1 = s1, cell.forward_darts(s0, s1, ww)
|
||||
out = self.lastact(s1)
|
||||
out = self.global_pooling(out)
|
||||
out = out.view(out.size(0), -1)
|
||||
logits = self.classifier(out)
|
||||
|
||||
return out, logits
|
114
xautodl/models/cell_searchs/search_model_enas.py
Normal file
114
xautodl/models/cell_searchs/search_model_enas.py
Normal file
@@ -0,0 +1,114 @@
|
||||
##################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
|
||||
##########################################################################
|
||||
# Efficient Neural Architecture Search via Parameters Sharing, ICML 2018 #
|
||||
##########################################################################
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from copy import deepcopy
|
||||
from ..cell_operations import ResNetBasicblock
|
||||
from .search_cells import NAS201SearchCell as SearchCell
|
||||
from .genotypes import Structure
|
||||
from .search_model_enas_utils import Controller
|
||||
|
||||
|
||||
class TinyNetworkENAS(nn.Module):
|
||||
def __init__(
|
||||
self, C, N, max_nodes, num_classes, search_space, affine, track_running_stats
|
||||
):
|
||||
super(TinyNetworkENAS, self).__init__()
|
||||
self._C = C
|
||||
self._layerN = N
|
||||
self.max_nodes = max_nodes
|
||||
self.stem = nn.Sequential(
|
||||
nn.Conv2d(3, C, kernel_size=3, padding=1, bias=False), nn.BatchNorm2d(C)
|
||||
)
|
||||
|
||||
layer_channels = [C] * N + [C * 2] + [C * 2] * N + [C * 4] + [C * 4] * N
|
||||
layer_reductions = [False] * N + [True] + [False] * N + [True] + [False] * N
|
||||
|
||||
C_prev, num_edge, edge2index = C, None, None
|
||||
self.cells = nn.ModuleList()
|
||||
for index, (C_curr, reduction) in enumerate(
|
||||
zip(layer_channels, layer_reductions)
|
||||
):
|
||||
if reduction:
|
||||
cell = ResNetBasicblock(C_prev, C_curr, 2)
|
||||
else:
|
||||
cell = SearchCell(
|
||||
C_prev,
|
||||
C_curr,
|
||||
1,
|
||||
max_nodes,
|
||||
search_space,
|
||||
affine,
|
||||
track_running_stats,
|
||||
)
|
||||
if num_edge is None:
|
||||
num_edge, edge2index = cell.num_edges, cell.edge2index
|
||||
else:
|
||||
assert (
|
||||
num_edge == cell.num_edges and edge2index == cell.edge2index
|
||||
), "invalid {:} vs. {:}.".format(num_edge, cell.num_edges)
|
||||
self.cells.append(cell)
|
||||
C_prev = cell.out_dim
|
||||
self.op_names = deepcopy(search_space)
|
||||
self._Layer = len(self.cells)
|
||||
self.edge2index = edge2index
|
||||
self.lastact = nn.Sequential(nn.BatchNorm2d(C_prev), nn.ReLU(inplace=True))
|
||||
self.global_pooling = nn.AdaptiveAvgPool2d(1)
|
||||
self.classifier = nn.Linear(C_prev, num_classes)
|
||||
# to maintain the sampled architecture
|
||||
self.sampled_arch = None
|
||||
|
||||
def update_arch(self, _arch):
|
||||
if _arch is None:
|
||||
self.sampled_arch = None
|
||||
elif isinstance(_arch, Structure):
|
||||
self.sampled_arch = _arch
|
||||
elif isinstance(_arch, (list, tuple)):
|
||||
genotypes = []
|
||||
for i in range(1, self.max_nodes):
|
||||
xlist = []
|
||||
for j in range(i):
|
||||
node_str = "{:}<-{:}".format(i, j)
|
||||
op_index = _arch[self.edge2index[node_str]]
|
||||
op_name = self.op_names[op_index]
|
||||
xlist.append((op_name, j))
|
||||
genotypes.append(tuple(xlist))
|
||||
self.sampled_arch = Structure(genotypes)
|
||||
else:
|
||||
raise ValueError("invalid type of input architecture : {:}".format(_arch))
|
||||
return self.sampled_arch
|
||||
|
||||
def create_controller(self):
|
||||
return Controller(len(self.edge2index), len(self.op_names))
|
||||
|
||||
def get_message(self):
|
||||
string = self.extra_repr()
|
||||
for i, cell in enumerate(self.cells):
|
||||
string += "\n {:02d}/{:02d} :: {:}".format(
|
||||
i, len(self.cells), cell.extra_repr()
|
||||
)
|
||||
return string
|
||||
|
||||
def extra_repr(self):
|
||||
return "{name}(C={_C}, Max-Nodes={max_nodes}, N={_layerN}, L={_Layer})".format(
|
||||
name=self.__class__.__name__, **self.__dict__
|
||||
)
|
||||
|
||||
def forward(self, inputs):
|
||||
|
||||
feature = self.stem(inputs)
|
||||
for i, cell in enumerate(self.cells):
|
||||
if isinstance(cell, SearchCell):
|
||||
feature = cell.forward_dynamic(feature, self.sampled_arch)
|
||||
else:
|
||||
feature = cell(feature)
|
||||
|
||||
out = self.lastact(feature)
|
||||
out = self.global_pooling(out)
|
||||
out = out.view(out.size(0), -1)
|
||||
logits = self.classifier(out)
|
||||
|
||||
return out, logits
|
74
xautodl/models/cell_searchs/search_model_enas_utils.py
Normal file
74
xautodl/models/cell_searchs/search_model_enas_utils.py
Normal file
@@ -0,0 +1,74 @@
|
||||
##################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
|
||||
##########################################################################
|
||||
# Efficient Neural Architecture Search via Parameters Sharing, ICML 2018 #
|
||||
##########################################################################
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from torch.distributions.categorical import Categorical
|
||||
|
||||
|
||||
class Controller(nn.Module):
|
||||
# we refer to https://github.com/TDeVries/enas_pytorch/blob/master/models/controller.py
|
||||
def __init__(
|
||||
self,
|
||||
num_edge,
|
||||
num_ops,
|
||||
lstm_size=32,
|
||||
lstm_num_layers=2,
|
||||
tanh_constant=2.5,
|
||||
temperature=5.0,
|
||||
):
|
||||
super(Controller, self).__init__()
|
||||
# assign the attributes
|
||||
self.num_edge = num_edge
|
||||
self.num_ops = num_ops
|
||||
self.lstm_size = lstm_size
|
||||
self.lstm_N = lstm_num_layers
|
||||
self.tanh_constant = tanh_constant
|
||||
self.temperature = temperature
|
||||
# create parameters
|
||||
self.register_parameter(
|
||||
"input_vars", nn.Parameter(torch.Tensor(1, 1, lstm_size))
|
||||
)
|
||||
self.w_lstm = nn.LSTM(
|
||||
input_size=self.lstm_size,
|
||||
hidden_size=self.lstm_size,
|
||||
num_layers=self.lstm_N,
|
||||
)
|
||||
self.w_embd = nn.Embedding(self.num_ops, self.lstm_size)
|
||||
self.w_pred = nn.Linear(self.lstm_size, self.num_ops)
|
||||
|
||||
nn.init.uniform_(self.input_vars, -0.1, 0.1)
|
||||
nn.init.uniform_(self.w_lstm.weight_hh_l0, -0.1, 0.1)
|
||||
nn.init.uniform_(self.w_lstm.weight_ih_l0, -0.1, 0.1)
|
||||
nn.init.uniform_(self.w_embd.weight, -0.1, 0.1)
|
||||
nn.init.uniform_(self.w_pred.weight, -0.1, 0.1)
|
||||
|
||||
def forward(self):
|
||||
|
||||
inputs, h0 = self.input_vars, None
|
||||
log_probs, entropys, sampled_arch = [], [], []
|
||||
for iedge in range(self.num_edge):
|
||||
outputs, h0 = self.w_lstm(inputs, h0)
|
||||
|
||||
logits = self.w_pred(outputs)
|
||||
logits = logits / self.temperature
|
||||
logits = self.tanh_constant * torch.tanh(logits)
|
||||
# distribution
|
||||
op_distribution = Categorical(logits=logits)
|
||||
op_index = op_distribution.sample()
|
||||
sampled_arch.append(op_index.item())
|
||||
|
||||
op_log_prob = op_distribution.log_prob(op_index)
|
||||
log_probs.append(op_log_prob.view(-1))
|
||||
op_entropy = op_distribution.entropy()
|
||||
entropys.append(op_entropy.view(-1))
|
||||
|
||||
# obtain the input embedding for the next step
|
||||
inputs = self.w_embd(op_index)
|
||||
return (
|
||||
torch.sum(torch.cat(log_probs)),
|
||||
torch.sum(torch.cat(entropys)),
|
||||
sampled_arch,
|
||||
)
|
142
xautodl/models/cell_searchs/search_model_gdas.py
Normal file
142
xautodl/models/cell_searchs/search_model_gdas.py
Normal file
@@ -0,0 +1,142 @@
|
||||
###########################################################################
|
||||
# Searching for A Robust Neural Architecture in Four GPU Hours, CVPR 2019 #
|
||||
###########################################################################
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from copy import deepcopy
|
||||
from ..cell_operations import ResNetBasicblock
|
||||
from .search_cells import NAS201SearchCell as SearchCell
|
||||
from .genotypes import Structure
|
||||
|
||||
|
||||
class TinyNetworkGDAS(nn.Module):
|
||||
|
||||
# def __init__(self, C, N, max_nodes, num_classes, search_space, affine=False, track_running_stats=True):
|
||||
def __init__(
|
||||
self, C, N, max_nodes, num_classes, search_space, affine, track_running_stats
|
||||
):
|
||||
super(TinyNetworkGDAS, self).__init__()
|
||||
self._C = C
|
||||
self._layerN = N
|
||||
self.max_nodes = max_nodes
|
||||
self.stem = nn.Sequential(
|
||||
nn.Conv2d(3, C, kernel_size=3, padding=1, bias=False), nn.BatchNorm2d(C)
|
||||
)
|
||||
|
||||
layer_channels = [C] * N + [C * 2] + [C * 2] * N + [C * 4] + [C * 4] * N
|
||||
layer_reductions = [False] * N + [True] + [False] * N + [True] + [False] * N
|
||||
|
||||
C_prev, num_edge, edge2index = C, None, None
|
||||
self.cells = nn.ModuleList()
|
||||
for index, (C_curr, reduction) in enumerate(
|
||||
zip(layer_channels, layer_reductions)
|
||||
):
|
||||
if reduction:
|
||||
cell = ResNetBasicblock(C_prev, C_curr, 2)
|
||||
else:
|
||||
cell = SearchCell(
|
||||
C_prev,
|
||||
C_curr,
|
||||
1,
|
||||
max_nodes,
|
||||
search_space,
|
||||
affine,
|
||||
track_running_stats,
|
||||
)
|
||||
if num_edge is None:
|
||||
num_edge, edge2index = cell.num_edges, cell.edge2index
|
||||
else:
|
||||
assert (
|
||||
num_edge == cell.num_edges and edge2index == cell.edge2index
|
||||
), "invalid {:} vs. {:}.".format(num_edge, cell.num_edges)
|
||||
self.cells.append(cell)
|
||||
C_prev = cell.out_dim
|
||||
self.op_names = deepcopy(search_space)
|
||||
self._Layer = len(self.cells)
|
||||
self.edge2index = edge2index
|
||||
self.lastact = nn.Sequential(nn.BatchNorm2d(C_prev), nn.ReLU(inplace=True))
|
||||
self.global_pooling = nn.AdaptiveAvgPool2d(1)
|
||||
self.classifier = nn.Linear(C_prev, num_classes)
|
||||
self.arch_parameters = nn.Parameter(
|
||||
1e-3 * torch.randn(num_edge, len(search_space))
|
||||
)
|
||||
self.tau = 10
|
||||
|
||||
def get_weights(self):
|
||||
xlist = list(self.stem.parameters()) + list(self.cells.parameters())
|
||||
xlist += list(self.lastact.parameters()) + list(
|
||||
self.global_pooling.parameters()
|
||||
)
|
||||
xlist += list(self.classifier.parameters())
|
||||
return xlist
|
||||
|
||||
def set_tau(self, tau):
|
||||
self.tau = tau
|
||||
|
||||
def get_tau(self):
|
||||
return self.tau
|
||||
|
||||
def get_alphas(self):
|
||||
return [self.arch_parameters]
|
||||
|
||||
def show_alphas(self):
|
||||
with torch.no_grad():
|
||||
return "arch-parameters :\n{:}".format(
|
||||
nn.functional.softmax(self.arch_parameters, dim=-1).cpu()
|
||||
)
|
||||
|
||||
def get_message(self):
|
||||
string = self.extra_repr()
|
||||
for i, cell in enumerate(self.cells):
|
||||
string += "\n {:02d}/{:02d} :: {:}".format(
|
||||
i, len(self.cells), cell.extra_repr()
|
||||
)
|
||||
return string
|
||||
|
||||
def extra_repr(self):
|
||||
return "{name}(C={_C}, Max-Nodes={max_nodes}, N={_layerN}, L={_Layer})".format(
|
||||
name=self.__class__.__name__, **self.__dict__
|
||||
)
|
||||
|
||||
def genotype(self):
|
||||
genotypes = []
|
||||
for i in range(1, self.max_nodes):
|
||||
xlist = []
|
||||
for j in range(i):
|
||||
node_str = "{:}<-{:}".format(i, j)
|
||||
with torch.no_grad():
|
||||
weights = self.arch_parameters[self.edge2index[node_str]]
|
||||
op_name = self.op_names[weights.argmax().item()]
|
||||
xlist.append((op_name, j))
|
||||
genotypes.append(tuple(xlist))
|
||||
return Structure(genotypes)
|
||||
|
||||
def forward(self, inputs):
|
||||
while True:
|
||||
gumbels = -torch.empty_like(self.arch_parameters).exponential_().log()
|
||||
logits = (self.arch_parameters.log_softmax(dim=1) + gumbels) / self.tau
|
||||
probs = nn.functional.softmax(logits, dim=1)
|
||||
index = probs.max(-1, keepdim=True)[1]
|
||||
one_h = torch.zeros_like(logits).scatter_(-1, index, 1.0)
|
||||
hardwts = one_h - probs.detach() + probs
|
||||
if (
|
||||
(torch.isinf(gumbels).any())
|
||||
or (torch.isinf(probs).any())
|
||||
or (torch.isnan(probs).any())
|
||||
):
|
||||
continue
|
||||
else:
|
||||
break
|
||||
|
||||
feature = self.stem(inputs)
|
||||
for i, cell in enumerate(self.cells):
|
||||
if isinstance(cell, SearchCell):
|
||||
feature = cell.forward_gdas(feature, hardwts, index)
|
||||
else:
|
||||
feature = cell(feature)
|
||||
out = self.lastact(feature)
|
||||
out = self.global_pooling(out)
|
||||
out = out.view(out.size(0), -1)
|
||||
logits = self.classifier(out)
|
||||
|
||||
return out, logits
|
199
xautodl/models/cell_searchs/search_model_gdas_frc_nasnet.py
Normal file
199
xautodl/models/cell_searchs/search_model_gdas_frc_nasnet.py
Normal file
@@ -0,0 +1,199 @@
|
||||
###########################################################################
|
||||
# Searching for A Robust Neural Architecture in Four GPU Hours, CVPR 2019 #
|
||||
###########################################################################
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from copy import deepcopy
|
||||
from models.cell_searchs.search_cells import NASNetSearchCell as SearchCell
|
||||
from models.cell_operations import RAW_OP_CLASSES
|
||||
|
||||
|
||||
# The macro structure is based on NASNet
|
||||
class NASNetworkGDAS_FRC(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
C,
|
||||
N,
|
||||
steps,
|
||||
multiplier,
|
||||
stem_multiplier,
|
||||
num_classes,
|
||||
search_space,
|
||||
affine,
|
||||
track_running_stats,
|
||||
):
|
||||
super(NASNetworkGDAS_FRC, self).__init__()
|
||||
self._C = C
|
||||
self._layerN = N
|
||||
self._steps = steps
|
||||
self._multiplier = multiplier
|
||||
self.stem = nn.Sequential(
|
||||
nn.Conv2d(3, C * stem_multiplier, kernel_size=3, padding=1, bias=False),
|
||||
nn.BatchNorm2d(C * stem_multiplier),
|
||||
)
|
||||
|
||||
# config for each layer
|
||||
layer_channels = (
|
||||
[C] * N + [C * 2] + [C * 2] * (N - 1) + [C * 4] + [C * 4] * (N - 1)
|
||||
)
|
||||
layer_reductions = (
|
||||
[False] * N + [True] + [False] * (N - 1) + [True] + [False] * (N - 1)
|
||||
)
|
||||
|
||||
num_edge, edge2index = None, None
|
||||
C_prev_prev, C_prev, C_curr, reduction_prev = (
|
||||
C * stem_multiplier,
|
||||
C * stem_multiplier,
|
||||
C,
|
||||
False,
|
||||
)
|
||||
|
||||
self.cells = nn.ModuleList()
|
||||
for index, (C_curr, reduction) in enumerate(
|
||||
zip(layer_channels, layer_reductions)
|
||||
):
|
||||
if reduction:
|
||||
cell = RAW_OP_CLASSES["gdas_reduction"](
|
||||
C_prev_prev,
|
||||
C_prev,
|
||||
C_curr,
|
||||
reduction_prev,
|
||||
affine,
|
||||
track_running_stats,
|
||||
)
|
||||
else:
|
||||
cell = SearchCell(
|
||||
search_space,
|
||||
steps,
|
||||
multiplier,
|
||||
C_prev_prev,
|
||||
C_prev,
|
||||
C_curr,
|
||||
reduction,
|
||||
reduction_prev,
|
||||
affine,
|
||||
track_running_stats,
|
||||
)
|
||||
if num_edge is None:
|
||||
num_edge, edge2index = cell.num_edges, cell.edge2index
|
||||
else:
|
||||
assert (
|
||||
reduction
|
||||
or num_edge == cell.num_edges
|
||||
and edge2index == cell.edge2index
|
||||
), "invalid {:} vs. {:}.".format(num_edge, cell.num_edges)
|
||||
self.cells.append(cell)
|
||||
C_prev_prev, C_prev, reduction_prev = (
|
||||
C_prev,
|
||||
cell.multiplier * C_curr,
|
||||
reduction,
|
||||
)
|
||||
self.op_names = deepcopy(search_space)
|
||||
self._Layer = len(self.cells)
|
||||
self.edge2index = edge2index
|
||||
self.lastact = nn.Sequential(nn.BatchNorm2d(C_prev), nn.ReLU(inplace=True))
|
||||
self.global_pooling = nn.AdaptiveAvgPool2d(1)
|
||||
self.classifier = nn.Linear(C_prev, num_classes)
|
||||
self.arch_parameters = nn.Parameter(
|
||||
1e-3 * torch.randn(num_edge, len(search_space))
|
||||
)
|
||||
self.tau = 10
|
||||
|
||||
def get_weights(self):
|
||||
xlist = list(self.stem.parameters()) + list(self.cells.parameters())
|
||||
xlist += list(self.lastact.parameters()) + list(
|
||||
self.global_pooling.parameters()
|
||||
)
|
||||
xlist += list(self.classifier.parameters())
|
||||
return xlist
|
||||
|
||||
def set_tau(self, tau):
|
||||
self.tau = tau
|
||||
|
||||
def get_tau(self):
|
||||
return self.tau
|
||||
|
||||
def get_alphas(self):
|
||||
return [self.arch_parameters]
|
||||
|
||||
def show_alphas(self):
|
||||
with torch.no_grad():
|
||||
A = "arch-normal-parameters :\n{:}".format(
|
||||
nn.functional.softmax(self.arch_parameters, dim=-1).cpu()
|
||||
)
|
||||
return "{:}".format(A)
|
||||
|
||||
def get_message(self):
|
||||
string = self.extra_repr()
|
||||
for i, cell in enumerate(self.cells):
|
||||
string += "\n {:02d}/{:02d} :: {:}".format(
|
||||
i, len(self.cells), cell.extra_repr()
|
||||
)
|
||||
return string
|
||||
|
||||
def extra_repr(self):
|
||||
return "{name}(C={_C}, N={_layerN}, steps={_steps}, multiplier={_multiplier}, L={_Layer})".format(
|
||||
name=self.__class__.__name__, **self.__dict__
|
||||
)
|
||||
|
||||
def genotype(self):
|
||||
def _parse(weights):
|
||||
gene = []
|
||||
for i in range(self._steps):
|
||||
edges = []
|
||||
for j in range(2 + i):
|
||||
node_str = "{:}<-{:}".format(i, j)
|
||||
ws = weights[self.edge2index[node_str]]
|
||||
for k, op_name in enumerate(self.op_names):
|
||||
if op_name == "none":
|
||||
continue
|
||||
edges.append((op_name, j, ws[k]))
|
||||
edges = sorted(edges, key=lambda x: -x[-1])
|
||||
selected_edges = edges[:2]
|
||||
gene.append(tuple(selected_edges))
|
||||
return gene
|
||||
|
||||
with torch.no_grad():
|
||||
gene_normal = _parse(
|
||||
torch.softmax(self.arch_parameters, dim=-1).cpu().numpy()
|
||||
)
|
||||
return {
|
||||
"normal": gene_normal,
|
||||
"normal_concat": list(
|
||||
range(2 + self._steps - self._multiplier, self._steps + 2)
|
||||
),
|
||||
}
|
||||
|
||||
def forward(self, inputs):
|
||||
def get_gumbel_prob(xins):
|
||||
while True:
|
||||
gumbels = -torch.empty_like(xins).exponential_().log()
|
||||
logits = (xins.log_softmax(dim=1) + gumbels) / self.tau
|
||||
probs = nn.functional.softmax(logits, dim=1)
|
||||
index = probs.max(-1, keepdim=True)[1]
|
||||
one_h = torch.zeros_like(logits).scatter_(-1, index, 1.0)
|
||||
hardwts = one_h - probs.detach() + probs
|
||||
if (
|
||||
(torch.isinf(gumbels).any())
|
||||
or (torch.isinf(probs).any())
|
||||
or (torch.isnan(probs).any())
|
||||
):
|
||||
continue
|
||||
else:
|
||||
break
|
||||
return hardwts, index
|
||||
|
||||
hardwts, index = get_gumbel_prob(self.arch_parameters)
|
||||
|
||||
s0 = s1 = self.stem(inputs)
|
||||
for i, cell in enumerate(self.cells):
|
||||
if cell.reduction:
|
||||
s0, s1 = s1, cell(s0, s1)
|
||||
else:
|
||||
s0, s1 = s1, cell.forward_gdas(s0, s1, hardwts, index)
|
||||
out = self.lastact(s1)
|
||||
out = self.global_pooling(out)
|
||||
out = out.view(out.size(0), -1)
|
||||
logits = self.classifier(out)
|
||||
|
||||
return out, logits
|
197
xautodl/models/cell_searchs/search_model_gdas_nasnet.py
Normal file
197
xautodl/models/cell_searchs/search_model_gdas_nasnet.py
Normal file
@@ -0,0 +1,197 @@
|
||||
###########################################################################
|
||||
# Searching for A Robust Neural Architecture in Four GPU Hours, CVPR 2019 #
|
||||
###########################################################################
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from copy import deepcopy
|
||||
from .search_cells import NASNetSearchCell as SearchCell
|
||||
|
||||
|
||||
# The macro structure is based on NASNet
|
||||
class NASNetworkGDAS(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
C,
|
||||
N,
|
||||
steps,
|
||||
multiplier,
|
||||
stem_multiplier,
|
||||
num_classes,
|
||||
search_space,
|
||||
affine,
|
||||
track_running_stats,
|
||||
):
|
||||
super(NASNetworkGDAS, self).__init__()
|
||||
self._C = C
|
||||
self._layerN = N
|
||||
self._steps = steps
|
||||
self._multiplier = multiplier
|
||||
self.stem = nn.Sequential(
|
||||
nn.Conv2d(3, C * stem_multiplier, kernel_size=3, padding=1, bias=False),
|
||||
nn.BatchNorm2d(C * stem_multiplier),
|
||||
)
|
||||
|
||||
# config for each layer
|
||||
layer_channels = (
|
||||
[C] * N + [C * 2] + [C * 2] * (N - 1) + [C * 4] + [C * 4] * (N - 1)
|
||||
)
|
||||
layer_reductions = (
|
||||
[False] * N + [True] + [False] * (N - 1) + [True] + [False] * (N - 1)
|
||||
)
|
||||
|
||||
num_edge, edge2index = None, None
|
||||
C_prev_prev, C_prev, C_curr, reduction_prev = (
|
||||
C * stem_multiplier,
|
||||
C * stem_multiplier,
|
||||
C,
|
||||
False,
|
||||
)
|
||||
|
||||
self.cells = nn.ModuleList()
|
||||
for index, (C_curr, reduction) in enumerate(
|
||||
zip(layer_channels, layer_reductions)
|
||||
):
|
||||
cell = SearchCell(
|
||||
search_space,
|
||||
steps,
|
||||
multiplier,
|
||||
C_prev_prev,
|
||||
C_prev,
|
||||
C_curr,
|
||||
reduction,
|
||||
reduction_prev,
|
||||
affine,
|
||||
track_running_stats,
|
||||
)
|
||||
if num_edge is None:
|
||||
num_edge, edge2index = cell.num_edges, cell.edge2index
|
||||
else:
|
||||
assert (
|
||||
num_edge == cell.num_edges and edge2index == cell.edge2index
|
||||
), "invalid {:} vs. {:}.".format(num_edge, cell.num_edges)
|
||||
self.cells.append(cell)
|
||||
C_prev_prev, C_prev, reduction_prev = C_prev, multiplier * C_curr, reduction
|
||||
self.op_names = deepcopy(search_space)
|
||||
self._Layer = len(self.cells)
|
||||
self.edge2index = edge2index
|
||||
self.lastact = nn.Sequential(nn.BatchNorm2d(C_prev), nn.ReLU(inplace=True))
|
||||
self.global_pooling = nn.AdaptiveAvgPool2d(1)
|
||||
self.classifier = nn.Linear(C_prev, num_classes)
|
||||
self.arch_normal_parameters = nn.Parameter(
|
||||
1e-3 * torch.randn(num_edge, len(search_space))
|
||||
)
|
||||
self.arch_reduce_parameters = nn.Parameter(
|
||||
1e-3 * torch.randn(num_edge, len(search_space))
|
||||
)
|
||||
self.tau = 10
|
||||
|
||||
def get_weights(self):
|
||||
xlist = list(self.stem.parameters()) + list(self.cells.parameters())
|
||||
xlist += list(self.lastact.parameters()) + list(
|
||||
self.global_pooling.parameters()
|
||||
)
|
||||
xlist += list(self.classifier.parameters())
|
||||
return xlist
|
||||
|
||||
def set_tau(self, tau):
|
||||
self.tau = tau
|
||||
|
||||
def get_tau(self):
|
||||
return self.tau
|
||||
|
||||
def get_alphas(self):
|
||||
return [self.arch_normal_parameters, self.arch_reduce_parameters]
|
||||
|
||||
def show_alphas(self):
|
||||
with torch.no_grad():
|
||||
A = "arch-normal-parameters :\n{:}".format(
|
||||
nn.functional.softmax(self.arch_normal_parameters, dim=-1).cpu()
|
||||
)
|
||||
B = "arch-reduce-parameters :\n{:}".format(
|
||||
nn.functional.softmax(self.arch_reduce_parameters, dim=-1).cpu()
|
||||
)
|
||||
return "{:}\n{:}".format(A, B)
|
||||
|
||||
def get_message(self):
|
||||
string = self.extra_repr()
|
||||
for i, cell in enumerate(self.cells):
|
||||
string += "\n {:02d}/{:02d} :: {:}".format(
|
||||
i, len(self.cells), cell.extra_repr()
|
||||
)
|
||||
return string
|
||||
|
||||
def extra_repr(self):
|
||||
return "{name}(C={_C}, N={_layerN}, steps={_steps}, multiplier={_multiplier}, L={_Layer})".format(
|
||||
name=self.__class__.__name__, **self.__dict__
|
||||
)
|
||||
|
||||
def genotype(self):
|
||||
def _parse(weights):
|
||||
gene = []
|
||||
for i in range(self._steps):
|
||||
edges = []
|
||||
for j in range(2 + i):
|
||||
node_str = "{:}<-{:}".format(i, j)
|
||||
ws = weights[self.edge2index[node_str]]
|
||||
for k, op_name in enumerate(self.op_names):
|
||||
if op_name == "none":
|
||||
continue
|
||||
edges.append((op_name, j, ws[k]))
|
||||
edges = sorted(edges, key=lambda x: -x[-1])
|
||||
selected_edges = edges[:2]
|
||||
gene.append(tuple(selected_edges))
|
||||
return gene
|
||||
|
||||
with torch.no_grad():
|
||||
gene_normal = _parse(
|
||||
torch.softmax(self.arch_normal_parameters, dim=-1).cpu().numpy()
|
||||
)
|
||||
gene_reduce = _parse(
|
||||
torch.softmax(self.arch_reduce_parameters, dim=-1).cpu().numpy()
|
||||
)
|
||||
return {
|
||||
"normal": gene_normal,
|
||||
"normal_concat": list(
|
||||
range(2 + self._steps - self._multiplier, self._steps + 2)
|
||||
),
|
||||
"reduce": gene_reduce,
|
||||
"reduce_concat": list(
|
||||
range(2 + self._steps - self._multiplier, self._steps + 2)
|
||||
),
|
||||
}
|
||||
|
||||
def forward(self, inputs):
|
||||
def get_gumbel_prob(xins):
|
||||
while True:
|
||||
gumbels = -torch.empty_like(xins).exponential_().log()
|
||||
logits = (xins.log_softmax(dim=1) + gumbels) / self.tau
|
||||
probs = nn.functional.softmax(logits, dim=1)
|
||||
index = probs.max(-1, keepdim=True)[1]
|
||||
one_h = torch.zeros_like(logits).scatter_(-1, index, 1.0)
|
||||
hardwts = one_h - probs.detach() + probs
|
||||
if (
|
||||
(torch.isinf(gumbels).any())
|
||||
or (torch.isinf(probs).any())
|
||||
or (torch.isnan(probs).any())
|
||||
):
|
||||
continue
|
||||
else:
|
||||
break
|
||||
return hardwts, index
|
||||
|
||||
normal_hardwts, normal_index = get_gumbel_prob(self.arch_normal_parameters)
|
||||
reduce_hardwts, reduce_index = get_gumbel_prob(self.arch_reduce_parameters)
|
||||
|
||||
s0 = s1 = self.stem(inputs)
|
||||
for i, cell in enumerate(self.cells):
|
||||
if cell.reduction:
|
||||
hardwts, index = reduce_hardwts, reduce_index
|
||||
else:
|
||||
hardwts, index = normal_hardwts, normal_index
|
||||
s0, s1 = s1, cell.forward_gdas(s0, s1, hardwts, index)
|
||||
out = self.lastact(s1)
|
||||
out = self.global_pooling(out)
|
||||
out = out.view(out.size(0), -1)
|
||||
logits = self.classifier(out)
|
||||
|
||||
return out, logits
|
102
xautodl/models/cell_searchs/search_model_random.py
Normal file
102
xautodl/models/cell_searchs/search_model_random.py
Normal file
@@ -0,0 +1,102 @@
|
||||
##################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
|
||||
##############################################################################
|
||||
# Random Search and Reproducibility for Neural Architecture Search, UAI 2019 #
|
||||
##############################################################################
|
||||
import torch, random
|
||||
import torch.nn as nn
|
||||
from copy import deepcopy
|
||||
from ..cell_operations import ResNetBasicblock
|
||||
from .search_cells import NAS201SearchCell as SearchCell
|
||||
from .genotypes import Structure
|
||||
|
||||
|
||||
class TinyNetworkRANDOM(nn.Module):
|
||||
def __init__(
|
||||
self, C, N, max_nodes, num_classes, search_space, affine, track_running_stats
|
||||
):
|
||||
super(TinyNetworkRANDOM, self).__init__()
|
||||
self._C = C
|
||||
self._layerN = N
|
||||
self.max_nodes = max_nodes
|
||||
self.stem = nn.Sequential(
|
||||
nn.Conv2d(3, C, kernel_size=3, padding=1, bias=False), nn.BatchNorm2d(C)
|
||||
)
|
||||
|
||||
layer_channels = [C] * N + [C * 2] + [C * 2] * N + [C * 4] + [C * 4] * N
|
||||
layer_reductions = [False] * N + [True] + [False] * N + [True] + [False] * N
|
||||
|
||||
C_prev, num_edge, edge2index = C, None, None
|
||||
self.cells = nn.ModuleList()
|
||||
for index, (C_curr, reduction) in enumerate(
|
||||
zip(layer_channels, layer_reductions)
|
||||
):
|
||||
if reduction:
|
||||
cell = ResNetBasicblock(C_prev, C_curr, 2)
|
||||
else:
|
||||
cell = SearchCell(
|
||||
C_prev,
|
||||
C_curr,
|
||||
1,
|
||||
max_nodes,
|
||||
search_space,
|
||||
affine,
|
||||
track_running_stats,
|
||||
)
|
||||
if num_edge is None:
|
||||
num_edge, edge2index = cell.num_edges, cell.edge2index
|
||||
else:
|
||||
assert (
|
||||
num_edge == cell.num_edges and edge2index == cell.edge2index
|
||||
), "invalid {:} vs. {:}.".format(num_edge, cell.num_edges)
|
||||
self.cells.append(cell)
|
||||
C_prev = cell.out_dim
|
||||
self.op_names = deepcopy(search_space)
|
||||
self._Layer = len(self.cells)
|
||||
self.edge2index = edge2index
|
||||
self.lastact = nn.Sequential(nn.BatchNorm2d(C_prev), nn.ReLU(inplace=True))
|
||||
self.global_pooling = nn.AdaptiveAvgPool2d(1)
|
||||
self.classifier = nn.Linear(C_prev, num_classes)
|
||||
self.arch_cache = None
|
||||
|
||||
def get_message(self):
|
||||
string = self.extra_repr()
|
||||
for i, cell in enumerate(self.cells):
|
||||
string += "\n {:02d}/{:02d} :: {:}".format(
|
||||
i, len(self.cells), cell.extra_repr()
|
||||
)
|
||||
return string
|
||||
|
||||
def extra_repr(self):
|
||||
return "{name}(C={_C}, Max-Nodes={max_nodes}, N={_layerN}, L={_Layer})".format(
|
||||
name=self.__class__.__name__, **self.__dict__
|
||||
)
|
||||
|
||||
def random_genotype(self, set_cache):
|
||||
genotypes = []
|
||||
for i in range(1, self.max_nodes):
|
||||
xlist = []
|
||||
for j in range(i):
|
||||
node_str = "{:}<-{:}".format(i, j)
|
||||
op_name = random.choice(self.op_names)
|
||||
xlist.append((op_name, j))
|
||||
genotypes.append(tuple(xlist))
|
||||
arch = Structure(genotypes)
|
||||
if set_cache:
|
||||
self.arch_cache = arch
|
||||
return arch
|
||||
|
||||
def forward(self, inputs):
|
||||
|
||||
feature = self.stem(inputs)
|
||||
for i, cell in enumerate(self.cells):
|
||||
if isinstance(cell, SearchCell):
|
||||
feature = cell.forward_dynamic(feature, self.arch_cache)
|
||||
else:
|
||||
feature = cell(feature)
|
||||
|
||||
out = self.lastact(feature)
|
||||
out = self.global_pooling(out)
|
||||
out = out.view(out.size(0), -1)
|
||||
logits = self.classifier(out)
|
||||
return out, logits
|
178
xautodl/models/cell_searchs/search_model_setn.py
Normal file
178
xautodl/models/cell_searchs/search_model_setn.py
Normal file
@@ -0,0 +1,178 @@
|
||||
#####################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 #
|
||||
######################################################################################
|
||||
# One-Shot Neural Architecture Search via Self-Evaluated Template Network, ICCV 2019 #
|
||||
######################################################################################
|
||||
import torch, random
|
||||
import torch.nn as nn
|
||||
from copy import deepcopy
|
||||
from ..cell_operations import ResNetBasicblock
|
||||
from .search_cells import NAS201SearchCell as SearchCell
|
||||
from .genotypes import Structure
|
||||
|
||||
|
||||
class TinyNetworkSETN(nn.Module):
|
||||
def __init__(
|
||||
self, C, N, max_nodes, num_classes, search_space, affine, track_running_stats
|
||||
):
|
||||
super(TinyNetworkSETN, self).__init__()
|
||||
self._C = C
|
||||
self._layerN = N
|
||||
self.max_nodes = max_nodes
|
||||
self.stem = nn.Sequential(
|
||||
nn.Conv2d(3, C, kernel_size=3, padding=1, bias=False), nn.BatchNorm2d(C)
|
||||
)
|
||||
|
||||
layer_channels = [C] * N + [C * 2] + [C * 2] * N + [C * 4] + [C * 4] * N
|
||||
layer_reductions = [False] * N + [True] + [False] * N + [True] + [False] * N
|
||||
|
||||
C_prev, num_edge, edge2index = C, None, None
|
||||
self.cells = nn.ModuleList()
|
||||
for index, (C_curr, reduction) in enumerate(
|
||||
zip(layer_channels, layer_reductions)
|
||||
):
|
||||
if reduction:
|
||||
cell = ResNetBasicblock(C_prev, C_curr, 2)
|
||||
else:
|
||||
cell = SearchCell(
|
||||
C_prev,
|
||||
C_curr,
|
||||
1,
|
||||
max_nodes,
|
||||
search_space,
|
||||
affine,
|
||||
track_running_stats,
|
||||
)
|
||||
if num_edge is None:
|
||||
num_edge, edge2index = cell.num_edges, cell.edge2index
|
||||
else:
|
||||
assert (
|
||||
num_edge == cell.num_edges and edge2index == cell.edge2index
|
||||
), "invalid {:} vs. {:}.".format(num_edge, cell.num_edges)
|
||||
self.cells.append(cell)
|
||||
C_prev = cell.out_dim
|
||||
self.op_names = deepcopy(search_space)
|
||||
self._Layer = len(self.cells)
|
||||
self.edge2index = edge2index
|
||||
self.lastact = nn.Sequential(nn.BatchNorm2d(C_prev), nn.ReLU(inplace=True))
|
||||
self.global_pooling = nn.AdaptiveAvgPool2d(1)
|
||||
self.classifier = nn.Linear(C_prev, num_classes)
|
||||
self.arch_parameters = nn.Parameter(
|
||||
1e-3 * torch.randn(num_edge, len(search_space))
|
||||
)
|
||||
self.mode = "urs"
|
||||
self.dynamic_cell = None
|
||||
|
||||
def set_cal_mode(self, mode, dynamic_cell=None):
|
||||
assert mode in ["urs", "joint", "select", "dynamic"]
|
||||
self.mode = mode
|
||||
if mode == "dynamic":
|
||||
self.dynamic_cell = deepcopy(dynamic_cell)
|
||||
else:
|
||||
self.dynamic_cell = None
|
||||
|
||||
def get_cal_mode(self):
|
||||
return self.mode
|
||||
|
||||
def get_weights(self):
|
||||
xlist = list(self.stem.parameters()) + list(self.cells.parameters())
|
||||
xlist += list(self.lastact.parameters()) + list(
|
||||
self.global_pooling.parameters()
|
||||
)
|
||||
xlist += list(self.classifier.parameters())
|
||||
return xlist
|
||||
|
||||
def get_alphas(self):
|
||||
return [self.arch_parameters]
|
||||
|
||||
def get_message(self):
|
||||
string = self.extra_repr()
|
||||
for i, cell in enumerate(self.cells):
|
||||
string += "\n {:02d}/{:02d} :: {:}".format(
|
||||
i, len(self.cells), cell.extra_repr()
|
||||
)
|
||||
return string
|
||||
|
||||
def extra_repr(self):
|
||||
return "{name}(C={_C}, Max-Nodes={max_nodes}, N={_layerN}, L={_Layer})".format(
|
||||
name=self.__class__.__name__, **self.__dict__
|
||||
)
|
||||
|
||||
def genotype(self):
|
||||
genotypes = []
|
||||
for i in range(1, self.max_nodes):
|
||||
xlist = []
|
||||
for j in range(i):
|
||||
node_str = "{:}<-{:}".format(i, j)
|
||||
with torch.no_grad():
|
||||
weights = self.arch_parameters[self.edge2index[node_str]]
|
||||
op_name = self.op_names[weights.argmax().item()]
|
||||
xlist.append((op_name, j))
|
||||
genotypes.append(tuple(xlist))
|
||||
return Structure(genotypes)
|
||||
|
||||
def dync_genotype(self, use_random=False):
|
||||
genotypes = []
|
||||
with torch.no_grad():
|
||||
alphas_cpu = nn.functional.softmax(self.arch_parameters, dim=-1)
|
||||
for i in range(1, self.max_nodes):
|
||||
xlist = []
|
||||
for j in range(i):
|
||||
node_str = "{:}<-{:}".format(i, j)
|
||||
if use_random:
|
||||
op_name = random.choice(self.op_names)
|
||||
else:
|
||||
weights = alphas_cpu[self.edge2index[node_str]]
|
||||
op_index = torch.multinomial(weights, 1).item()
|
||||
op_name = self.op_names[op_index]
|
||||
xlist.append((op_name, j))
|
||||
genotypes.append(tuple(xlist))
|
||||
return Structure(genotypes)
|
||||
|
||||
def get_log_prob(self, arch):
|
||||
with torch.no_grad():
|
||||
logits = nn.functional.log_softmax(self.arch_parameters, dim=-1)
|
||||
select_logits = []
|
||||
for i, node_info in enumerate(arch.nodes):
|
||||
for op, xin in node_info:
|
||||
node_str = "{:}<-{:}".format(i + 1, xin)
|
||||
op_index = self.op_names.index(op)
|
||||
select_logits.append(logits[self.edge2index[node_str], op_index])
|
||||
return sum(select_logits).item()
|
||||
|
||||
def return_topK(self, K):
|
||||
archs = Structure.gen_all(self.op_names, self.max_nodes, False)
|
||||
pairs = [(self.get_log_prob(arch), arch) for arch in archs]
|
||||
if K < 0 or K >= len(archs):
|
||||
K = len(archs)
|
||||
sorted_pairs = sorted(pairs, key=lambda x: -x[0])
|
||||
return_pairs = [sorted_pairs[_][1] for _ in range(K)]
|
||||
return return_pairs
|
||||
|
||||
def forward(self, inputs):
|
||||
alphas = nn.functional.softmax(self.arch_parameters, dim=-1)
|
||||
with torch.no_grad():
|
||||
alphas_cpu = alphas.detach().cpu()
|
||||
|
||||
feature = self.stem(inputs)
|
||||
for i, cell in enumerate(self.cells):
|
||||
if isinstance(cell, SearchCell):
|
||||
if self.mode == "urs":
|
||||
feature = cell.forward_urs(feature)
|
||||
elif self.mode == "select":
|
||||
feature = cell.forward_select(feature, alphas_cpu)
|
||||
elif self.mode == "joint":
|
||||
feature = cell.forward_joint(feature, alphas)
|
||||
elif self.mode == "dynamic":
|
||||
feature = cell.forward_dynamic(feature, self.dynamic_cell)
|
||||
else:
|
||||
raise ValueError("invalid mode={:}".format(self.mode))
|
||||
else:
|
||||
feature = cell(feature)
|
||||
|
||||
out = self.lastact(feature)
|
||||
out = self.global_pooling(out)
|
||||
out = out.view(out.size(0), -1)
|
||||
logits = self.classifier(out)
|
||||
|
||||
return out, logits
|
205
xautodl/models/cell_searchs/search_model_setn_nasnet.py
Normal file
205
xautodl/models/cell_searchs/search_model_setn_nasnet.py
Normal file
@@ -0,0 +1,205 @@
|
||||
#####################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 #
|
||||
######################################################################################
|
||||
# One-Shot Neural Architecture Search via Self-Evaluated Template Network, ICCV 2019 #
|
||||
######################################################################################
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from copy import deepcopy
|
||||
from typing import List, Text, Dict
|
||||
from .search_cells import NASNetSearchCell as SearchCell
|
||||
|
||||
|
||||
# The macro structure is based on NASNet
|
||||
class NASNetworkSETN(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
C: int,
|
||||
N: int,
|
||||
steps: int,
|
||||
multiplier: int,
|
||||
stem_multiplier: int,
|
||||
num_classes: int,
|
||||
search_space: List[Text],
|
||||
affine: bool,
|
||||
track_running_stats: bool,
|
||||
):
|
||||
super(NASNetworkSETN, self).__init__()
|
||||
self._C = C
|
||||
self._layerN = N
|
||||
self._steps = steps
|
||||
self._multiplier = multiplier
|
||||
self.stem = nn.Sequential(
|
||||
nn.Conv2d(3, C * stem_multiplier, kernel_size=3, padding=1, bias=False),
|
||||
nn.BatchNorm2d(C * stem_multiplier),
|
||||
)
|
||||
|
||||
# config for each layer
|
||||
layer_channels = (
|
||||
[C] * N + [C * 2] + [C * 2] * (N - 1) + [C * 4] + [C * 4] * (N - 1)
|
||||
)
|
||||
layer_reductions = (
|
||||
[False] * N + [True] + [False] * (N - 1) + [True] + [False] * (N - 1)
|
||||
)
|
||||
|
||||
num_edge, edge2index = None, None
|
||||
C_prev_prev, C_prev, C_curr, reduction_prev = (
|
||||
C * stem_multiplier,
|
||||
C * stem_multiplier,
|
||||
C,
|
||||
False,
|
||||
)
|
||||
|
||||
self.cells = nn.ModuleList()
|
||||
for index, (C_curr, reduction) in enumerate(
|
||||
zip(layer_channels, layer_reductions)
|
||||
):
|
||||
cell = SearchCell(
|
||||
search_space,
|
||||
steps,
|
||||
multiplier,
|
||||
C_prev_prev,
|
||||
C_prev,
|
||||
C_curr,
|
||||
reduction,
|
||||
reduction_prev,
|
||||
affine,
|
||||
track_running_stats,
|
||||
)
|
||||
if num_edge is None:
|
||||
num_edge, edge2index = cell.num_edges, cell.edge2index
|
||||
else:
|
||||
assert (
|
||||
num_edge == cell.num_edges and edge2index == cell.edge2index
|
||||
), "invalid {:} vs. {:}.".format(num_edge, cell.num_edges)
|
||||
self.cells.append(cell)
|
||||
C_prev_prev, C_prev, reduction_prev = C_prev, multiplier * C_curr, reduction
|
||||
self.op_names = deepcopy(search_space)
|
||||
self._Layer = len(self.cells)
|
||||
self.edge2index = edge2index
|
||||
self.lastact = nn.Sequential(nn.BatchNorm2d(C_prev), nn.ReLU(inplace=True))
|
||||
self.global_pooling = nn.AdaptiveAvgPool2d(1)
|
||||
self.classifier = nn.Linear(C_prev, num_classes)
|
||||
self.arch_normal_parameters = nn.Parameter(
|
||||
1e-3 * torch.randn(num_edge, len(search_space))
|
||||
)
|
||||
self.arch_reduce_parameters = nn.Parameter(
|
||||
1e-3 * torch.randn(num_edge, len(search_space))
|
||||
)
|
||||
self.mode = "urs"
|
||||
self.dynamic_cell = None
|
||||
|
||||
def set_cal_mode(self, mode, dynamic_cell=None):
|
||||
assert mode in ["urs", "joint", "select", "dynamic"]
|
||||
self.mode = mode
|
||||
if mode == "dynamic":
|
||||
self.dynamic_cell = deepcopy(dynamic_cell)
|
||||
else:
|
||||
self.dynamic_cell = None
|
||||
|
||||
def get_weights(self):
|
||||
xlist = list(self.stem.parameters()) + list(self.cells.parameters())
|
||||
xlist += list(self.lastact.parameters()) + list(
|
||||
self.global_pooling.parameters()
|
||||
)
|
||||
xlist += list(self.classifier.parameters())
|
||||
return xlist
|
||||
|
||||
def get_alphas(self):
|
||||
return [self.arch_normal_parameters, self.arch_reduce_parameters]
|
||||
|
||||
def show_alphas(self):
|
||||
with torch.no_grad():
|
||||
A = "arch-normal-parameters :\n{:}".format(
|
||||
nn.functional.softmax(self.arch_normal_parameters, dim=-1).cpu()
|
||||
)
|
||||
B = "arch-reduce-parameters :\n{:}".format(
|
||||
nn.functional.softmax(self.arch_reduce_parameters, dim=-1).cpu()
|
||||
)
|
||||
return "{:}\n{:}".format(A, B)
|
||||
|
||||
def get_message(self):
|
||||
string = self.extra_repr()
|
||||
for i, cell in enumerate(self.cells):
|
||||
string += "\n {:02d}/{:02d} :: {:}".format(
|
||||
i, len(self.cells), cell.extra_repr()
|
||||
)
|
||||
return string
|
||||
|
||||
def extra_repr(self):
|
||||
return "{name}(C={_C}, N={_layerN}, steps={_steps}, multiplier={_multiplier}, L={_Layer})".format(
|
||||
name=self.__class__.__name__, **self.__dict__
|
||||
)
|
||||
|
||||
def dync_genotype(self, use_random=False):
|
||||
genotypes = []
|
||||
with torch.no_grad():
|
||||
alphas_cpu = nn.functional.softmax(self.arch_parameters, dim=-1)
|
||||
for i in range(1, self.max_nodes):
|
||||
xlist = []
|
||||
for j in range(i):
|
||||
node_str = "{:}<-{:}".format(i, j)
|
||||
if use_random:
|
||||
op_name = random.choice(self.op_names)
|
||||
else:
|
||||
weights = alphas_cpu[self.edge2index[node_str]]
|
||||
op_index = torch.multinomial(weights, 1).item()
|
||||
op_name = self.op_names[op_index]
|
||||
xlist.append((op_name, j))
|
||||
genotypes.append(tuple(xlist))
|
||||
return Structure(genotypes)
|
||||
|
||||
def genotype(self):
|
||||
def _parse(weights):
|
||||
gene = []
|
||||
for i in range(self._steps):
|
||||
edges = []
|
||||
for j in range(2 + i):
|
||||
node_str = "{:}<-{:}".format(i, j)
|
||||
ws = weights[self.edge2index[node_str]]
|
||||
for k, op_name in enumerate(self.op_names):
|
||||
if op_name == "none":
|
||||
continue
|
||||
edges.append((op_name, j, ws[k]))
|
||||
edges = sorted(edges, key=lambda x: -x[-1])
|
||||
selected_edges = edges[:2]
|
||||
gene.append(tuple(selected_edges))
|
||||
return gene
|
||||
|
||||
with torch.no_grad():
|
||||
gene_normal = _parse(
|
||||
torch.softmax(self.arch_normal_parameters, dim=-1).cpu().numpy()
|
||||
)
|
||||
gene_reduce = _parse(
|
||||
torch.softmax(self.arch_reduce_parameters, dim=-1).cpu().numpy()
|
||||
)
|
||||
return {
|
||||
"normal": gene_normal,
|
||||
"normal_concat": list(
|
||||
range(2 + self._steps - self._multiplier, self._steps + 2)
|
||||
),
|
||||
"reduce": gene_reduce,
|
||||
"reduce_concat": list(
|
||||
range(2 + self._steps - self._multiplier, self._steps + 2)
|
||||
),
|
||||
}
|
||||
|
||||
def forward(self, inputs):
|
||||
normal_hardwts = nn.functional.softmax(self.arch_normal_parameters, dim=-1)
|
||||
reduce_hardwts = nn.functional.softmax(self.arch_reduce_parameters, dim=-1)
|
||||
|
||||
s0 = s1 = self.stem(inputs)
|
||||
for i, cell in enumerate(self.cells):
|
||||
# [TODO]
|
||||
raise NotImplementedError
|
||||
if cell.reduction:
|
||||
hardwts, index = reduce_hardwts, reduce_index
|
||||
else:
|
||||
hardwts, index = normal_hardwts, normal_index
|
||||
s0, s1 = s1, cell.forward_gdas(s0, s1, hardwts, index)
|
||||
out = self.lastact(s1)
|
||||
out = self.global_pooling(out)
|
||||
out = out.view(out.size(0), -1)
|
||||
logits = self.classifier(out)
|
||||
|
||||
return out, logits
|
74
xautodl/models/clone_weights.py
Normal file
74
xautodl/models/clone_weights.py
Normal file
@@ -0,0 +1,74 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
|
||||
def copy_conv(module, init):
|
||||
assert isinstance(module, nn.Conv2d), "invalid module : {:}".format(module)
|
||||
assert isinstance(init, nn.Conv2d), "invalid module : {:}".format(init)
|
||||
new_i, new_o = module.in_channels, module.out_channels
|
||||
module.weight.copy_(init.weight.detach()[:new_o, :new_i])
|
||||
if module.bias is not None:
|
||||
module.bias.copy_(init.bias.detach()[:new_o])
|
||||
|
||||
|
||||
def copy_bn(module, init):
|
||||
assert isinstance(module, nn.BatchNorm2d), "invalid module : {:}".format(module)
|
||||
assert isinstance(init, nn.BatchNorm2d), "invalid module : {:}".format(init)
|
||||
num_features = module.num_features
|
||||
if module.weight is not None:
|
||||
module.weight.copy_(init.weight.detach()[:num_features])
|
||||
if module.bias is not None:
|
||||
module.bias.copy_(init.bias.detach()[:num_features])
|
||||
if module.running_mean is not None:
|
||||
module.running_mean.copy_(init.running_mean.detach()[:num_features])
|
||||
if module.running_var is not None:
|
||||
module.running_var.copy_(init.running_var.detach()[:num_features])
|
||||
|
||||
|
||||
def copy_fc(module, init):
|
||||
assert isinstance(module, nn.Linear), "invalid module : {:}".format(module)
|
||||
assert isinstance(init, nn.Linear), "invalid module : {:}".format(init)
|
||||
new_i, new_o = module.in_features, module.out_features
|
||||
module.weight.copy_(init.weight.detach()[:new_o, :new_i])
|
||||
if module.bias is not None:
|
||||
module.bias.copy_(init.bias.detach()[:new_o])
|
||||
|
||||
|
||||
def copy_base(module, init):
|
||||
assert type(module).__name__ in [
|
||||
"ConvBNReLU",
|
||||
"Downsample",
|
||||
], "invalid module : {:}".format(module)
|
||||
assert type(init).__name__ in [
|
||||
"ConvBNReLU",
|
||||
"Downsample",
|
||||
], "invalid module : {:}".format(init)
|
||||
if module.conv is not None:
|
||||
copy_conv(module.conv, init.conv)
|
||||
if module.bn is not None:
|
||||
copy_bn(module.bn, init.bn)
|
||||
|
||||
|
||||
def copy_basic(module, init):
|
||||
copy_base(module.conv_a, init.conv_a)
|
||||
copy_base(module.conv_b, init.conv_b)
|
||||
if module.downsample is not None:
|
||||
if init.downsample is not None:
|
||||
copy_base(module.downsample, init.downsample)
|
||||
# else:
|
||||
# import pdb; pdb.set_trace()
|
||||
|
||||
|
||||
def init_from_model(network, init_model):
|
||||
with torch.no_grad():
|
||||
copy_fc(network.classifier, init_model.classifier)
|
||||
for base, target in zip(init_model.layers, network.layers):
|
||||
assert (
|
||||
type(base).__name__ == type(target).__name__
|
||||
), "invalid type : {:} vs {:}".format(base, target)
|
||||
if type(base).__name__ == "ConvBNReLU":
|
||||
copy_base(target, base)
|
||||
elif type(base).__name__ == "ResNetBasicblock":
|
||||
copy_basic(target, base)
|
||||
else:
|
||||
raise ValueError("unknown type name : {:}".format(type(base).__name__))
|
16
xautodl/models/initialization.py
Normal file
16
xautodl/models/initialization.py
Normal file
@@ -0,0 +1,16 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
|
||||
def initialize_resnet(m):
|
||||
if isinstance(m, nn.Conv2d):
|
||||
nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu")
|
||||
if m.bias is not None:
|
||||
nn.init.constant_(m.bias, 0)
|
||||
elif isinstance(m, nn.BatchNorm2d):
|
||||
nn.init.constant_(m.weight, 1)
|
||||
if m.bias is not None:
|
||||
nn.init.constant_(m.bias, 0)
|
||||
elif isinstance(m, nn.Linear):
|
||||
nn.init.normal_(m.weight, 0, 0.01)
|
||||
nn.init.constant_(m.bias, 0)
|
286
xautodl/models/shape_infers/InferCifarResNet.py
Normal file
286
xautodl/models/shape_infers/InferCifarResNet.py
Normal file
@@ -0,0 +1,286 @@
|
||||
#####################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 #
|
||||
#####################################################
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from ..initialization import initialize_resnet
|
||||
|
||||
|
||||
class ConvBNReLU(nn.Module):
|
||||
def __init__(
|
||||
self, nIn, nOut, kernel, stride, padding, bias, has_avg, has_bn, has_relu
|
||||
):
|
||||
super(ConvBNReLU, self).__init__()
|
||||
if has_avg:
|
||||
self.avg = nn.AvgPool2d(kernel_size=2, stride=2, padding=0)
|
||||
else:
|
||||
self.avg = None
|
||||
self.conv = nn.Conv2d(
|
||||
nIn,
|
||||
nOut,
|
||||
kernel_size=kernel,
|
||||
stride=stride,
|
||||
padding=padding,
|
||||
dilation=1,
|
||||
groups=1,
|
||||
bias=bias,
|
||||
)
|
||||
if has_bn:
|
||||
self.bn = nn.BatchNorm2d(nOut)
|
||||
else:
|
||||
self.bn = None
|
||||
if has_relu:
|
||||
self.relu = nn.ReLU(inplace=True)
|
||||
else:
|
||||
self.relu = None
|
||||
|
||||
def forward(self, inputs):
|
||||
if self.avg:
|
||||
out = self.avg(inputs)
|
||||
else:
|
||||
out = inputs
|
||||
conv = self.conv(out)
|
||||
if self.bn:
|
||||
out = self.bn(conv)
|
||||
else:
|
||||
out = conv
|
||||
if self.relu:
|
||||
out = self.relu(out)
|
||||
else:
|
||||
out = out
|
||||
|
||||
return out
|
||||
|
||||
|
||||
class ResNetBasicblock(nn.Module):
|
||||
num_conv = 2
|
||||
expansion = 1
|
||||
|
||||
def __init__(self, iCs, stride):
|
||||
super(ResNetBasicblock, self).__init__()
|
||||
assert stride == 1 or stride == 2, "invalid stride {:}".format(stride)
|
||||
assert isinstance(iCs, tuple) or isinstance(
|
||||
iCs, list
|
||||
), "invalid type of iCs : {:}".format(iCs)
|
||||
assert len(iCs) == 3, "invalid lengths of iCs : {:}".format(iCs)
|
||||
|
||||
self.conv_a = ConvBNReLU(
|
||||
iCs[0],
|
||||
iCs[1],
|
||||
3,
|
||||
stride,
|
||||
1,
|
||||
False,
|
||||
has_avg=False,
|
||||
has_bn=True,
|
||||
has_relu=True,
|
||||
)
|
||||
self.conv_b = ConvBNReLU(
|
||||
iCs[1], iCs[2], 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=False
|
||||
)
|
||||
residual_in = iCs[0]
|
||||
if stride == 2:
|
||||
self.downsample = ConvBNReLU(
|
||||
iCs[0],
|
||||
iCs[2],
|
||||
1,
|
||||
1,
|
||||
0,
|
||||
False,
|
||||
has_avg=True,
|
||||
has_bn=False,
|
||||
has_relu=False,
|
||||
)
|
||||
residual_in = iCs[2]
|
||||
elif iCs[0] != iCs[2]:
|
||||
self.downsample = ConvBNReLU(
|
||||
iCs[0],
|
||||
iCs[2],
|
||||
1,
|
||||
1,
|
||||
0,
|
||||
False,
|
||||
has_avg=False,
|
||||
has_bn=True,
|
||||
has_relu=False,
|
||||
)
|
||||
else:
|
||||
self.downsample = None
|
||||
# self.out_dim = max(residual_in, iCs[2])
|
||||
self.out_dim = iCs[2]
|
||||
|
||||
def forward(self, inputs):
|
||||
basicblock = self.conv_a(inputs)
|
||||
basicblock = self.conv_b(basicblock)
|
||||
|
||||
if self.downsample is not None:
|
||||
residual = self.downsample(inputs)
|
||||
else:
|
||||
residual = inputs
|
||||
out = residual + basicblock
|
||||
return F.relu(out, inplace=True)
|
||||
|
||||
|
||||
class ResNetBottleneck(nn.Module):
|
||||
expansion = 4
|
||||
num_conv = 3
|
||||
|
||||
def __init__(self, iCs, stride):
|
||||
super(ResNetBottleneck, self).__init__()
|
||||
assert stride == 1 or stride == 2, "invalid stride {:}".format(stride)
|
||||
assert isinstance(iCs, tuple) or isinstance(
|
||||
iCs, list
|
||||
), "invalid type of iCs : {:}".format(iCs)
|
||||
assert len(iCs) == 4, "invalid lengths of iCs : {:}".format(iCs)
|
||||
self.conv_1x1 = ConvBNReLU(
|
||||
iCs[0], iCs[1], 1, 1, 0, False, has_avg=False, has_bn=True, has_relu=True
|
||||
)
|
||||
self.conv_3x3 = ConvBNReLU(
|
||||
iCs[1],
|
||||
iCs[2],
|
||||
3,
|
||||
stride,
|
||||
1,
|
||||
False,
|
||||
has_avg=False,
|
||||
has_bn=True,
|
||||
has_relu=True,
|
||||
)
|
||||
self.conv_1x4 = ConvBNReLU(
|
||||
iCs[2], iCs[3], 1, 1, 0, False, has_avg=False, has_bn=True, has_relu=False
|
||||
)
|
||||
residual_in = iCs[0]
|
||||
if stride == 2:
|
||||
self.downsample = ConvBNReLU(
|
||||
iCs[0],
|
||||
iCs[3],
|
||||
1,
|
||||
1,
|
||||
0,
|
||||
False,
|
||||
has_avg=True,
|
||||
has_bn=False,
|
||||
has_relu=False,
|
||||
)
|
||||
residual_in = iCs[3]
|
||||
elif iCs[0] != iCs[3]:
|
||||
self.downsample = ConvBNReLU(
|
||||
iCs[0],
|
||||
iCs[3],
|
||||
1,
|
||||
1,
|
||||
0,
|
||||
False,
|
||||
has_avg=False,
|
||||
has_bn=False,
|
||||
has_relu=False,
|
||||
)
|
||||
residual_in = iCs[3]
|
||||
else:
|
||||
self.downsample = None
|
||||
# self.out_dim = max(residual_in, iCs[3])
|
||||
self.out_dim = iCs[3]
|
||||
|
||||
def forward(self, inputs):
|
||||
|
||||
bottleneck = self.conv_1x1(inputs)
|
||||
bottleneck = self.conv_3x3(bottleneck)
|
||||
bottleneck = self.conv_1x4(bottleneck)
|
||||
|
||||
if self.downsample is not None:
|
||||
residual = self.downsample(inputs)
|
||||
else:
|
||||
residual = inputs
|
||||
out = residual + bottleneck
|
||||
return F.relu(out, inplace=True)
|
||||
|
||||
|
||||
class InferCifarResNet(nn.Module):
|
||||
def __init__(
|
||||
self, block_name, depth, xblocks, xchannels, num_classes, zero_init_residual
|
||||
):
|
||||
super(InferCifarResNet, self).__init__()
|
||||
|
||||
# Model type specifies number of layers for CIFAR-10 and CIFAR-100 model
|
||||
if block_name == "ResNetBasicblock":
|
||||
block = ResNetBasicblock
|
||||
assert (depth - 2) % 6 == 0, "depth should be one of 20, 32, 44, 56, 110"
|
||||
layer_blocks = (depth - 2) // 6
|
||||
elif block_name == "ResNetBottleneck":
|
||||
block = ResNetBottleneck
|
||||
assert (depth - 2) % 9 == 0, "depth should be one of 164"
|
||||
layer_blocks = (depth - 2) // 9
|
||||
else:
|
||||
raise ValueError("invalid block : {:}".format(block_name))
|
||||
assert len(xblocks) == 3, "invalid xblocks : {:}".format(xblocks)
|
||||
|
||||
self.message = (
|
||||
"InferWidthCifarResNet : Depth : {:} , Layers for each block : {:}".format(
|
||||
depth, layer_blocks
|
||||
)
|
||||
)
|
||||
self.num_classes = num_classes
|
||||
self.xchannels = xchannels
|
||||
self.layers = nn.ModuleList(
|
||||
[
|
||||
ConvBNReLU(
|
||||
xchannels[0],
|
||||
xchannels[1],
|
||||
3,
|
||||
1,
|
||||
1,
|
||||
False,
|
||||
has_avg=False,
|
||||
has_bn=True,
|
||||
has_relu=True,
|
||||
)
|
||||
]
|
||||
)
|
||||
last_channel_idx = 1
|
||||
for stage in range(3):
|
||||
for iL in range(layer_blocks):
|
||||
num_conv = block.num_conv
|
||||
iCs = self.xchannels[last_channel_idx : last_channel_idx + num_conv + 1]
|
||||
stride = 2 if stage > 0 and iL == 0 else 1
|
||||
module = block(iCs, stride)
|
||||
last_channel_idx += num_conv
|
||||
self.xchannels[last_channel_idx] = module.out_dim
|
||||
self.layers.append(module)
|
||||
self.message += "\nstage={:}, ilayer={:02d}/{:02d}, block={:03d}, iCs={:}, oC={:3d}, stride={:}".format(
|
||||
stage,
|
||||
iL,
|
||||
layer_blocks,
|
||||
len(self.layers) - 1,
|
||||
iCs,
|
||||
module.out_dim,
|
||||
stride,
|
||||
)
|
||||
if iL + 1 == xblocks[stage]: # reach the maximum depth
|
||||
out_channel = module.out_dim
|
||||
for iiL in range(iL + 1, layer_blocks):
|
||||
last_channel_idx += num_conv
|
||||
self.xchannels[last_channel_idx] = module.out_dim
|
||||
break
|
||||
|
||||
self.avgpool = nn.AvgPool2d(8)
|
||||
self.classifier = nn.Linear(self.xchannels[-1], num_classes)
|
||||
|
||||
self.apply(initialize_resnet)
|
||||
if zero_init_residual:
|
||||
for m in self.modules():
|
||||
if isinstance(m, ResNetBasicblock):
|
||||
nn.init.constant_(m.conv_b.bn.weight, 0)
|
||||
elif isinstance(m, ResNetBottleneck):
|
||||
nn.init.constant_(m.conv_1x4.bn.weight, 0)
|
||||
|
||||
def get_message(self):
|
||||
return self.message
|
||||
|
||||
def forward(self, inputs):
|
||||
x = inputs
|
||||
for i, layer in enumerate(self.layers):
|
||||
x = layer(x)
|
||||
features = self.avgpool(x)
|
||||
features = features.view(features.size(0), -1)
|
||||
logits = self.classifier(features)
|
||||
return features, logits
|
263
xautodl/models/shape_infers/InferCifarResNet_depth.py
Normal file
263
xautodl/models/shape_infers/InferCifarResNet_depth.py
Normal file
@@ -0,0 +1,263 @@
|
||||
#####################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 #
|
||||
#####################################################
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from ..initialization import initialize_resnet
|
||||
|
||||
|
||||
class ConvBNReLU(nn.Module):
|
||||
def __init__(
|
||||
self, nIn, nOut, kernel, stride, padding, bias, has_avg, has_bn, has_relu
|
||||
):
|
||||
super(ConvBNReLU, self).__init__()
|
||||
if has_avg:
|
||||
self.avg = nn.AvgPool2d(kernel_size=2, stride=2, padding=0)
|
||||
else:
|
||||
self.avg = None
|
||||
self.conv = nn.Conv2d(
|
||||
nIn,
|
||||
nOut,
|
||||
kernel_size=kernel,
|
||||
stride=stride,
|
||||
padding=padding,
|
||||
dilation=1,
|
||||
groups=1,
|
||||
bias=bias,
|
||||
)
|
||||
if has_bn:
|
||||
self.bn = nn.BatchNorm2d(nOut)
|
||||
else:
|
||||
self.bn = None
|
||||
if has_relu:
|
||||
self.relu = nn.ReLU(inplace=True)
|
||||
else:
|
||||
self.relu = None
|
||||
|
||||
def forward(self, inputs):
|
||||
if self.avg:
|
||||
out = self.avg(inputs)
|
||||
else:
|
||||
out = inputs
|
||||
conv = self.conv(out)
|
||||
if self.bn:
|
||||
out = self.bn(conv)
|
||||
else:
|
||||
out = conv
|
||||
if self.relu:
|
||||
out = self.relu(out)
|
||||
else:
|
||||
out = out
|
||||
|
||||
return out
|
||||
|
||||
|
||||
class ResNetBasicblock(nn.Module):
|
||||
num_conv = 2
|
||||
expansion = 1
|
||||
|
||||
def __init__(self, inplanes, planes, stride):
|
||||
super(ResNetBasicblock, self).__init__()
|
||||
assert stride == 1 or stride == 2, "invalid stride {:}".format(stride)
|
||||
|
||||
self.conv_a = ConvBNReLU(
|
||||
inplanes,
|
||||
planes,
|
||||
3,
|
||||
stride,
|
||||
1,
|
||||
False,
|
||||
has_avg=False,
|
||||
has_bn=True,
|
||||
has_relu=True,
|
||||
)
|
||||
self.conv_b = ConvBNReLU(
|
||||
planes, planes, 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=False
|
||||
)
|
||||
if stride == 2:
|
||||
self.downsample = ConvBNReLU(
|
||||
inplanes,
|
||||
planes,
|
||||
1,
|
||||
1,
|
||||
0,
|
||||
False,
|
||||
has_avg=True,
|
||||
has_bn=False,
|
||||
has_relu=False,
|
||||
)
|
||||
elif inplanes != planes:
|
||||
self.downsample = ConvBNReLU(
|
||||
inplanes,
|
||||
planes,
|
||||
1,
|
||||
1,
|
||||
0,
|
||||
False,
|
||||
has_avg=False,
|
||||
has_bn=True,
|
||||
has_relu=False,
|
||||
)
|
||||
else:
|
||||
self.downsample = None
|
||||
self.out_dim = planes
|
||||
|
||||
def forward(self, inputs):
|
||||
basicblock = self.conv_a(inputs)
|
||||
basicblock = self.conv_b(basicblock)
|
||||
|
||||
if self.downsample is not None:
|
||||
residual = self.downsample(inputs)
|
||||
else:
|
||||
residual = inputs
|
||||
out = residual + basicblock
|
||||
return F.relu(out, inplace=True)
|
||||
|
||||
|
||||
class ResNetBottleneck(nn.Module):
|
||||
expansion = 4
|
||||
num_conv = 3
|
||||
|
||||
def __init__(self, inplanes, planes, stride):
|
||||
super(ResNetBottleneck, self).__init__()
|
||||
assert stride == 1 or stride == 2, "invalid stride {:}".format(stride)
|
||||
self.conv_1x1 = ConvBNReLU(
|
||||
inplanes, planes, 1, 1, 0, False, has_avg=False, has_bn=True, has_relu=True
|
||||
)
|
||||
self.conv_3x3 = ConvBNReLU(
|
||||
planes,
|
||||
planes,
|
||||
3,
|
||||
stride,
|
||||
1,
|
||||
False,
|
||||
has_avg=False,
|
||||
has_bn=True,
|
||||
has_relu=True,
|
||||
)
|
||||
self.conv_1x4 = ConvBNReLU(
|
||||
planes,
|
||||
planes * self.expansion,
|
||||
1,
|
||||
1,
|
||||
0,
|
||||
False,
|
||||
has_avg=False,
|
||||
has_bn=True,
|
||||
has_relu=False,
|
||||
)
|
||||
if stride == 2:
|
||||
self.downsample = ConvBNReLU(
|
||||
inplanes,
|
||||
planes * self.expansion,
|
||||
1,
|
||||
1,
|
||||
0,
|
||||
False,
|
||||
has_avg=True,
|
||||
has_bn=False,
|
||||
has_relu=False,
|
||||
)
|
||||
elif inplanes != planes * self.expansion:
|
||||
self.downsample = ConvBNReLU(
|
||||
inplanes,
|
||||
planes * self.expansion,
|
||||
1,
|
||||
1,
|
||||
0,
|
||||
False,
|
||||
has_avg=False,
|
||||
has_bn=False,
|
||||
has_relu=False,
|
||||
)
|
||||
else:
|
||||
self.downsample = None
|
||||
self.out_dim = planes * self.expansion
|
||||
|
||||
def forward(self, inputs):
|
||||
|
||||
bottleneck = self.conv_1x1(inputs)
|
||||
bottleneck = self.conv_3x3(bottleneck)
|
||||
bottleneck = self.conv_1x4(bottleneck)
|
||||
|
||||
if self.downsample is not None:
|
||||
residual = self.downsample(inputs)
|
||||
else:
|
||||
residual = inputs
|
||||
out = residual + bottleneck
|
||||
return F.relu(out, inplace=True)
|
||||
|
||||
|
||||
class InferDepthCifarResNet(nn.Module):
|
||||
def __init__(self, block_name, depth, xblocks, num_classes, zero_init_residual):
|
||||
super(InferDepthCifarResNet, self).__init__()
|
||||
|
||||
# Model type specifies number of layers for CIFAR-10 and CIFAR-100 model
|
||||
if block_name == "ResNetBasicblock":
|
||||
block = ResNetBasicblock
|
||||
assert (depth - 2) % 6 == 0, "depth should be one of 20, 32, 44, 56, 110"
|
||||
layer_blocks = (depth - 2) // 6
|
||||
elif block_name == "ResNetBottleneck":
|
||||
block = ResNetBottleneck
|
||||
assert (depth - 2) % 9 == 0, "depth should be one of 164"
|
||||
layer_blocks = (depth - 2) // 9
|
||||
else:
|
||||
raise ValueError("invalid block : {:}".format(block_name))
|
||||
assert len(xblocks) == 3, "invalid xblocks : {:}".format(xblocks)
|
||||
|
||||
self.message = (
|
||||
"InferWidthCifarResNet : Depth : {:} , Layers for each block : {:}".format(
|
||||
depth, layer_blocks
|
||||
)
|
||||
)
|
||||
self.num_classes = num_classes
|
||||
self.layers = nn.ModuleList(
|
||||
[
|
||||
ConvBNReLU(
|
||||
3, 16, 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=True
|
||||
)
|
||||
]
|
||||
)
|
||||
self.channels = [16]
|
||||
for stage in range(3):
|
||||
for iL in range(layer_blocks):
|
||||
iC = self.channels[-1]
|
||||
planes = 16 * (2 ** stage)
|
||||
stride = 2 if stage > 0 and iL == 0 else 1
|
||||
module = block(iC, planes, stride)
|
||||
self.channels.append(module.out_dim)
|
||||
self.layers.append(module)
|
||||
self.message += "\nstage={:}, ilayer={:02d}/{:02d}, block={:03d}, iC={:}, oC={:3d}, stride={:}".format(
|
||||
stage,
|
||||
iL,
|
||||
layer_blocks,
|
||||
len(self.layers) - 1,
|
||||
planes,
|
||||
module.out_dim,
|
||||
stride,
|
||||
)
|
||||
if iL + 1 == xblocks[stage]: # reach the maximum depth
|
||||
break
|
||||
|
||||
self.avgpool = nn.AvgPool2d(8)
|
||||
self.classifier = nn.Linear(self.channels[-1], num_classes)
|
||||
|
||||
self.apply(initialize_resnet)
|
||||
if zero_init_residual:
|
||||
for m in self.modules():
|
||||
if isinstance(m, ResNetBasicblock):
|
||||
nn.init.constant_(m.conv_b.bn.weight, 0)
|
||||
elif isinstance(m, ResNetBottleneck):
|
||||
nn.init.constant_(m.conv_1x4.bn.weight, 0)
|
||||
|
||||
def get_message(self):
|
||||
return self.message
|
||||
|
||||
def forward(self, inputs):
|
||||
x = inputs
|
||||
for i, layer in enumerate(self.layers):
|
||||
x = layer(x)
|
||||
features = self.avgpool(x)
|
||||
features = features.view(features.size(0), -1)
|
||||
logits = self.classifier(features)
|
||||
return features, logits
|
277
xautodl/models/shape_infers/InferCifarResNet_width.py
Normal file
277
xautodl/models/shape_infers/InferCifarResNet_width.py
Normal file
@@ -0,0 +1,277 @@
|
||||
#####################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 #
|
||||
#####################################################
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from ..initialization import initialize_resnet
|
||||
|
||||
|
||||
class ConvBNReLU(nn.Module):
|
||||
def __init__(
|
||||
self, nIn, nOut, kernel, stride, padding, bias, has_avg, has_bn, has_relu
|
||||
):
|
||||
super(ConvBNReLU, self).__init__()
|
||||
if has_avg:
|
||||
self.avg = nn.AvgPool2d(kernel_size=2, stride=2, padding=0)
|
||||
else:
|
||||
self.avg = None
|
||||
self.conv = nn.Conv2d(
|
||||
nIn,
|
||||
nOut,
|
||||
kernel_size=kernel,
|
||||
stride=stride,
|
||||
padding=padding,
|
||||
dilation=1,
|
||||
groups=1,
|
||||
bias=bias,
|
||||
)
|
||||
if has_bn:
|
||||
self.bn = nn.BatchNorm2d(nOut)
|
||||
else:
|
||||
self.bn = None
|
||||
if has_relu:
|
||||
self.relu = nn.ReLU(inplace=True)
|
||||
else:
|
||||
self.relu = None
|
||||
|
||||
def forward(self, inputs):
|
||||
if self.avg:
|
||||
out = self.avg(inputs)
|
||||
else:
|
||||
out = inputs
|
||||
conv = self.conv(out)
|
||||
if self.bn:
|
||||
out = self.bn(conv)
|
||||
else:
|
||||
out = conv
|
||||
if self.relu:
|
||||
out = self.relu(out)
|
||||
else:
|
||||
out = out
|
||||
|
||||
return out
|
||||
|
||||
|
||||
class ResNetBasicblock(nn.Module):
|
||||
num_conv = 2
|
||||
expansion = 1
|
||||
|
||||
def __init__(self, iCs, stride):
|
||||
super(ResNetBasicblock, self).__init__()
|
||||
assert stride == 1 or stride == 2, "invalid stride {:}".format(stride)
|
||||
assert isinstance(iCs, tuple) or isinstance(
|
||||
iCs, list
|
||||
), "invalid type of iCs : {:}".format(iCs)
|
||||
assert len(iCs) == 3, "invalid lengths of iCs : {:}".format(iCs)
|
||||
|
||||
self.conv_a = ConvBNReLU(
|
||||
iCs[0],
|
||||
iCs[1],
|
||||
3,
|
||||
stride,
|
||||
1,
|
||||
False,
|
||||
has_avg=False,
|
||||
has_bn=True,
|
||||
has_relu=True,
|
||||
)
|
||||
self.conv_b = ConvBNReLU(
|
||||
iCs[1], iCs[2], 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=False
|
||||
)
|
||||
residual_in = iCs[0]
|
||||
if stride == 2:
|
||||
self.downsample = ConvBNReLU(
|
||||
iCs[0],
|
||||
iCs[2],
|
||||
1,
|
||||
1,
|
||||
0,
|
||||
False,
|
||||
has_avg=True,
|
||||
has_bn=False,
|
||||
has_relu=False,
|
||||
)
|
||||
residual_in = iCs[2]
|
||||
elif iCs[0] != iCs[2]:
|
||||
self.downsample = ConvBNReLU(
|
||||
iCs[0],
|
||||
iCs[2],
|
||||
1,
|
||||
1,
|
||||
0,
|
||||
False,
|
||||
has_avg=False,
|
||||
has_bn=True,
|
||||
has_relu=False,
|
||||
)
|
||||
else:
|
||||
self.downsample = None
|
||||
# self.out_dim = max(residual_in, iCs[2])
|
||||
self.out_dim = iCs[2]
|
||||
|
||||
def forward(self, inputs):
|
||||
basicblock = self.conv_a(inputs)
|
||||
basicblock = self.conv_b(basicblock)
|
||||
|
||||
if self.downsample is not None:
|
||||
residual = self.downsample(inputs)
|
||||
else:
|
||||
residual = inputs
|
||||
out = residual + basicblock
|
||||
return F.relu(out, inplace=True)
|
||||
|
||||
|
||||
class ResNetBottleneck(nn.Module):
|
||||
expansion = 4
|
||||
num_conv = 3
|
||||
|
||||
def __init__(self, iCs, stride):
|
||||
super(ResNetBottleneck, self).__init__()
|
||||
assert stride == 1 or stride == 2, "invalid stride {:}".format(stride)
|
||||
assert isinstance(iCs, tuple) or isinstance(
|
||||
iCs, list
|
||||
), "invalid type of iCs : {:}".format(iCs)
|
||||
assert len(iCs) == 4, "invalid lengths of iCs : {:}".format(iCs)
|
||||
self.conv_1x1 = ConvBNReLU(
|
||||
iCs[0], iCs[1], 1, 1, 0, False, has_avg=False, has_bn=True, has_relu=True
|
||||
)
|
||||
self.conv_3x3 = ConvBNReLU(
|
||||
iCs[1],
|
||||
iCs[2],
|
||||
3,
|
||||
stride,
|
||||
1,
|
||||
False,
|
||||
has_avg=False,
|
||||
has_bn=True,
|
||||
has_relu=True,
|
||||
)
|
||||
self.conv_1x4 = ConvBNReLU(
|
||||
iCs[2], iCs[3], 1, 1, 0, False, has_avg=False, has_bn=True, has_relu=False
|
||||
)
|
||||
residual_in = iCs[0]
|
||||
if stride == 2:
|
||||
self.downsample = ConvBNReLU(
|
||||
iCs[0],
|
||||
iCs[3],
|
||||
1,
|
||||
1,
|
||||
0,
|
||||
False,
|
||||
has_avg=True,
|
||||
has_bn=False,
|
||||
has_relu=False,
|
||||
)
|
||||
residual_in = iCs[3]
|
||||
elif iCs[0] != iCs[3]:
|
||||
self.downsample = ConvBNReLU(
|
||||
iCs[0],
|
||||
iCs[3],
|
||||
1,
|
||||
1,
|
||||
0,
|
||||
False,
|
||||
has_avg=False,
|
||||
has_bn=False,
|
||||
has_relu=False,
|
||||
)
|
||||
residual_in = iCs[3]
|
||||
else:
|
||||
self.downsample = None
|
||||
# self.out_dim = max(residual_in, iCs[3])
|
||||
self.out_dim = iCs[3]
|
||||
|
||||
def forward(self, inputs):
|
||||
|
||||
bottleneck = self.conv_1x1(inputs)
|
||||
bottleneck = self.conv_3x3(bottleneck)
|
||||
bottleneck = self.conv_1x4(bottleneck)
|
||||
|
||||
if self.downsample is not None:
|
||||
residual = self.downsample(inputs)
|
||||
else:
|
||||
residual = inputs
|
||||
out = residual + bottleneck
|
||||
return F.relu(out, inplace=True)
|
||||
|
||||
|
||||
class InferWidthCifarResNet(nn.Module):
|
||||
def __init__(self, block_name, depth, xchannels, num_classes, zero_init_residual):
|
||||
super(InferWidthCifarResNet, self).__init__()
|
||||
|
||||
# Model type specifies number of layers for CIFAR-10 and CIFAR-100 model
|
||||
if block_name == "ResNetBasicblock":
|
||||
block = ResNetBasicblock
|
||||
assert (depth - 2) % 6 == 0, "depth should be one of 20, 32, 44, 56, 110"
|
||||
layer_blocks = (depth - 2) // 6
|
||||
elif block_name == "ResNetBottleneck":
|
||||
block = ResNetBottleneck
|
||||
assert (depth - 2) % 9 == 0, "depth should be one of 164"
|
||||
layer_blocks = (depth - 2) // 9
|
||||
else:
|
||||
raise ValueError("invalid block : {:}".format(block_name))
|
||||
|
||||
self.message = (
|
||||
"InferWidthCifarResNet : Depth : {:} , Layers for each block : {:}".format(
|
||||
depth, layer_blocks
|
||||
)
|
||||
)
|
||||
self.num_classes = num_classes
|
||||
self.xchannels = xchannels
|
||||
self.layers = nn.ModuleList(
|
||||
[
|
||||
ConvBNReLU(
|
||||
xchannels[0],
|
||||
xchannels[1],
|
||||
3,
|
||||
1,
|
||||
1,
|
||||
False,
|
||||
has_avg=False,
|
||||
has_bn=True,
|
||||
has_relu=True,
|
||||
)
|
||||
]
|
||||
)
|
||||
last_channel_idx = 1
|
||||
for stage in range(3):
|
||||
for iL in range(layer_blocks):
|
||||
num_conv = block.num_conv
|
||||
iCs = self.xchannels[last_channel_idx : last_channel_idx + num_conv + 1]
|
||||
stride = 2 if stage > 0 and iL == 0 else 1
|
||||
module = block(iCs, stride)
|
||||
last_channel_idx += num_conv
|
||||
self.xchannels[last_channel_idx] = module.out_dim
|
||||
self.layers.append(module)
|
||||
self.message += "\nstage={:}, ilayer={:02d}/{:02d}, block={:03d}, iCs={:}, oC={:3d}, stride={:}".format(
|
||||
stage,
|
||||
iL,
|
||||
layer_blocks,
|
||||
len(self.layers) - 1,
|
||||
iCs,
|
||||
module.out_dim,
|
||||
stride,
|
||||
)
|
||||
|
||||
self.avgpool = nn.AvgPool2d(8)
|
||||
self.classifier = nn.Linear(self.xchannels[-1], num_classes)
|
||||
|
||||
self.apply(initialize_resnet)
|
||||
if zero_init_residual:
|
||||
for m in self.modules():
|
||||
if isinstance(m, ResNetBasicblock):
|
||||
nn.init.constant_(m.conv_b.bn.weight, 0)
|
||||
elif isinstance(m, ResNetBottleneck):
|
||||
nn.init.constant_(m.conv_1x4.bn.weight, 0)
|
||||
|
||||
def get_message(self):
|
||||
return self.message
|
||||
|
||||
def forward(self, inputs):
|
||||
x = inputs
|
||||
for i, layer in enumerate(self.layers):
|
||||
x = layer(x)
|
||||
features = self.avgpool(x)
|
||||
features = features.view(features.size(0), -1)
|
||||
logits = self.classifier(features)
|
||||
return features, logits
|
324
xautodl/models/shape_infers/InferImagenetResNet.py
Normal file
324
xautodl/models/shape_infers/InferImagenetResNet.py
Normal file
@@ -0,0 +1,324 @@
|
||||
#####################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 #
|
||||
#####################################################
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from ..initialization import initialize_resnet
|
||||
|
||||
|
||||
class ConvBNReLU(nn.Module):
|
||||
|
||||
num_conv = 1
|
||||
|
||||
def __init__(
|
||||
self, nIn, nOut, kernel, stride, padding, bias, has_avg, has_bn, has_relu
|
||||
):
|
||||
super(ConvBNReLU, self).__init__()
|
||||
if has_avg:
|
||||
self.avg = nn.AvgPool2d(kernel_size=2, stride=2, padding=0)
|
||||
else:
|
||||
self.avg = None
|
||||
self.conv = nn.Conv2d(
|
||||
nIn,
|
||||
nOut,
|
||||
kernel_size=kernel,
|
||||
stride=stride,
|
||||
padding=padding,
|
||||
dilation=1,
|
||||
groups=1,
|
||||
bias=bias,
|
||||
)
|
||||
if has_bn:
|
||||
self.bn = nn.BatchNorm2d(nOut)
|
||||
else:
|
||||
self.bn = None
|
||||
if has_relu:
|
||||
self.relu = nn.ReLU(inplace=True)
|
||||
else:
|
||||
self.relu = None
|
||||
|
||||
def forward(self, inputs):
|
||||
if self.avg:
|
||||
out = self.avg(inputs)
|
||||
else:
|
||||
out = inputs
|
||||
conv = self.conv(out)
|
||||
if self.bn:
|
||||
out = self.bn(conv)
|
||||
else:
|
||||
out = conv
|
||||
if self.relu:
|
||||
out = self.relu(out)
|
||||
else:
|
||||
out = out
|
||||
|
||||
return out
|
||||
|
||||
|
||||
class ResNetBasicblock(nn.Module):
|
||||
num_conv = 2
|
||||
expansion = 1
|
||||
|
||||
def __init__(self, iCs, stride):
|
||||
super(ResNetBasicblock, self).__init__()
|
||||
assert stride == 1 or stride == 2, "invalid stride {:}".format(stride)
|
||||
assert isinstance(iCs, tuple) or isinstance(
|
||||
iCs, list
|
||||
), "invalid type of iCs : {:}".format(iCs)
|
||||
assert len(iCs) == 3, "invalid lengths of iCs : {:}".format(iCs)
|
||||
|
||||
self.conv_a = ConvBNReLU(
|
||||
iCs[0],
|
||||
iCs[1],
|
||||
3,
|
||||
stride,
|
||||
1,
|
||||
False,
|
||||
has_avg=False,
|
||||
has_bn=True,
|
||||
has_relu=True,
|
||||
)
|
||||
self.conv_b = ConvBNReLU(
|
||||
iCs[1], iCs[2], 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=False
|
||||
)
|
||||
residual_in = iCs[0]
|
||||
if stride == 2:
|
||||
self.downsample = ConvBNReLU(
|
||||
iCs[0],
|
||||
iCs[2],
|
||||
1,
|
||||
1,
|
||||
0,
|
||||
False,
|
||||
has_avg=True,
|
||||
has_bn=True,
|
||||
has_relu=False,
|
||||
)
|
||||
residual_in = iCs[2]
|
||||
elif iCs[0] != iCs[2]:
|
||||
self.downsample = ConvBNReLU(
|
||||
iCs[0],
|
||||
iCs[2],
|
||||
1,
|
||||
1,
|
||||
0,
|
||||
False,
|
||||
has_avg=False,
|
||||
has_bn=True,
|
||||
has_relu=False,
|
||||
)
|
||||
else:
|
||||
self.downsample = None
|
||||
# self.out_dim = max(residual_in, iCs[2])
|
||||
self.out_dim = iCs[2]
|
||||
|
||||
def forward(self, inputs):
|
||||
basicblock = self.conv_a(inputs)
|
||||
basicblock = self.conv_b(basicblock)
|
||||
|
||||
if self.downsample is not None:
|
||||
residual = self.downsample(inputs)
|
||||
else:
|
||||
residual = inputs
|
||||
out = residual + basicblock
|
||||
return F.relu(out, inplace=True)
|
||||
|
||||
|
||||
class ResNetBottleneck(nn.Module):
|
||||
expansion = 4
|
||||
num_conv = 3
|
||||
|
||||
def __init__(self, iCs, stride):
|
||||
super(ResNetBottleneck, self).__init__()
|
||||
assert stride == 1 or stride == 2, "invalid stride {:}".format(stride)
|
||||
assert isinstance(iCs, tuple) or isinstance(
|
||||
iCs, list
|
||||
), "invalid type of iCs : {:}".format(iCs)
|
||||
assert len(iCs) == 4, "invalid lengths of iCs : {:}".format(iCs)
|
||||
self.conv_1x1 = ConvBNReLU(
|
||||
iCs[0], iCs[1], 1, 1, 0, False, has_avg=False, has_bn=True, has_relu=True
|
||||
)
|
||||
self.conv_3x3 = ConvBNReLU(
|
||||
iCs[1],
|
||||
iCs[2],
|
||||
3,
|
||||
stride,
|
||||
1,
|
||||
False,
|
||||
has_avg=False,
|
||||
has_bn=True,
|
||||
has_relu=True,
|
||||
)
|
||||
self.conv_1x4 = ConvBNReLU(
|
||||
iCs[2], iCs[3], 1, 1, 0, False, has_avg=False, has_bn=True, has_relu=False
|
||||
)
|
||||
residual_in = iCs[0]
|
||||
if stride == 2:
|
||||
self.downsample = ConvBNReLU(
|
||||
iCs[0],
|
||||
iCs[3],
|
||||
1,
|
||||
1,
|
||||
0,
|
||||
False,
|
||||
has_avg=True,
|
||||
has_bn=True,
|
||||
has_relu=False,
|
||||
)
|
||||
residual_in = iCs[3]
|
||||
elif iCs[0] != iCs[3]:
|
||||
self.downsample = ConvBNReLU(
|
||||
iCs[0],
|
||||
iCs[3],
|
||||
1,
|
||||
1,
|
||||
0,
|
||||
False,
|
||||
has_avg=False,
|
||||
has_bn=True,
|
||||
has_relu=False,
|
||||
)
|
||||
residual_in = iCs[3]
|
||||
else:
|
||||
self.downsample = None
|
||||
# self.out_dim = max(residual_in, iCs[3])
|
||||
self.out_dim = iCs[3]
|
||||
|
||||
def forward(self, inputs):
|
||||
|
||||
bottleneck = self.conv_1x1(inputs)
|
||||
bottleneck = self.conv_3x3(bottleneck)
|
||||
bottleneck = self.conv_1x4(bottleneck)
|
||||
|
||||
if self.downsample is not None:
|
||||
residual = self.downsample(inputs)
|
||||
else:
|
||||
residual = inputs
|
||||
out = residual + bottleneck
|
||||
return F.relu(out, inplace=True)
|
||||
|
||||
|
||||
class InferImagenetResNet(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
block_name,
|
||||
layers,
|
||||
xblocks,
|
||||
xchannels,
|
||||
deep_stem,
|
||||
num_classes,
|
||||
zero_init_residual,
|
||||
):
|
||||
super(InferImagenetResNet, self).__init__()
|
||||
|
||||
# Model type specifies number of layers for CIFAR-10 and CIFAR-100 model
|
||||
if block_name == "BasicBlock":
|
||||
block = ResNetBasicblock
|
||||
elif block_name == "Bottleneck":
|
||||
block = ResNetBottleneck
|
||||
else:
|
||||
raise ValueError("invalid block : {:}".format(block_name))
|
||||
assert len(xblocks) == len(
|
||||
layers
|
||||
), "invalid layers : {:} vs xblocks : {:}".format(layers, xblocks)
|
||||
|
||||
self.message = "InferImagenetResNet : Depth : {:} -> {:}, Layers for each block : {:}".format(
|
||||
sum(layers) * block.num_conv, sum(xblocks) * block.num_conv, xblocks
|
||||
)
|
||||
self.num_classes = num_classes
|
||||
self.xchannels = xchannels
|
||||
if not deep_stem:
|
||||
self.layers = nn.ModuleList(
|
||||
[
|
||||
ConvBNReLU(
|
||||
xchannels[0],
|
||||
xchannels[1],
|
||||
7,
|
||||
2,
|
||||
3,
|
||||
False,
|
||||
has_avg=False,
|
||||
has_bn=True,
|
||||
has_relu=True,
|
||||
)
|
||||
]
|
||||
)
|
||||
last_channel_idx = 1
|
||||
else:
|
||||
self.layers = nn.ModuleList(
|
||||
[
|
||||
ConvBNReLU(
|
||||
xchannels[0],
|
||||
xchannels[1],
|
||||
3,
|
||||
2,
|
||||
1,
|
||||
False,
|
||||
has_avg=False,
|
||||
has_bn=True,
|
||||
has_relu=True,
|
||||
),
|
||||
ConvBNReLU(
|
||||
xchannels[1],
|
||||
xchannels[2],
|
||||
3,
|
||||
1,
|
||||
1,
|
||||
False,
|
||||
has_avg=False,
|
||||
has_bn=True,
|
||||
has_relu=True,
|
||||
),
|
||||
]
|
||||
)
|
||||
last_channel_idx = 2
|
||||
self.layers.append(nn.MaxPool2d(kernel_size=3, stride=2, padding=1))
|
||||
for stage, layer_blocks in enumerate(layers):
|
||||
for iL in range(layer_blocks):
|
||||
num_conv = block.num_conv
|
||||
iCs = self.xchannels[last_channel_idx : last_channel_idx + num_conv + 1]
|
||||
stride = 2 if stage > 0 and iL == 0 else 1
|
||||
module = block(iCs, stride)
|
||||
last_channel_idx += num_conv
|
||||
self.xchannels[last_channel_idx] = module.out_dim
|
||||
self.layers.append(module)
|
||||
self.message += "\nstage={:}, ilayer={:02d}/{:02d}, block={:03d}, iCs={:}, oC={:3d}, stride={:}".format(
|
||||
stage,
|
||||
iL,
|
||||
layer_blocks,
|
||||
len(self.layers) - 1,
|
||||
iCs,
|
||||
module.out_dim,
|
||||
stride,
|
||||
)
|
||||
if iL + 1 == xblocks[stage]: # reach the maximum depth
|
||||
out_channel = module.out_dim
|
||||
for iiL in range(iL + 1, layer_blocks):
|
||||
last_channel_idx += num_conv
|
||||
self.xchannels[last_channel_idx] = module.out_dim
|
||||
break
|
||||
assert last_channel_idx + 1 == len(self.xchannels), "{:} vs {:}".format(
|
||||
last_channel_idx, len(self.xchannels)
|
||||
)
|
||||
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
|
||||
self.classifier = nn.Linear(self.xchannels[-1], num_classes)
|
||||
|
||||
self.apply(initialize_resnet)
|
||||
if zero_init_residual:
|
||||
for m in self.modules():
|
||||
if isinstance(m, ResNetBasicblock):
|
||||
nn.init.constant_(m.conv_b.bn.weight, 0)
|
||||
elif isinstance(m, ResNetBottleneck):
|
||||
nn.init.constant_(m.conv_1x4.bn.weight, 0)
|
||||
|
||||
def get_message(self):
|
||||
return self.message
|
||||
|
||||
def forward(self, inputs):
|
||||
x = inputs
|
||||
for i, layer in enumerate(self.layers):
|
||||
x = layer(x)
|
||||
features = self.avgpool(x)
|
||||
features = features.view(features.size(0), -1)
|
||||
logits = self.classifier(features)
|
||||
return features, logits
|
174
xautodl/models/shape_infers/InferMobileNetV2.py
Normal file
174
xautodl/models/shape_infers/InferMobileNetV2.py
Normal file
@@ -0,0 +1,174 @@
|
||||
#####################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 #
|
||||
#####################################################
|
||||
# MobileNetV2: Inverted Residuals and Linear Bottlenecks, CVPR 2018
|
||||
from torch import nn
|
||||
from ..initialization import initialize_resnet
|
||||
from ..SharedUtils import parse_channel_info
|
||||
|
||||
|
||||
class ConvBNReLU(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
in_planes,
|
||||
out_planes,
|
||||
kernel_size,
|
||||
stride,
|
||||
groups,
|
||||
has_bn=True,
|
||||
has_relu=True,
|
||||
):
|
||||
super(ConvBNReLU, self).__init__()
|
||||
padding = (kernel_size - 1) // 2
|
||||
self.conv = nn.Conv2d(
|
||||
in_planes,
|
||||
out_planes,
|
||||
kernel_size,
|
||||
stride,
|
||||
padding,
|
||||
groups=groups,
|
||||
bias=False,
|
||||
)
|
||||
if has_bn:
|
||||
self.bn = nn.BatchNorm2d(out_planes)
|
||||
else:
|
||||
self.bn = None
|
||||
if has_relu:
|
||||
self.relu = nn.ReLU6(inplace=True)
|
||||
else:
|
||||
self.relu = None
|
||||
|
||||
def forward(self, x):
|
||||
out = self.conv(x)
|
||||
if self.bn:
|
||||
out = self.bn(out)
|
||||
if self.relu:
|
||||
out = self.relu(out)
|
||||
return out
|
||||
|
||||
|
||||
class InvertedResidual(nn.Module):
|
||||
def __init__(self, channels, stride, expand_ratio, additive):
|
||||
super(InvertedResidual, self).__init__()
|
||||
self.stride = stride
|
||||
assert stride in [1, 2], "invalid stride : {:}".format(stride)
|
||||
assert len(channels) in [2, 3], "invalid channels : {:}".format(channels)
|
||||
|
||||
if len(channels) == 2:
|
||||
layers = []
|
||||
else:
|
||||
layers = [ConvBNReLU(channels[0], channels[1], 1, 1, 1)]
|
||||
layers.extend(
|
||||
[
|
||||
# dw
|
||||
ConvBNReLU(channels[-2], channels[-2], 3, stride, channels[-2]),
|
||||
# pw-linear
|
||||
ConvBNReLU(channels[-2], channels[-1], 1, 1, 1, True, False),
|
||||
]
|
||||
)
|
||||
self.conv = nn.Sequential(*layers)
|
||||
self.additive = additive
|
||||
if self.additive and channels[0] != channels[-1]:
|
||||
self.shortcut = ConvBNReLU(channels[0], channels[-1], 1, 1, 1, True, False)
|
||||
else:
|
||||
self.shortcut = None
|
||||
self.out_dim = channels[-1]
|
||||
|
||||
def forward(self, x):
|
||||
out = self.conv(x)
|
||||
# if self.additive: return additive_func(out, x)
|
||||
if self.shortcut:
|
||||
return out + self.shortcut(x)
|
||||
else:
|
||||
return out
|
||||
|
||||
|
||||
class InferMobileNetV2(nn.Module):
|
||||
def __init__(self, num_classes, xchannels, xblocks, dropout):
|
||||
super(InferMobileNetV2, self).__init__()
|
||||
block = InvertedResidual
|
||||
inverted_residual_setting = [
|
||||
# t, c, n, s
|
||||
[1, 16, 1, 1],
|
||||
[6, 24, 2, 2],
|
||||
[6, 32, 3, 2],
|
||||
[6, 64, 4, 2],
|
||||
[6, 96, 3, 1],
|
||||
[6, 160, 3, 2],
|
||||
[6, 320, 1, 1],
|
||||
]
|
||||
assert len(inverted_residual_setting) == len(
|
||||
xblocks
|
||||
), "invalid number of layers : {:} vs {:}".format(
|
||||
len(inverted_residual_setting), len(xblocks)
|
||||
)
|
||||
for block_num, ir_setting in zip(xblocks, inverted_residual_setting):
|
||||
assert block_num <= ir_setting[2], "{:} vs {:}".format(
|
||||
block_num, ir_setting
|
||||
)
|
||||
xchannels = parse_channel_info(xchannels)
|
||||
# for i, chs in enumerate(xchannels):
|
||||
# if i > 0: assert chs[0] == xchannels[i-1][-1], 'Layer[{:}] is invalid {:} vs {:}'.format(i, xchannels[i-1], chs)
|
||||
self.xchannels = xchannels
|
||||
self.message = "InferMobileNetV2 : xblocks={:}".format(xblocks)
|
||||
# building first layer
|
||||
features = [ConvBNReLU(xchannels[0][0], xchannels[0][1], 3, 2, 1)]
|
||||
last_channel_idx = 1
|
||||
|
||||
# building inverted residual blocks
|
||||
for stage, (t, c, n, s) in enumerate(inverted_residual_setting):
|
||||
for i in range(n):
|
||||
stride = s if i == 0 else 1
|
||||
additv = True if i > 0 else False
|
||||
module = block(self.xchannels[last_channel_idx], stride, t, additv)
|
||||
features.append(module)
|
||||
self.message += "\nstage={:}, ilayer={:02d}/{:02d}, block={:03d}, Cs={:}, stride={:}, expand={:}, original-C={:}".format(
|
||||
stage,
|
||||
i,
|
||||
n,
|
||||
len(features),
|
||||
self.xchannels[last_channel_idx],
|
||||
stride,
|
||||
t,
|
||||
c,
|
||||
)
|
||||
last_channel_idx += 1
|
||||
if i + 1 == xblocks[stage]:
|
||||
out_channel = module.out_dim
|
||||
for iiL in range(i + 1, n):
|
||||
last_channel_idx += 1
|
||||
self.xchannels[last_channel_idx][0] = module.out_dim
|
||||
break
|
||||
# building last several layers
|
||||
features.append(
|
||||
ConvBNReLU(
|
||||
self.xchannels[last_channel_idx][0],
|
||||
self.xchannels[last_channel_idx][1],
|
||||
1,
|
||||
1,
|
||||
1,
|
||||
)
|
||||
)
|
||||
assert last_channel_idx + 2 == len(self.xchannels), "{:} vs {:}".format(
|
||||
last_channel_idx, len(self.xchannels)
|
||||
)
|
||||
# make it nn.Sequential
|
||||
self.features = nn.Sequential(*features)
|
||||
|
||||
# building classifier
|
||||
self.classifier = nn.Sequential(
|
||||
nn.Dropout(dropout),
|
||||
nn.Linear(self.xchannels[last_channel_idx][1], num_classes),
|
||||
)
|
||||
|
||||
# weight initialization
|
||||
self.apply(initialize_resnet)
|
||||
|
||||
def get_message(self):
|
||||
return self.message
|
||||
|
||||
def forward(self, inputs):
|
||||
features = self.features(inputs)
|
||||
vectors = features.mean([2, 3])
|
||||
predicts = self.classifier(vectors)
|
||||
return features, predicts
|
64
xautodl/models/shape_infers/InferTinyCellNet.py
Normal file
64
xautodl/models/shape_infers/InferTinyCellNet.py
Normal file
@@ -0,0 +1,64 @@
|
||||
#####################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 #
|
||||
#####################################################
|
||||
from typing import List, Text, Any
|
||||
import torch.nn as nn
|
||||
from models.cell_operations import ResNetBasicblock
|
||||
from models.cell_infers.cells import InferCell
|
||||
|
||||
|
||||
class DynamicShapeTinyNet(nn.Module):
|
||||
def __init__(self, channels: List[int], genotype: Any, num_classes: int):
|
||||
super(DynamicShapeTinyNet, self).__init__()
|
||||
self._channels = channels
|
||||
if len(channels) % 3 != 2:
|
||||
raise ValueError("invalid number of layers : {:}".format(len(channels)))
|
||||
self._num_stage = N = len(channels) // 3
|
||||
|
||||
self.stem = nn.Sequential(
|
||||
nn.Conv2d(3, channels[0], kernel_size=3, padding=1, bias=False),
|
||||
nn.BatchNorm2d(channels[0]),
|
||||
)
|
||||
|
||||
# layer_channels = [C ] * N + [C*2 ] + [C*2 ] * N + [C*4 ] + [C*4 ] * N
|
||||
layer_reductions = [False] * N + [True] + [False] * N + [True] + [False] * N
|
||||
|
||||
c_prev = channels[0]
|
||||
self.cells = nn.ModuleList()
|
||||
for index, (c_curr, reduction) in enumerate(zip(channels, layer_reductions)):
|
||||
if reduction:
|
||||
cell = ResNetBasicblock(c_prev, c_curr, 2, True)
|
||||
else:
|
||||
cell = InferCell(genotype, c_prev, c_curr, 1)
|
||||
self.cells.append(cell)
|
||||
c_prev = cell.out_dim
|
||||
self._num_layer = len(self.cells)
|
||||
|
||||
self.lastact = nn.Sequential(nn.BatchNorm2d(c_prev), nn.ReLU(inplace=True))
|
||||
self.global_pooling = nn.AdaptiveAvgPool2d(1)
|
||||
self.classifier = nn.Linear(c_prev, num_classes)
|
||||
|
||||
def get_message(self) -> Text:
|
||||
string = self.extra_repr()
|
||||
for i, cell in enumerate(self.cells):
|
||||
string += "\n {:02d}/{:02d} :: {:}".format(
|
||||
i, len(self.cells), cell.extra_repr()
|
||||
)
|
||||
return string
|
||||
|
||||
def extra_repr(self):
|
||||
return "{name}(C={_channels}, N={_num_stage}, L={_num_layer})".format(
|
||||
name=self.__class__.__name__, **self.__dict__
|
||||
)
|
||||
|
||||
def forward(self, inputs):
|
||||
feature = self.stem(inputs)
|
||||
for i, cell in enumerate(self.cells):
|
||||
feature = cell(feature)
|
||||
|
||||
out = self.lastact(feature)
|
||||
out = self.global_pooling(out)
|
||||
out = out.view(out.size(0), -1)
|
||||
logits = self.classifier(out)
|
||||
|
||||
return out, logits
|
9
xautodl/models/shape_infers/__init__.py
Normal file
9
xautodl/models/shape_infers/__init__.py
Normal file
@@ -0,0 +1,9 @@
|
||||
#####################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 #
|
||||
#####################################################
|
||||
from .InferCifarResNet_width import InferWidthCifarResNet
|
||||
from .InferImagenetResNet import InferImagenetResNet
|
||||
from .InferCifarResNet_depth import InferDepthCifarResNet
|
||||
from .InferCifarResNet import InferCifarResNet
|
||||
from .InferMobileNetV2 import InferMobileNetV2
|
||||
from .InferTinyCellNet import DynamicShapeTinyNet
|
5
xautodl/models/shape_infers/shared_utils.py
Normal file
5
xautodl/models/shape_infers/shared_utils.py
Normal file
@@ -0,0 +1,5 @@
|
||||
def parse_channel_info(xstring):
|
||||
blocks = xstring.split(" ")
|
||||
blocks = [x.split("-") for x in blocks]
|
||||
blocks = [[int(_) for _ in x] for x in blocks]
|
||||
return blocks
|
760
xautodl/models/shape_searchs/SearchCifarResNet.py
Normal file
760
xautodl/models/shape_searchs/SearchCifarResNet.py
Normal file
@@ -0,0 +1,760 @@
|
||||
##################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
|
||||
##################################################
|
||||
import math, torch
|
||||
from collections import OrderedDict
|
||||
from bisect import bisect_right
|
||||
import torch.nn as nn
|
||||
from ..initialization import initialize_resnet
|
||||
from ..SharedUtils import additive_func
|
||||
from .SoftSelect import select2withP, ChannelWiseInter
|
||||
from .SoftSelect import linear_forward
|
||||
from .SoftSelect import get_width_choices
|
||||
|
||||
|
||||
def get_depth_choices(nDepth, return_num):
|
||||
if nDepth == 2:
|
||||
choices = (1, 2)
|
||||
elif nDepth == 3:
|
||||
choices = (1, 2, 3)
|
||||
elif nDepth > 3:
|
||||
choices = list(range(1, nDepth + 1, 2))
|
||||
if choices[-1] < nDepth:
|
||||
choices.append(nDepth)
|
||||
else:
|
||||
raise ValueError("invalid nDepth : {:}".format(nDepth))
|
||||
if return_num:
|
||||
return len(choices)
|
||||
else:
|
||||
return choices
|
||||
|
||||
|
||||
def conv_forward(inputs, conv, choices):
|
||||
iC = conv.in_channels
|
||||
fill_size = list(inputs.size())
|
||||
fill_size[1] = iC - fill_size[1]
|
||||
filled = torch.zeros(fill_size, device=inputs.device)
|
||||
xinputs = torch.cat((inputs, filled), dim=1)
|
||||
outputs = conv(xinputs)
|
||||
selecteds = [outputs[:, :oC] for oC in choices]
|
||||
return selecteds
|
||||
|
||||
|
||||
class ConvBNReLU(nn.Module):
|
||||
num_conv = 1
|
||||
|
||||
def __init__(
|
||||
self, nIn, nOut, kernel, stride, padding, bias, has_avg, has_bn, has_relu
|
||||
):
|
||||
super(ConvBNReLU, self).__init__()
|
||||
self.InShape = None
|
||||
self.OutShape = None
|
||||
self.choices = get_width_choices(nOut)
|
||||
self.register_buffer("choices_tensor", torch.Tensor(self.choices))
|
||||
|
||||
if has_avg:
|
||||
self.avg = nn.AvgPool2d(kernel_size=2, stride=2, padding=0)
|
||||
else:
|
||||
self.avg = None
|
||||
self.conv = nn.Conv2d(
|
||||
nIn,
|
||||
nOut,
|
||||
kernel_size=kernel,
|
||||
stride=stride,
|
||||
padding=padding,
|
||||
dilation=1,
|
||||
groups=1,
|
||||
bias=bias,
|
||||
)
|
||||
# if has_bn : self.bn = nn.BatchNorm2d(nOut)
|
||||
# else : self.bn = None
|
||||
self.has_bn = has_bn
|
||||
self.BNs = nn.ModuleList()
|
||||
for i, _out in enumerate(self.choices):
|
||||
self.BNs.append(nn.BatchNorm2d(_out))
|
||||
if has_relu:
|
||||
self.relu = nn.ReLU(inplace=True)
|
||||
else:
|
||||
self.relu = None
|
||||
self.in_dim = nIn
|
||||
self.out_dim = nOut
|
||||
self.search_mode = "basic"
|
||||
|
||||
def get_flops(self, channels, check_range=True, divide=1):
|
||||
iC, oC = channels
|
||||
if check_range:
|
||||
assert (
|
||||
iC <= self.conv.in_channels and oC <= self.conv.out_channels
|
||||
), "{:} vs {:} | {:} vs {:}".format(
|
||||
iC, self.conv.in_channels, oC, self.conv.out_channels
|
||||
)
|
||||
assert (
|
||||
isinstance(self.InShape, tuple) and len(self.InShape) == 2
|
||||
), "invalid in-shape : {:}".format(self.InShape)
|
||||
assert (
|
||||
isinstance(self.OutShape, tuple) and len(self.OutShape) == 2
|
||||
), "invalid out-shape : {:}".format(self.OutShape)
|
||||
# conv_per_position_flops = self.conv.kernel_size[0] * self.conv.kernel_size[1] * iC * oC / self.conv.groups
|
||||
conv_per_position_flops = (
|
||||
self.conv.kernel_size[0] * self.conv.kernel_size[1] * 1.0 / self.conv.groups
|
||||
)
|
||||
all_positions = self.OutShape[0] * self.OutShape[1]
|
||||
flops = (conv_per_position_flops * all_positions / divide) * iC * oC
|
||||
if self.conv.bias is not None:
|
||||
flops += all_positions / divide
|
||||
return flops
|
||||
|
||||
def get_range(self):
|
||||
return [self.choices]
|
||||
|
||||
def forward(self, inputs):
|
||||
if self.search_mode == "basic":
|
||||
return self.basic_forward(inputs)
|
||||
elif self.search_mode == "search":
|
||||
return self.search_forward(inputs)
|
||||
else:
|
||||
raise ValueError("invalid search_mode = {:}".format(self.search_mode))
|
||||
|
||||
def search_forward(self, tuple_inputs):
|
||||
assert (
|
||||
isinstance(tuple_inputs, tuple) and len(tuple_inputs) == 5
|
||||
), "invalid type input : {:}".format(type(tuple_inputs))
|
||||
inputs, expected_inC, probability, index, prob = tuple_inputs
|
||||
index, prob = torch.squeeze(index).tolist(), torch.squeeze(prob)
|
||||
probability = torch.squeeze(probability)
|
||||
assert len(index) == 2, "invalid length : {:}".format(index)
|
||||
# compute expected flop
|
||||
# coordinates = torch.arange(self.x_range[0], self.x_range[1]+1).type_as(probability)
|
||||
expected_outC = (self.choices_tensor * probability).sum()
|
||||
expected_flop = self.get_flops([expected_inC, expected_outC], False, 1e6)
|
||||
if self.avg:
|
||||
out = self.avg(inputs)
|
||||
else:
|
||||
out = inputs
|
||||
# convolutional layer
|
||||
out_convs = conv_forward(out, self.conv, [self.choices[i] for i in index])
|
||||
out_bns = [self.BNs[idx](out_conv) for idx, out_conv in zip(index, out_convs)]
|
||||
# merge
|
||||
out_channel = max([x.size(1) for x in out_bns])
|
||||
outA = ChannelWiseInter(out_bns[0], out_channel)
|
||||
outB = ChannelWiseInter(out_bns[1], out_channel)
|
||||
out = outA * prob[0] + outB * prob[1]
|
||||
# out = additive_func(out_bns[0]*prob[0], out_bns[1]*prob[1])
|
||||
|
||||
if self.relu:
|
||||
out = self.relu(out)
|
||||
else:
|
||||
out = out
|
||||
return out, expected_outC, expected_flop
|
||||
|
||||
def basic_forward(self, inputs):
|
||||
if self.avg:
|
||||
out = self.avg(inputs)
|
||||
else:
|
||||
out = inputs
|
||||
conv = self.conv(out)
|
||||
if self.has_bn:
|
||||
out = self.BNs[-1](conv)
|
||||
else:
|
||||
out = conv
|
||||
if self.relu:
|
||||
out = self.relu(out)
|
||||
else:
|
||||
out = out
|
||||
if self.InShape is None:
|
||||
self.InShape = (inputs.size(-2), inputs.size(-1))
|
||||
self.OutShape = (out.size(-2), out.size(-1))
|
||||
return out
|
||||
|
||||
|
||||
class ResNetBasicblock(nn.Module):
|
||||
expansion = 1
|
||||
num_conv = 2
|
||||
|
||||
def __init__(self, inplanes, planes, stride):
|
||||
super(ResNetBasicblock, self).__init__()
|
||||
assert stride == 1 or stride == 2, "invalid stride {:}".format(stride)
|
||||
self.conv_a = ConvBNReLU(
|
||||
inplanes,
|
||||
planes,
|
||||
3,
|
||||
stride,
|
||||
1,
|
||||
False,
|
||||
has_avg=False,
|
||||
has_bn=True,
|
||||
has_relu=True,
|
||||
)
|
||||
self.conv_b = ConvBNReLU(
|
||||
planes, planes, 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=False
|
||||
)
|
||||
if stride == 2:
|
||||
self.downsample = ConvBNReLU(
|
||||
inplanes,
|
||||
planes,
|
||||
1,
|
||||
1,
|
||||
0,
|
||||
False,
|
||||
has_avg=True,
|
||||
has_bn=False,
|
||||
has_relu=False,
|
||||
)
|
||||
elif inplanes != planes:
|
||||
self.downsample = ConvBNReLU(
|
||||
inplanes,
|
||||
planes,
|
||||
1,
|
||||
1,
|
||||
0,
|
||||
False,
|
||||
has_avg=False,
|
||||
has_bn=True,
|
||||
has_relu=False,
|
||||
)
|
||||
else:
|
||||
self.downsample = None
|
||||
self.out_dim = planes
|
||||
self.search_mode = "basic"
|
||||
|
||||
def get_range(self):
|
||||
return self.conv_a.get_range() + self.conv_b.get_range()
|
||||
|
||||
def get_flops(self, channels):
|
||||
assert len(channels) == 3, "invalid channels : {:}".format(channels)
|
||||
flop_A = self.conv_a.get_flops([channels[0], channels[1]])
|
||||
flop_B = self.conv_b.get_flops([channels[1], channels[2]])
|
||||
if hasattr(self.downsample, "get_flops"):
|
||||
flop_C = self.downsample.get_flops([channels[0], channels[-1]])
|
||||
else:
|
||||
flop_C = 0
|
||||
if (
|
||||
channels[0] != channels[-1] and self.downsample is None
|
||||
): # this short-cut will be added during the infer-train
|
||||
flop_C = (
|
||||
channels[0]
|
||||
* channels[-1]
|
||||
* self.conv_b.OutShape[0]
|
||||
* self.conv_b.OutShape[1]
|
||||
)
|
||||
return flop_A + flop_B + flop_C
|
||||
|
||||
def forward(self, inputs):
|
||||
if self.search_mode == "basic":
|
||||
return self.basic_forward(inputs)
|
||||
elif self.search_mode == "search":
|
||||
return self.search_forward(inputs)
|
||||
else:
|
||||
raise ValueError("invalid search_mode = {:}".format(self.search_mode))
|
||||
|
||||
def search_forward(self, tuple_inputs):
|
||||
assert (
|
||||
isinstance(tuple_inputs, tuple) and len(tuple_inputs) == 5
|
||||
), "invalid type input : {:}".format(type(tuple_inputs))
|
||||
inputs, expected_inC, probability, indexes, probs = tuple_inputs
|
||||
assert indexes.size(0) == 2 and probs.size(0) == 2 and probability.size(0) == 2
|
||||
out_a, expected_inC_a, expected_flop_a = self.conv_a(
|
||||
(inputs, expected_inC, probability[0], indexes[0], probs[0])
|
||||
)
|
||||
out_b, expected_inC_b, expected_flop_b = self.conv_b(
|
||||
(out_a, expected_inC_a, probability[1], indexes[1], probs[1])
|
||||
)
|
||||
if self.downsample is not None:
|
||||
residual, _, expected_flop_c = self.downsample(
|
||||
(inputs, expected_inC, probability[1], indexes[1], probs[1])
|
||||
)
|
||||
else:
|
||||
residual, expected_flop_c = inputs, 0
|
||||
out = additive_func(residual, out_b)
|
||||
return (
|
||||
nn.functional.relu(out, inplace=True),
|
||||
expected_inC_b,
|
||||
sum([expected_flop_a, expected_flop_b, expected_flop_c]),
|
||||
)
|
||||
|
||||
def basic_forward(self, inputs):
|
||||
basicblock = self.conv_a(inputs)
|
||||
basicblock = self.conv_b(basicblock)
|
||||
if self.downsample is not None:
|
||||
residual = self.downsample(inputs)
|
||||
else:
|
||||
residual = inputs
|
||||
out = additive_func(residual, basicblock)
|
||||
return nn.functional.relu(out, inplace=True)
|
||||
|
||||
|
||||
class ResNetBottleneck(nn.Module):
|
||||
expansion = 4
|
||||
num_conv = 3
|
||||
|
||||
def __init__(self, inplanes, planes, stride):
|
||||
super(ResNetBottleneck, self).__init__()
|
||||
assert stride == 1 or stride == 2, "invalid stride {:}".format(stride)
|
||||
self.conv_1x1 = ConvBNReLU(
|
||||
inplanes, planes, 1, 1, 0, False, has_avg=False, has_bn=True, has_relu=True
|
||||
)
|
||||
self.conv_3x3 = ConvBNReLU(
|
||||
planes,
|
||||
planes,
|
||||
3,
|
||||
stride,
|
||||
1,
|
||||
False,
|
||||
has_avg=False,
|
||||
has_bn=True,
|
||||
has_relu=True,
|
||||
)
|
||||
self.conv_1x4 = ConvBNReLU(
|
||||
planes,
|
||||
planes * self.expansion,
|
||||
1,
|
||||
1,
|
||||
0,
|
||||
False,
|
||||
has_avg=False,
|
||||
has_bn=True,
|
||||
has_relu=False,
|
||||
)
|
||||
if stride == 2:
|
||||
self.downsample = ConvBNReLU(
|
||||
inplanes,
|
||||
planes * self.expansion,
|
||||
1,
|
||||
1,
|
||||
0,
|
||||
False,
|
||||
has_avg=True,
|
||||
has_bn=False,
|
||||
has_relu=False,
|
||||
)
|
||||
elif inplanes != planes * self.expansion:
|
||||
self.downsample = ConvBNReLU(
|
||||
inplanes,
|
||||
planes * self.expansion,
|
||||
1,
|
||||
1,
|
||||
0,
|
||||
False,
|
||||
has_avg=False,
|
||||
has_bn=True,
|
||||
has_relu=False,
|
||||
)
|
||||
else:
|
||||
self.downsample = None
|
||||
self.out_dim = planes * self.expansion
|
||||
self.search_mode = "basic"
|
||||
|
||||
def get_range(self):
|
||||
return (
|
||||
self.conv_1x1.get_range()
|
||||
+ self.conv_3x3.get_range()
|
||||
+ self.conv_1x4.get_range()
|
||||
)
|
||||
|
||||
def get_flops(self, channels):
|
||||
assert len(channels) == 4, "invalid channels : {:}".format(channels)
|
||||
flop_A = self.conv_1x1.get_flops([channels[0], channels[1]])
|
||||
flop_B = self.conv_3x3.get_flops([channels[1], channels[2]])
|
||||
flop_C = self.conv_1x4.get_flops([channels[2], channels[3]])
|
||||
if hasattr(self.downsample, "get_flops"):
|
||||
flop_D = self.downsample.get_flops([channels[0], channels[-1]])
|
||||
else:
|
||||
flop_D = 0
|
||||
if (
|
||||
channels[0] != channels[-1] and self.downsample is None
|
||||
): # this short-cut will be added during the infer-train
|
||||
flop_D = (
|
||||
channels[0]
|
||||
* channels[-1]
|
||||
* self.conv_1x4.OutShape[0]
|
||||
* self.conv_1x4.OutShape[1]
|
||||
)
|
||||
return flop_A + flop_B + flop_C + flop_D
|
||||
|
||||
def forward(self, inputs):
|
||||
if self.search_mode == "basic":
|
||||
return self.basic_forward(inputs)
|
||||
elif self.search_mode == "search":
|
||||
return self.search_forward(inputs)
|
||||
else:
|
||||
raise ValueError("invalid search_mode = {:}".format(self.search_mode))
|
||||
|
||||
def basic_forward(self, inputs):
|
||||
bottleneck = self.conv_1x1(inputs)
|
||||
bottleneck = self.conv_3x3(bottleneck)
|
||||
bottleneck = self.conv_1x4(bottleneck)
|
||||
if self.downsample is not None:
|
||||
residual = self.downsample(inputs)
|
||||
else:
|
||||
residual = inputs
|
||||
out = additive_func(residual, bottleneck)
|
||||
return nn.functional.relu(out, inplace=True)
|
||||
|
||||
def search_forward(self, tuple_inputs):
|
||||
assert (
|
||||
isinstance(tuple_inputs, tuple) and len(tuple_inputs) == 5
|
||||
), "invalid type input : {:}".format(type(tuple_inputs))
|
||||
inputs, expected_inC, probability, indexes, probs = tuple_inputs
|
||||
assert indexes.size(0) == 3 and probs.size(0) == 3 and probability.size(0) == 3
|
||||
out_1x1, expected_inC_1x1, expected_flop_1x1 = self.conv_1x1(
|
||||
(inputs, expected_inC, probability[0], indexes[0], probs[0])
|
||||
)
|
||||
out_3x3, expected_inC_3x3, expected_flop_3x3 = self.conv_3x3(
|
||||
(out_1x1, expected_inC_1x1, probability[1], indexes[1], probs[1])
|
||||
)
|
||||
out_1x4, expected_inC_1x4, expected_flop_1x4 = self.conv_1x4(
|
||||
(out_3x3, expected_inC_3x3, probability[2], indexes[2], probs[2])
|
||||
)
|
||||
if self.downsample is not None:
|
||||
residual, _, expected_flop_c = self.downsample(
|
||||
(inputs, expected_inC, probability[2], indexes[2], probs[2])
|
||||
)
|
||||
else:
|
||||
residual, expected_flop_c = inputs, 0
|
||||
out = additive_func(residual, out_1x4)
|
||||
return (
|
||||
nn.functional.relu(out, inplace=True),
|
||||
expected_inC_1x4,
|
||||
sum(
|
||||
[
|
||||
expected_flop_1x1,
|
||||
expected_flop_3x3,
|
||||
expected_flop_1x4,
|
||||
expected_flop_c,
|
||||
]
|
||||
),
|
||||
)
|
||||
|
||||
|
||||
class SearchShapeCifarResNet(nn.Module):
|
||||
def __init__(self, block_name, depth, num_classes):
|
||||
super(SearchShapeCifarResNet, self).__init__()
|
||||
|
||||
# Model type specifies number of layers for CIFAR-10 and CIFAR-100 model
|
||||
if block_name == "ResNetBasicblock":
|
||||
block = ResNetBasicblock
|
||||
assert (depth - 2) % 6 == 0, "depth should be one of 20, 32, 44, 56, 110"
|
||||
layer_blocks = (depth - 2) // 6
|
||||
elif block_name == "ResNetBottleneck":
|
||||
block = ResNetBottleneck
|
||||
assert (depth - 2) % 9 == 0, "depth should be one of 164"
|
||||
layer_blocks = (depth - 2) // 9
|
||||
else:
|
||||
raise ValueError("invalid block : {:}".format(block_name))
|
||||
|
||||
self.message = (
|
||||
"SearchShapeCifarResNet : Depth : {:} , Layers for each block : {:}".format(
|
||||
depth, layer_blocks
|
||||
)
|
||||
)
|
||||
self.num_classes = num_classes
|
||||
self.channels = [16]
|
||||
self.layers = nn.ModuleList(
|
||||
[
|
||||
ConvBNReLU(
|
||||
3, 16, 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=True
|
||||
)
|
||||
]
|
||||
)
|
||||
self.InShape = None
|
||||
self.depth_info = OrderedDict()
|
||||
self.depth_at_i = OrderedDict()
|
||||
for stage in range(3):
|
||||
cur_block_choices = get_depth_choices(layer_blocks, False)
|
||||
assert (
|
||||
cur_block_choices[-1] == layer_blocks
|
||||
), "stage={:}, {:} vs {:}".format(stage, cur_block_choices, layer_blocks)
|
||||
self.message += (
|
||||
"\nstage={:} ::: depth-block-choices={:} for {:} blocks.".format(
|
||||
stage, cur_block_choices, layer_blocks
|
||||
)
|
||||
)
|
||||
block_choices, xstart = [], len(self.layers)
|
||||
for iL in range(layer_blocks):
|
||||
iC = self.channels[-1]
|
||||
planes = 16 * (2 ** stage)
|
||||
stride = 2 if stage > 0 and iL == 0 else 1
|
||||
module = block(iC, planes, stride)
|
||||
self.channels.append(module.out_dim)
|
||||
self.layers.append(module)
|
||||
self.message += "\nstage={:}, ilayer={:02d}/{:02d}, block={:03d}, iC={:3d}, oC={:3d}, stride={:}".format(
|
||||
stage,
|
||||
iL,
|
||||
layer_blocks,
|
||||
len(self.layers) - 1,
|
||||
iC,
|
||||
module.out_dim,
|
||||
stride,
|
||||
)
|
||||
# added for depth
|
||||
layer_index = len(self.layers) - 1
|
||||
if iL + 1 in cur_block_choices:
|
||||
block_choices.append(layer_index)
|
||||
if iL + 1 == layer_blocks:
|
||||
self.depth_info[layer_index] = {
|
||||
"choices": block_choices,
|
||||
"stage": stage,
|
||||
"xstart": xstart,
|
||||
}
|
||||
self.depth_info_list = []
|
||||
for xend, info in self.depth_info.items():
|
||||
self.depth_info_list.append((xend, info))
|
||||
xstart, xstage = info["xstart"], info["stage"]
|
||||
for ilayer in range(xstart, xend + 1):
|
||||
idx = bisect_right(info["choices"], ilayer - 1)
|
||||
self.depth_at_i[ilayer] = (xstage, idx)
|
||||
|
||||
self.avgpool = nn.AvgPool2d(8)
|
||||
self.classifier = nn.Linear(module.out_dim, num_classes)
|
||||
self.InShape = None
|
||||
self.tau = -1
|
||||
self.search_mode = "basic"
|
||||
# assert sum(x.num_conv for x in self.layers) + 1 == depth, 'invalid depth check {:} vs {:}'.format(sum(x.num_conv for x in self.layers)+1, depth)
|
||||
|
||||
# parameters for width
|
||||
self.Ranges = []
|
||||
self.layer2indexRange = []
|
||||
for i, layer in enumerate(self.layers):
|
||||
start_index = len(self.Ranges)
|
||||
self.Ranges += layer.get_range()
|
||||
self.layer2indexRange.append((start_index, len(self.Ranges)))
|
||||
assert len(self.Ranges) + 1 == depth, "invalid depth check {:} vs {:}".format(
|
||||
len(self.Ranges) + 1, depth
|
||||
)
|
||||
|
||||
self.register_parameter(
|
||||
"width_attentions",
|
||||
nn.Parameter(torch.Tensor(len(self.Ranges), get_width_choices(None))),
|
||||
)
|
||||
self.register_parameter(
|
||||
"depth_attentions",
|
||||
nn.Parameter(torch.Tensor(3, get_depth_choices(layer_blocks, True))),
|
||||
)
|
||||
nn.init.normal_(self.width_attentions, 0, 0.01)
|
||||
nn.init.normal_(self.depth_attentions, 0, 0.01)
|
||||
self.apply(initialize_resnet)
|
||||
|
||||
def arch_parameters(self, LR=None):
|
||||
if LR is None:
|
||||
return [self.width_attentions, self.depth_attentions]
|
||||
else:
|
||||
return [
|
||||
{"params": self.width_attentions, "lr": LR},
|
||||
{"params": self.depth_attentions, "lr": LR},
|
||||
]
|
||||
|
||||
def base_parameters(self):
|
||||
return (
|
||||
list(self.layers.parameters())
|
||||
+ list(self.avgpool.parameters())
|
||||
+ list(self.classifier.parameters())
|
||||
)
|
||||
|
||||
def get_flop(self, mode, config_dict, extra_info):
|
||||
if config_dict is not None:
|
||||
config_dict = config_dict.copy()
|
||||
# select channels
|
||||
channels = [3]
|
||||
for i, weight in enumerate(self.width_attentions):
|
||||
if mode == "genotype":
|
||||
with torch.no_grad():
|
||||
probe = nn.functional.softmax(weight, dim=0)
|
||||
C = self.Ranges[i][torch.argmax(probe).item()]
|
||||
elif mode == "max":
|
||||
C = self.Ranges[i][-1]
|
||||
elif mode == "fix":
|
||||
C = int(math.sqrt(extra_info) * self.Ranges[i][-1])
|
||||
elif mode == "random":
|
||||
assert isinstance(extra_info, float), "invalid extra_info : {:}".format(
|
||||
extra_info
|
||||
)
|
||||
with torch.no_grad():
|
||||
prob = nn.functional.softmax(weight, dim=0)
|
||||
approximate_C = int(math.sqrt(extra_info) * self.Ranges[i][-1])
|
||||
for j in range(prob.size(0)):
|
||||
prob[j] = 1 / (
|
||||
abs(j - (approximate_C - self.Ranges[i][j])) + 0.2
|
||||
)
|
||||
C = self.Ranges[i][torch.multinomial(prob, 1, False).item()]
|
||||
else:
|
||||
raise ValueError("invalid mode : {:}".format(mode))
|
||||
channels.append(C)
|
||||
# select depth
|
||||
if mode == "genotype":
|
||||
with torch.no_grad():
|
||||
depth_probs = nn.functional.softmax(self.depth_attentions, dim=1)
|
||||
choices = torch.argmax(depth_probs, dim=1).cpu().tolist()
|
||||
elif mode == "max" or mode == "fix":
|
||||
choices = [depth_probs.size(1) - 1 for _ in range(depth_probs.size(0))]
|
||||
elif mode == "random":
|
||||
with torch.no_grad():
|
||||
depth_probs = nn.functional.softmax(self.depth_attentions, dim=1)
|
||||
choices = torch.multinomial(depth_probs, 1, False).cpu().tolist()
|
||||
else:
|
||||
raise ValueError("invalid mode : {:}".format(mode))
|
||||
selected_layers = []
|
||||
for choice, xvalue in zip(choices, self.depth_info_list):
|
||||
xtemp = xvalue[1]["choices"][choice] - xvalue[1]["xstart"] + 1
|
||||
selected_layers.append(xtemp)
|
||||
flop = 0
|
||||
for i, layer in enumerate(self.layers):
|
||||
s, e = self.layer2indexRange[i]
|
||||
xchl = tuple(channels[s : e + 1])
|
||||
if i in self.depth_at_i:
|
||||
xstagei, xatti = self.depth_at_i[i]
|
||||
if xatti <= choices[xstagei]: # leave this depth
|
||||
flop += layer.get_flops(xchl)
|
||||
else:
|
||||
flop += 0 # do not use this layer
|
||||
else:
|
||||
flop += layer.get_flops(xchl)
|
||||
# the last fc layer
|
||||
flop += channels[-1] * self.classifier.out_features
|
||||
if config_dict is None:
|
||||
return flop / 1e6
|
||||
else:
|
||||
config_dict["xchannels"] = channels
|
||||
config_dict["xblocks"] = selected_layers
|
||||
config_dict["super_type"] = "infer-shape"
|
||||
config_dict["estimated_FLOP"] = flop / 1e6
|
||||
return flop / 1e6, config_dict
|
||||
|
||||
def get_arch_info(self):
|
||||
string = (
|
||||
"for depth and width, there are {:} + {:} attention probabilities.".format(
|
||||
len(self.depth_attentions), len(self.width_attentions)
|
||||
)
|
||||
)
|
||||
string += "\n{:}".format(self.depth_info)
|
||||
discrepancy = []
|
||||
with torch.no_grad():
|
||||
for i, att in enumerate(self.depth_attentions):
|
||||
prob = nn.functional.softmax(att, dim=0)
|
||||
prob = prob.cpu()
|
||||
selc = prob.argmax().item()
|
||||
prob = prob.tolist()
|
||||
prob = ["{:.3f}".format(x) for x in prob]
|
||||
xstring = "{:03d}/{:03d}-th : {:}".format(
|
||||
i, len(self.depth_attentions), " ".join(prob)
|
||||
)
|
||||
logt = ["{:.4f}".format(x) for x in att.cpu().tolist()]
|
||||
xstring += " || {:17s}".format(" ".join(logt))
|
||||
prob = sorted([float(x) for x in prob])
|
||||
disc = prob[-1] - prob[-2]
|
||||
xstring += " || discrepancy={:.2f} || select={:}/{:}".format(
|
||||
disc, selc, len(prob)
|
||||
)
|
||||
discrepancy.append(disc)
|
||||
string += "\n{:}".format(xstring)
|
||||
string += "\n-----------------------------------------------"
|
||||
for i, att in enumerate(self.width_attentions):
|
||||
prob = nn.functional.softmax(att, dim=0)
|
||||
prob = prob.cpu()
|
||||
selc = prob.argmax().item()
|
||||
prob = prob.tolist()
|
||||
prob = ["{:.3f}".format(x) for x in prob]
|
||||
xstring = "{:03d}/{:03d}-th : {:}".format(
|
||||
i, len(self.width_attentions), " ".join(prob)
|
||||
)
|
||||
logt = ["{:.3f}".format(x) for x in att.cpu().tolist()]
|
||||
xstring += " || {:52s}".format(" ".join(logt))
|
||||
prob = sorted([float(x) for x in prob])
|
||||
disc = prob[-1] - prob[-2]
|
||||
xstring += " || dis={:.2f} || select={:}/{:}".format(
|
||||
disc, selc, len(prob)
|
||||
)
|
||||
discrepancy.append(disc)
|
||||
string += "\n{:}".format(xstring)
|
||||
return string, discrepancy
|
||||
|
||||
def set_tau(self, tau_max, tau_min, epoch_ratio):
|
||||
assert (
|
||||
epoch_ratio >= 0 and epoch_ratio <= 1
|
||||
), "invalid epoch-ratio : {:}".format(epoch_ratio)
|
||||
tau = tau_min + (tau_max - tau_min) * (1 + math.cos(math.pi * epoch_ratio)) / 2
|
||||
self.tau = tau
|
||||
|
||||
def get_message(self):
|
||||
return self.message
|
||||
|
||||
def forward(self, inputs):
|
||||
if self.search_mode == "basic":
|
||||
return self.basic_forward(inputs)
|
||||
elif self.search_mode == "search":
|
||||
return self.search_forward(inputs)
|
||||
else:
|
||||
raise ValueError("invalid search_mode = {:}".format(self.search_mode))
|
||||
|
||||
def search_forward(self, inputs):
|
||||
flop_width_probs = nn.functional.softmax(self.width_attentions, dim=1)
|
||||
flop_depth_probs = nn.functional.softmax(self.depth_attentions, dim=1)
|
||||
flop_depth_probs = torch.flip(
|
||||
torch.cumsum(torch.flip(flop_depth_probs, [1]), 1), [1]
|
||||
)
|
||||
selected_widths, selected_width_probs = select2withP(
|
||||
self.width_attentions, self.tau
|
||||
)
|
||||
selected_depth_probs = select2withP(self.depth_attentions, self.tau, True)
|
||||
with torch.no_grad():
|
||||
selected_widths = selected_widths.cpu()
|
||||
|
||||
x, last_channel_idx, expected_inC, flops = inputs, 0, 3, []
|
||||
feature_maps = []
|
||||
for i, layer in enumerate(self.layers):
|
||||
selected_w_index = selected_widths[
|
||||
last_channel_idx : last_channel_idx + layer.num_conv
|
||||
]
|
||||
selected_w_probs = selected_width_probs[
|
||||
last_channel_idx : last_channel_idx + layer.num_conv
|
||||
]
|
||||
layer_prob = flop_width_probs[
|
||||
last_channel_idx : last_channel_idx + layer.num_conv
|
||||
]
|
||||
x, expected_inC, expected_flop = layer(
|
||||
(x, expected_inC, layer_prob, selected_w_index, selected_w_probs)
|
||||
)
|
||||
feature_maps.append(x)
|
||||
last_channel_idx += layer.num_conv
|
||||
if i in self.depth_info: # aggregate the information
|
||||
choices = self.depth_info[i]["choices"]
|
||||
xstagei = self.depth_info[i]["stage"]
|
||||
# print ('iL={:}, choices={:}, stage={:}, probs={:}'.format(i, choices, xstagei, selected_depth_probs[xstagei].cpu().tolist()))
|
||||
# for A, W in zip(choices, selected_depth_probs[xstagei]):
|
||||
# print('Size = {:}, W = {:}'.format(feature_maps[A].size(), W))
|
||||
possible_tensors = []
|
||||
max_C = max(feature_maps[A].size(1) for A in choices)
|
||||
for tempi, A in enumerate(choices):
|
||||
xtensor = ChannelWiseInter(feature_maps[A], max_C)
|
||||
# drop_ratio = 1-(tempi+1.0)/len(choices)
|
||||
# xtensor = drop_path(xtensor, drop_ratio)
|
||||
possible_tensors.append(xtensor)
|
||||
weighted_sum = sum(
|
||||
xtensor * W
|
||||
for xtensor, W in zip(
|
||||
possible_tensors, selected_depth_probs[xstagei]
|
||||
)
|
||||
)
|
||||
x = weighted_sum
|
||||
|
||||
if i in self.depth_at_i:
|
||||
xstagei, xatti = self.depth_at_i[i]
|
||||
x_expected_flop = flop_depth_probs[xstagei, xatti] * expected_flop
|
||||
else:
|
||||
x_expected_flop = expected_flop
|
||||
flops.append(x_expected_flop)
|
||||
flops.append(expected_inC * (self.classifier.out_features * 1.0 / 1e6))
|
||||
features = self.avgpool(x)
|
||||
features = features.view(features.size(0), -1)
|
||||
logits = linear_forward(features, self.classifier)
|
||||
return logits, torch.stack([sum(flops)])
|
||||
|
||||
def basic_forward(self, inputs):
|
||||
if self.InShape is None:
|
||||
self.InShape = (inputs.size(-2), inputs.size(-1))
|
||||
x = inputs
|
||||
for i, layer in enumerate(self.layers):
|
||||
x = layer(x)
|
||||
features = self.avgpool(x)
|
||||
features = features.view(features.size(0), -1)
|
||||
logits = self.classifier(features)
|
||||
return features, logits
|
515
xautodl/models/shape_searchs/SearchCifarResNet_depth.py
Normal file
515
xautodl/models/shape_searchs/SearchCifarResNet_depth.py
Normal file
@@ -0,0 +1,515 @@
|
||||
##################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
|
||||
##################################################
|
||||
import math, torch
|
||||
from collections import OrderedDict
|
||||
from bisect import bisect_right
|
||||
import torch.nn as nn
|
||||
from ..initialization import initialize_resnet
|
||||
from ..SharedUtils import additive_func
|
||||
from .SoftSelect import select2withP, ChannelWiseInter
|
||||
from .SoftSelect import linear_forward
|
||||
from .SoftSelect import get_width_choices
|
||||
|
||||
|
||||
def get_depth_choices(nDepth, return_num):
|
||||
if nDepth == 2:
|
||||
choices = (1, 2)
|
||||
elif nDepth == 3:
|
||||
choices = (1, 2, 3)
|
||||
elif nDepth > 3:
|
||||
choices = list(range(1, nDepth + 1, 2))
|
||||
if choices[-1] < nDepth:
|
||||
choices.append(nDepth)
|
||||
else:
|
||||
raise ValueError("invalid nDepth : {:}".format(nDepth))
|
||||
if return_num:
|
||||
return len(choices)
|
||||
else:
|
||||
return choices
|
||||
|
||||
|
||||
class ConvBNReLU(nn.Module):
|
||||
num_conv = 1
|
||||
|
||||
def __init__(
|
||||
self, nIn, nOut, kernel, stride, padding, bias, has_avg, has_bn, has_relu
|
||||
):
|
||||
super(ConvBNReLU, self).__init__()
|
||||
self.InShape = None
|
||||
self.OutShape = None
|
||||
self.choices = get_width_choices(nOut)
|
||||
self.register_buffer("choices_tensor", torch.Tensor(self.choices))
|
||||
|
||||
if has_avg:
|
||||
self.avg = nn.AvgPool2d(kernel_size=2, stride=2, padding=0)
|
||||
else:
|
||||
self.avg = None
|
||||
self.conv = nn.Conv2d(
|
||||
nIn,
|
||||
nOut,
|
||||
kernel_size=kernel,
|
||||
stride=stride,
|
||||
padding=padding,
|
||||
dilation=1,
|
||||
groups=1,
|
||||
bias=bias,
|
||||
)
|
||||
if has_bn:
|
||||
self.bn = nn.BatchNorm2d(nOut)
|
||||
else:
|
||||
self.bn = None
|
||||
if has_relu:
|
||||
self.relu = nn.ReLU(inplace=False)
|
||||
else:
|
||||
self.relu = None
|
||||
self.in_dim = nIn
|
||||
self.out_dim = nOut
|
||||
|
||||
def get_flops(self, divide=1):
|
||||
iC, oC = self.in_dim, self.out_dim
|
||||
assert (
|
||||
iC <= self.conv.in_channels and oC <= self.conv.out_channels
|
||||
), "{:} vs {:} | {:} vs {:}".format(
|
||||
iC, self.conv.in_channels, oC, self.conv.out_channels
|
||||
)
|
||||
assert (
|
||||
isinstance(self.InShape, tuple) and len(self.InShape) == 2
|
||||
), "invalid in-shape : {:}".format(self.InShape)
|
||||
assert (
|
||||
isinstance(self.OutShape, tuple) and len(self.OutShape) == 2
|
||||
), "invalid out-shape : {:}".format(self.OutShape)
|
||||
# conv_per_position_flops = self.conv.kernel_size[0] * self.conv.kernel_size[1] * iC * oC / self.conv.groups
|
||||
conv_per_position_flops = (
|
||||
self.conv.kernel_size[0] * self.conv.kernel_size[1] * 1.0 / self.conv.groups
|
||||
)
|
||||
all_positions = self.OutShape[0] * self.OutShape[1]
|
||||
flops = (conv_per_position_flops * all_positions / divide) * iC * oC
|
||||
if self.conv.bias is not None:
|
||||
flops += all_positions / divide
|
||||
return flops
|
||||
|
||||
def forward(self, inputs):
|
||||
if self.avg:
|
||||
out = self.avg(inputs)
|
||||
else:
|
||||
out = inputs
|
||||
conv = self.conv(out)
|
||||
if self.bn:
|
||||
out = self.bn(conv)
|
||||
else:
|
||||
out = conv
|
||||
if self.relu:
|
||||
out = self.relu(out)
|
||||
else:
|
||||
out = out
|
||||
if self.InShape is None:
|
||||
self.InShape = (inputs.size(-2), inputs.size(-1))
|
||||
self.OutShape = (out.size(-2), out.size(-1))
|
||||
return out
|
||||
|
||||
|
||||
class ResNetBasicblock(nn.Module):
|
||||
expansion = 1
|
||||
num_conv = 2
|
||||
|
||||
def __init__(self, inplanes, planes, stride):
|
||||
super(ResNetBasicblock, self).__init__()
|
||||
assert stride == 1 or stride == 2, "invalid stride {:}".format(stride)
|
||||
self.conv_a = ConvBNReLU(
|
||||
inplanes,
|
||||
planes,
|
||||
3,
|
||||
stride,
|
||||
1,
|
||||
False,
|
||||
has_avg=False,
|
||||
has_bn=True,
|
||||
has_relu=True,
|
||||
)
|
||||
self.conv_b = ConvBNReLU(
|
||||
planes, planes, 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=False
|
||||
)
|
||||
if stride == 2:
|
||||
self.downsample = ConvBNReLU(
|
||||
inplanes,
|
||||
planes,
|
||||
1,
|
||||
1,
|
||||
0,
|
||||
False,
|
||||
has_avg=True,
|
||||
has_bn=False,
|
||||
has_relu=False,
|
||||
)
|
||||
elif inplanes != planes:
|
||||
self.downsample = ConvBNReLU(
|
||||
inplanes,
|
||||
planes,
|
||||
1,
|
||||
1,
|
||||
0,
|
||||
False,
|
||||
has_avg=False,
|
||||
has_bn=True,
|
||||
has_relu=False,
|
||||
)
|
||||
else:
|
||||
self.downsample = None
|
||||
self.out_dim = planes
|
||||
self.search_mode = "basic"
|
||||
|
||||
def get_flops(self, divide=1):
|
||||
flop_A = self.conv_a.get_flops(divide)
|
||||
flop_B = self.conv_b.get_flops(divide)
|
||||
if hasattr(self.downsample, "get_flops"):
|
||||
flop_C = self.downsample.get_flops(divide)
|
||||
else:
|
||||
flop_C = 0
|
||||
return flop_A + flop_B + flop_C
|
||||
|
||||
def forward(self, inputs):
|
||||
basicblock = self.conv_a(inputs)
|
||||
basicblock = self.conv_b(basicblock)
|
||||
if self.downsample is not None:
|
||||
residual = self.downsample(inputs)
|
||||
else:
|
||||
residual = inputs
|
||||
out = additive_func(residual, basicblock)
|
||||
return nn.functional.relu(out, inplace=True)
|
||||
|
||||
|
||||
class ResNetBottleneck(nn.Module):
|
||||
expansion = 4
|
||||
num_conv = 3
|
||||
|
||||
def __init__(self, inplanes, planes, stride):
|
||||
super(ResNetBottleneck, self).__init__()
|
||||
assert stride == 1 or stride == 2, "invalid stride {:}".format(stride)
|
||||
self.conv_1x1 = ConvBNReLU(
|
||||
inplanes, planes, 1, 1, 0, False, has_avg=False, has_bn=True, has_relu=True
|
||||
)
|
||||
self.conv_3x3 = ConvBNReLU(
|
||||
planes,
|
||||
planes,
|
||||
3,
|
||||
stride,
|
||||
1,
|
||||
False,
|
||||
has_avg=False,
|
||||
has_bn=True,
|
||||
has_relu=True,
|
||||
)
|
||||
self.conv_1x4 = ConvBNReLU(
|
||||
planes,
|
||||
planes * self.expansion,
|
||||
1,
|
||||
1,
|
||||
0,
|
||||
False,
|
||||
has_avg=False,
|
||||
has_bn=True,
|
||||
has_relu=False,
|
||||
)
|
||||
if stride == 2:
|
||||
self.downsample = ConvBNReLU(
|
||||
inplanes,
|
||||
planes * self.expansion,
|
||||
1,
|
||||
1,
|
||||
0,
|
||||
False,
|
||||
has_avg=True,
|
||||
has_bn=False,
|
||||
has_relu=False,
|
||||
)
|
||||
elif inplanes != planes * self.expansion:
|
||||
self.downsample = ConvBNReLU(
|
||||
inplanes,
|
||||
planes * self.expansion,
|
||||
1,
|
||||
1,
|
||||
0,
|
||||
False,
|
||||
has_avg=False,
|
||||
has_bn=True,
|
||||
has_relu=False,
|
||||
)
|
||||
else:
|
||||
self.downsample = None
|
||||
self.out_dim = planes * self.expansion
|
||||
self.search_mode = "basic"
|
||||
|
||||
def get_range(self):
|
||||
return (
|
||||
self.conv_1x1.get_range()
|
||||
+ self.conv_3x3.get_range()
|
||||
+ self.conv_1x4.get_range()
|
||||
)
|
||||
|
||||
def get_flops(self, divide):
|
||||
flop_A = self.conv_1x1.get_flops(divide)
|
||||
flop_B = self.conv_3x3.get_flops(divide)
|
||||
flop_C = self.conv_1x4.get_flops(divide)
|
||||
if hasattr(self.downsample, "get_flops"):
|
||||
flop_D = self.downsample.get_flops(divide)
|
||||
else:
|
||||
flop_D = 0
|
||||
return flop_A + flop_B + flop_C + flop_D
|
||||
|
||||
def forward(self, inputs):
|
||||
bottleneck = self.conv_1x1(inputs)
|
||||
bottleneck = self.conv_3x3(bottleneck)
|
||||
bottleneck = self.conv_1x4(bottleneck)
|
||||
if self.downsample is not None:
|
||||
residual = self.downsample(inputs)
|
||||
else:
|
||||
residual = inputs
|
||||
out = additive_func(residual, bottleneck)
|
||||
return nn.functional.relu(out, inplace=True)
|
||||
|
||||
|
||||
class SearchDepthCifarResNet(nn.Module):
|
||||
def __init__(self, block_name, depth, num_classes):
|
||||
super(SearchDepthCifarResNet, self).__init__()
|
||||
|
||||
# Model type specifies number of layers for CIFAR-10 and CIFAR-100 model
|
||||
if block_name == "ResNetBasicblock":
|
||||
block = ResNetBasicblock
|
||||
assert (depth - 2) % 6 == 0, "depth should be one of 20, 32, 44, 56, 110"
|
||||
layer_blocks = (depth - 2) // 6
|
||||
elif block_name == "ResNetBottleneck":
|
||||
block = ResNetBottleneck
|
||||
assert (depth - 2) % 9 == 0, "depth should be one of 164"
|
||||
layer_blocks = (depth - 2) // 9
|
||||
else:
|
||||
raise ValueError("invalid block : {:}".format(block_name))
|
||||
|
||||
self.message = (
|
||||
"SearchShapeCifarResNet : Depth : {:} , Layers for each block : {:}".format(
|
||||
depth, layer_blocks
|
||||
)
|
||||
)
|
||||
self.num_classes = num_classes
|
||||
self.channels = [16]
|
||||
self.layers = nn.ModuleList(
|
||||
[
|
||||
ConvBNReLU(
|
||||
3, 16, 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=True
|
||||
)
|
||||
]
|
||||
)
|
||||
self.InShape = None
|
||||
self.depth_info = OrderedDict()
|
||||
self.depth_at_i = OrderedDict()
|
||||
for stage in range(3):
|
||||
cur_block_choices = get_depth_choices(layer_blocks, False)
|
||||
assert (
|
||||
cur_block_choices[-1] == layer_blocks
|
||||
), "stage={:}, {:} vs {:}".format(stage, cur_block_choices, layer_blocks)
|
||||
self.message += (
|
||||
"\nstage={:} ::: depth-block-choices={:} for {:} blocks.".format(
|
||||
stage, cur_block_choices, layer_blocks
|
||||
)
|
||||
)
|
||||
block_choices, xstart = [], len(self.layers)
|
||||
for iL in range(layer_blocks):
|
||||
iC = self.channels[-1]
|
||||
planes = 16 * (2 ** stage)
|
||||
stride = 2 if stage > 0 and iL == 0 else 1
|
||||
module = block(iC, planes, stride)
|
||||
self.channels.append(module.out_dim)
|
||||
self.layers.append(module)
|
||||
self.message += "\nstage={:}, ilayer={:02d}/{:02d}, block={:03d}, iC={:3d}, oC={:3d}, stride={:}".format(
|
||||
stage,
|
||||
iL,
|
||||
layer_blocks,
|
||||
len(self.layers) - 1,
|
||||
iC,
|
||||
module.out_dim,
|
||||
stride,
|
||||
)
|
||||
# added for depth
|
||||
layer_index = len(self.layers) - 1
|
||||
if iL + 1 in cur_block_choices:
|
||||
block_choices.append(layer_index)
|
||||
if iL + 1 == layer_blocks:
|
||||
self.depth_info[layer_index] = {
|
||||
"choices": block_choices,
|
||||
"stage": stage,
|
||||
"xstart": xstart,
|
||||
}
|
||||
self.depth_info_list = []
|
||||
for xend, info in self.depth_info.items():
|
||||
self.depth_info_list.append((xend, info))
|
||||
xstart, xstage = info["xstart"], info["stage"]
|
||||
for ilayer in range(xstart, xend + 1):
|
||||
idx = bisect_right(info["choices"], ilayer - 1)
|
||||
self.depth_at_i[ilayer] = (xstage, idx)
|
||||
|
||||
self.avgpool = nn.AvgPool2d(8)
|
||||
self.classifier = nn.Linear(module.out_dim, num_classes)
|
||||
self.InShape = None
|
||||
self.tau = -1
|
||||
self.search_mode = "basic"
|
||||
# assert sum(x.num_conv for x in self.layers) + 1 == depth, 'invalid depth check {:} vs {:}'.format(sum(x.num_conv for x in self.layers)+1, depth)
|
||||
|
||||
self.register_parameter(
|
||||
"depth_attentions",
|
||||
nn.Parameter(torch.Tensor(3, get_depth_choices(layer_blocks, True))),
|
||||
)
|
||||
nn.init.normal_(self.depth_attentions, 0, 0.01)
|
||||
self.apply(initialize_resnet)
|
||||
|
||||
def arch_parameters(self):
|
||||
return [self.depth_attentions]
|
||||
|
||||
def base_parameters(self):
|
||||
return (
|
||||
list(self.layers.parameters())
|
||||
+ list(self.avgpool.parameters())
|
||||
+ list(self.classifier.parameters())
|
||||
)
|
||||
|
||||
def get_flop(self, mode, config_dict, extra_info):
|
||||
if config_dict is not None:
|
||||
config_dict = config_dict.copy()
|
||||
# select depth
|
||||
if mode == "genotype":
|
||||
with torch.no_grad():
|
||||
depth_probs = nn.functional.softmax(self.depth_attentions, dim=1)
|
||||
choices = torch.argmax(depth_probs, dim=1).cpu().tolist()
|
||||
elif mode == "max":
|
||||
choices = [depth_probs.size(1) - 1 for _ in range(depth_probs.size(0))]
|
||||
elif mode == "random":
|
||||
with torch.no_grad():
|
||||
depth_probs = nn.functional.softmax(self.depth_attentions, dim=1)
|
||||
choices = torch.multinomial(depth_probs, 1, False).cpu().tolist()
|
||||
else:
|
||||
raise ValueError("invalid mode : {:}".format(mode))
|
||||
selected_layers = []
|
||||
for choice, xvalue in zip(choices, self.depth_info_list):
|
||||
xtemp = xvalue[1]["choices"][choice] - xvalue[1]["xstart"] + 1
|
||||
selected_layers.append(xtemp)
|
||||
flop = 0
|
||||
for i, layer in enumerate(self.layers):
|
||||
if i in self.depth_at_i:
|
||||
xstagei, xatti = self.depth_at_i[i]
|
||||
if xatti <= choices[xstagei]: # leave this depth
|
||||
flop += layer.get_flops()
|
||||
else:
|
||||
flop += 0 # do not use this layer
|
||||
else:
|
||||
flop += layer.get_flops()
|
||||
# the last fc layer
|
||||
flop += self.classifier.in_features * self.classifier.out_features
|
||||
if config_dict is None:
|
||||
return flop / 1e6
|
||||
else:
|
||||
config_dict["xblocks"] = selected_layers
|
||||
config_dict["super_type"] = "infer-depth"
|
||||
config_dict["estimated_FLOP"] = flop / 1e6
|
||||
return flop / 1e6, config_dict
|
||||
|
||||
def get_arch_info(self):
|
||||
string = "for depth, there are {:} attention probabilities.".format(
|
||||
len(self.depth_attentions)
|
||||
)
|
||||
string += "\n{:}".format(self.depth_info)
|
||||
discrepancy = []
|
||||
with torch.no_grad():
|
||||
for i, att in enumerate(self.depth_attentions):
|
||||
prob = nn.functional.softmax(att, dim=0)
|
||||
prob = prob.cpu()
|
||||
selc = prob.argmax().item()
|
||||
prob = prob.tolist()
|
||||
prob = ["{:.3f}".format(x) for x in prob]
|
||||
xstring = "{:03d}/{:03d}-th : {:}".format(
|
||||
i, len(self.depth_attentions), " ".join(prob)
|
||||
)
|
||||
logt = ["{:.4f}".format(x) for x in att.cpu().tolist()]
|
||||
xstring += " || {:17s}".format(" ".join(logt))
|
||||
prob = sorted([float(x) for x in prob])
|
||||
disc = prob[-1] - prob[-2]
|
||||
xstring += " || discrepancy={:.2f} || select={:}/{:}".format(
|
||||
disc, selc, len(prob)
|
||||
)
|
||||
discrepancy.append(disc)
|
||||
string += "\n{:}".format(xstring)
|
||||
return string, discrepancy
|
||||
|
||||
def set_tau(self, tau_max, tau_min, epoch_ratio):
|
||||
assert (
|
||||
epoch_ratio >= 0 and epoch_ratio <= 1
|
||||
), "invalid epoch-ratio : {:}".format(epoch_ratio)
|
||||
tau = tau_min + (tau_max - tau_min) * (1 + math.cos(math.pi * epoch_ratio)) / 2
|
||||
self.tau = tau
|
||||
|
||||
def get_message(self):
|
||||
return self.message
|
||||
|
||||
def forward(self, inputs):
|
||||
if self.search_mode == "basic":
|
||||
return self.basic_forward(inputs)
|
||||
elif self.search_mode == "search":
|
||||
return self.search_forward(inputs)
|
||||
else:
|
||||
raise ValueError("invalid search_mode = {:}".format(self.search_mode))
|
||||
|
||||
def search_forward(self, inputs):
|
||||
flop_depth_probs = nn.functional.softmax(self.depth_attentions, dim=1)
|
||||
flop_depth_probs = torch.flip(
|
||||
torch.cumsum(torch.flip(flop_depth_probs, [1]), 1), [1]
|
||||
)
|
||||
selected_depth_probs = select2withP(self.depth_attentions, self.tau, True)
|
||||
|
||||
x, flops = inputs, []
|
||||
feature_maps = []
|
||||
for i, layer in enumerate(self.layers):
|
||||
layer_i = layer(x)
|
||||
feature_maps.append(layer_i)
|
||||
if i in self.depth_info: # aggregate the information
|
||||
choices = self.depth_info[i]["choices"]
|
||||
xstagei = self.depth_info[i]["stage"]
|
||||
possible_tensors = []
|
||||
for tempi, A in enumerate(choices):
|
||||
xtensor = feature_maps[A]
|
||||
possible_tensors.append(xtensor)
|
||||
weighted_sum = sum(
|
||||
xtensor * W
|
||||
for xtensor, W in zip(
|
||||
possible_tensors, selected_depth_probs[xstagei]
|
||||
)
|
||||
)
|
||||
x = weighted_sum
|
||||
else:
|
||||
x = layer_i
|
||||
|
||||
if i in self.depth_at_i:
|
||||
xstagei, xatti = self.depth_at_i[i]
|
||||
# print ('layer-{:03d}, stage={:}, att={:}, prob={:}, flop={:}'.format(i, xstagei, xatti, flop_depth_probs[xstagei, xatti].item(), layer.get_flops(1e6)))
|
||||
x_expected_flop = flop_depth_probs[xstagei, xatti] * layer.get_flops(
|
||||
1e6
|
||||
)
|
||||
else:
|
||||
x_expected_flop = layer.get_flops(1e6)
|
||||
flops.append(x_expected_flop)
|
||||
flops.append(
|
||||
(self.classifier.in_features * self.classifier.out_features * 1.0 / 1e6)
|
||||
)
|
||||
|
||||
features = self.avgpool(x)
|
||||
features = features.view(features.size(0), -1)
|
||||
logits = linear_forward(features, self.classifier)
|
||||
return logits, torch.stack([sum(flops)])
|
||||
|
||||
def basic_forward(self, inputs):
|
||||
if self.InShape is None:
|
||||
self.InShape = (inputs.size(-2), inputs.size(-1))
|
||||
x = inputs
|
||||
for i, layer in enumerate(self.layers):
|
||||
x = layer(x)
|
||||
features = self.avgpool(x)
|
||||
features = features.view(features.size(0), -1)
|
||||
logits = self.classifier(features)
|
||||
return features, logits
|
619
xautodl/models/shape_searchs/SearchCifarResNet_width.py
Normal file
619
xautodl/models/shape_searchs/SearchCifarResNet_width.py
Normal file
@@ -0,0 +1,619 @@
|
||||
##################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
|
||||
##################################################
|
||||
import math, torch
|
||||
import torch.nn as nn
|
||||
from ..initialization import initialize_resnet
|
||||
from ..SharedUtils import additive_func
|
||||
from .SoftSelect import select2withP, ChannelWiseInter
|
||||
from .SoftSelect import linear_forward
|
||||
from .SoftSelect import get_width_choices as get_choices
|
||||
|
||||
|
||||
def conv_forward(inputs, conv, choices):
|
||||
iC = conv.in_channels
|
||||
fill_size = list(inputs.size())
|
||||
fill_size[1] = iC - fill_size[1]
|
||||
filled = torch.zeros(fill_size, device=inputs.device)
|
||||
xinputs = torch.cat((inputs, filled), dim=1)
|
||||
outputs = conv(xinputs)
|
||||
selecteds = [outputs[:, :oC] for oC in choices]
|
||||
return selecteds
|
||||
|
||||
|
||||
class ConvBNReLU(nn.Module):
|
||||
num_conv = 1
|
||||
|
||||
def __init__(
|
||||
self, nIn, nOut, kernel, stride, padding, bias, has_avg, has_bn, has_relu
|
||||
):
|
||||
super(ConvBNReLU, self).__init__()
|
||||
self.InShape = None
|
||||
self.OutShape = None
|
||||
self.choices = get_choices(nOut)
|
||||
self.register_buffer("choices_tensor", torch.Tensor(self.choices))
|
||||
|
||||
if has_avg:
|
||||
self.avg = nn.AvgPool2d(kernel_size=2, stride=2, padding=0)
|
||||
else:
|
||||
self.avg = None
|
||||
self.conv = nn.Conv2d(
|
||||
nIn,
|
||||
nOut,
|
||||
kernel_size=kernel,
|
||||
stride=stride,
|
||||
padding=padding,
|
||||
dilation=1,
|
||||
groups=1,
|
||||
bias=bias,
|
||||
)
|
||||
# if has_bn : self.bn = nn.BatchNorm2d(nOut)
|
||||
# else : self.bn = None
|
||||
self.has_bn = has_bn
|
||||
self.BNs = nn.ModuleList()
|
||||
for i, _out in enumerate(self.choices):
|
||||
self.BNs.append(nn.BatchNorm2d(_out))
|
||||
if has_relu:
|
||||
self.relu = nn.ReLU(inplace=True)
|
||||
else:
|
||||
self.relu = None
|
||||
self.in_dim = nIn
|
||||
self.out_dim = nOut
|
||||
self.search_mode = "basic"
|
||||
|
||||
def get_flops(self, channels, check_range=True, divide=1):
|
||||
iC, oC = channels
|
||||
if check_range:
|
||||
assert (
|
||||
iC <= self.conv.in_channels and oC <= self.conv.out_channels
|
||||
), "{:} vs {:} | {:} vs {:}".format(
|
||||
iC, self.conv.in_channels, oC, self.conv.out_channels
|
||||
)
|
||||
assert (
|
||||
isinstance(self.InShape, tuple) and len(self.InShape) == 2
|
||||
), "invalid in-shape : {:}".format(self.InShape)
|
||||
assert (
|
||||
isinstance(self.OutShape, tuple) and len(self.OutShape) == 2
|
||||
), "invalid out-shape : {:}".format(self.OutShape)
|
||||
# conv_per_position_flops = self.conv.kernel_size[0] * self.conv.kernel_size[1] * iC * oC / self.conv.groups
|
||||
conv_per_position_flops = (
|
||||
self.conv.kernel_size[0] * self.conv.kernel_size[1] * 1.0 / self.conv.groups
|
||||
)
|
||||
all_positions = self.OutShape[0] * self.OutShape[1]
|
||||
flops = (conv_per_position_flops * all_positions / divide) * iC * oC
|
||||
if self.conv.bias is not None:
|
||||
flops += all_positions / divide
|
||||
return flops
|
||||
|
||||
def get_range(self):
|
||||
return [self.choices]
|
||||
|
||||
def forward(self, inputs):
|
||||
if self.search_mode == "basic":
|
||||
return self.basic_forward(inputs)
|
||||
elif self.search_mode == "search":
|
||||
return self.search_forward(inputs)
|
||||
else:
|
||||
raise ValueError("invalid search_mode = {:}".format(self.search_mode))
|
||||
|
||||
def search_forward(self, tuple_inputs):
|
||||
assert (
|
||||
isinstance(tuple_inputs, tuple) and len(tuple_inputs) == 5
|
||||
), "invalid type input : {:}".format(type(tuple_inputs))
|
||||
inputs, expected_inC, probability, index, prob = tuple_inputs
|
||||
index, prob = torch.squeeze(index).tolist(), torch.squeeze(prob)
|
||||
probability = torch.squeeze(probability)
|
||||
assert len(index) == 2, "invalid length : {:}".format(index)
|
||||
# compute expected flop
|
||||
# coordinates = torch.arange(self.x_range[0], self.x_range[1]+1).type_as(probability)
|
||||
expected_outC = (self.choices_tensor * probability).sum()
|
||||
expected_flop = self.get_flops([expected_inC, expected_outC], False, 1e6)
|
||||
if self.avg:
|
||||
out = self.avg(inputs)
|
||||
else:
|
||||
out = inputs
|
||||
# convolutional layer
|
||||
out_convs = conv_forward(out, self.conv, [self.choices[i] for i in index])
|
||||
out_bns = [self.BNs[idx](out_conv) for idx, out_conv in zip(index, out_convs)]
|
||||
# merge
|
||||
out_channel = max([x.size(1) for x in out_bns])
|
||||
outA = ChannelWiseInter(out_bns[0], out_channel)
|
||||
outB = ChannelWiseInter(out_bns[1], out_channel)
|
||||
out = outA * prob[0] + outB * prob[1]
|
||||
# out = additive_func(out_bns[0]*prob[0], out_bns[1]*prob[1])
|
||||
|
||||
if self.relu:
|
||||
out = self.relu(out)
|
||||
else:
|
||||
out = out
|
||||
return out, expected_outC, expected_flop
|
||||
|
||||
def basic_forward(self, inputs):
|
||||
if self.avg:
|
||||
out = self.avg(inputs)
|
||||
else:
|
||||
out = inputs
|
||||
conv = self.conv(out)
|
||||
if self.has_bn:
|
||||
out = self.BNs[-1](conv)
|
||||
else:
|
||||
out = conv
|
||||
if self.relu:
|
||||
out = self.relu(out)
|
||||
else:
|
||||
out = out
|
||||
if self.InShape is None:
|
||||
self.InShape = (inputs.size(-2), inputs.size(-1))
|
||||
self.OutShape = (out.size(-2), out.size(-1))
|
||||
return out
|
||||
|
||||
|
||||
class ResNetBasicblock(nn.Module):
|
||||
expansion = 1
|
||||
num_conv = 2
|
||||
|
||||
def __init__(self, inplanes, planes, stride):
|
||||
super(ResNetBasicblock, self).__init__()
|
||||
assert stride == 1 or stride == 2, "invalid stride {:}".format(stride)
|
||||
self.conv_a = ConvBNReLU(
|
||||
inplanes,
|
||||
planes,
|
||||
3,
|
||||
stride,
|
||||
1,
|
||||
False,
|
||||
has_avg=False,
|
||||
has_bn=True,
|
||||
has_relu=True,
|
||||
)
|
||||
self.conv_b = ConvBNReLU(
|
||||
planes, planes, 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=False
|
||||
)
|
||||
if stride == 2:
|
||||
self.downsample = ConvBNReLU(
|
||||
inplanes,
|
||||
planes,
|
||||
1,
|
||||
1,
|
||||
0,
|
||||
False,
|
||||
has_avg=True,
|
||||
has_bn=False,
|
||||
has_relu=False,
|
||||
)
|
||||
elif inplanes != planes:
|
||||
self.downsample = ConvBNReLU(
|
||||
inplanes,
|
||||
planes,
|
||||
1,
|
||||
1,
|
||||
0,
|
||||
False,
|
||||
has_avg=False,
|
||||
has_bn=True,
|
||||
has_relu=False,
|
||||
)
|
||||
else:
|
||||
self.downsample = None
|
||||
self.out_dim = planes
|
||||
self.search_mode = "basic"
|
||||
|
||||
def get_range(self):
|
||||
return self.conv_a.get_range() + self.conv_b.get_range()
|
||||
|
||||
def get_flops(self, channels):
|
||||
assert len(channels) == 3, "invalid channels : {:}".format(channels)
|
||||
flop_A = self.conv_a.get_flops([channels[0], channels[1]])
|
||||
flop_B = self.conv_b.get_flops([channels[1], channels[2]])
|
||||
if hasattr(self.downsample, "get_flops"):
|
||||
flop_C = self.downsample.get_flops([channels[0], channels[-1]])
|
||||
else:
|
||||
flop_C = 0
|
||||
if (
|
||||
channels[0] != channels[-1] and self.downsample is None
|
||||
): # this short-cut will be added during the infer-train
|
||||
flop_C = (
|
||||
channels[0]
|
||||
* channels[-1]
|
||||
* self.conv_b.OutShape[0]
|
||||
* self.conv_b.OutShape[1]
|
||||
)
|
||||
return flop_A + flop_B + flop_C
|
||||
|
||||
def forward(self, inputs):
|
||||
if self.search_mode == "basic":
|
||||
return self.basic_forward(inputs)
|
||||
elif self.search_mode == "search":
|
||||
return self.search_forward(inputs)
|
||||
else:
|
||||
raise ValueError("invalid search_mode = {:}".format(self.search_mode))
|
||||
|
||||
def search_forward(self, tuple_inputs):
|
||||
assert (
|
||||
isinstance(tuple_inputs, tuple) and len(tuple_inputs) == 5
|
||||
), "invalid type input : {:}".format(type(tuple_inputs))
|
||||
inputs, expected_inC, probability, indexes, probs = tuple_inputs
|
||||
assert indexes.size(0) == 2 and probs.size(0) == 2 and probability.size(0) == 2
|
||||
out_a, expected_inC_a, expected_flop_a = self.conv_a(
|
||||
(inputs, expected_inC, probability[0], indexes[0], probs[0])
|
||||
)
|
||||
out_b, expected_inC_b, expected_flop_b = self.conv_b(
|
||||
(out_a, expected_inC_a, probability[1], indexes[1], probs[1])
|
||||
)
|
||||
if self.downsample is not None:
|
||||
residual, _, expected_flop_c = self.downsample(
|
||||
(inputs, expected_inC, probability[1], indexes[1], probs[1])
|
||||
)
|
||||
else:
|
||||
residual, expected_flop_c = inputs, 0
|
||||
out = additive_func(residual, out_b)
|
||||
return (
|
||||
nn.functional.relu(out, inplace=True),
|
||||
expected_inC_b,
|
||||
sum([expected_flop_a, expected_flop_b, expected_flop_c]),
|
||||
)
|
||||
|
||||
def basic_forward(self, inputs):
|
||||
basicblock = self.conv_a(inputs)
|
||||
basicblock = self.conv_b(basicblock)
|
||||
if self.downsample is not None:
|
||||
residual = self.downsample(inputs)
|
||||
else:
|
||||
residual = inputs
|
||||
out = additive_func(residual, basicblock)
|
||||
return nn.functional.relu(out, inplace=True)
|
||||
|
||||
|
||||
class ResNetBottleneck(nn.Module):
|
||||
expansion = 4
|
||||
num_conv = 3
|
||||
|
||||
def __init__(self, inplanes, planes, stride):
|
||||
super(ResNetBottleneck, self).__init__()
|
||||
assert stride == 1 or stride == 2, "invalid stride {:}".format(stride)
|
||||
self.conv_1x1 = ConvBNReLU(
|
||||
inplanes, planes, 1, 1, 0, False, has_avg=False, has_bn=True, has_relu=True
|
||||
)
|
||||
self.conv_3x3 = ConvBNReLU(
|
||||
planes,
|
||||
planes,
|
||||
3,
|
||||
stride,
|
||||
1,
|
||||
False,
|
||||
has_avg=False,
|
||||
has_bn=True,
|
||||
has_relu=True,
|
||||
)
|
||||
self.conv_1x4 = ConvBNReLU(
|
||||
planes,
|
||||
planes * self.expansion,
|
||||
1,
|
||||
1,
|
||||
0,
|
||||
False,
|
||||
has_avg=False,
|
||||
has_bn=True,
|
||||
has_relu=False,
|
||||
)
|
||||
if stride == 2:
|
||||
self.downsample = ConvBNReLU(
|
||||
inplanes,
|
||||
planes * self.expansion,
|
||||
1,
|
||||
1,
|
||||
0,
|
||||
False,
|
||||
has_avg=True,
|
||||
has_bn=False,
|
||||
has_relu=False,
|
||||
)
|
||||
elif inplanes != planes * self.expansion:
|
||||
self.downsample = ConvBNReLU(
|
||||
inplanes,
|
||||
planes * self.expansion,
|
||||
1,
|
||||
1,
|
||||
0,
|
||||
False,
|
||||
has_avg=False,
|
||||
has_bn=True,
|
||||
has_relu=False,
|
||||
)
|
||||
else:
|
||||
self.downsample = None
|
||||
self.out_dim = planes * self.expansion
|
||||
self.search_mode = "basic"
|
||||
|
||||
def get_range(self):
|
||||
return (
|
||||
self.conv_1x1.get_range()
|
||||
+ self.conv_3x3.get_range()
|
||||
+ self.conv_1x4.get_range()
|
||||
)
|
||||
|
||||
def get_flops(self, channels):
|
||||
assert len(channels) == 4, "invalid channels : {:}".format(channels)
|
||||
flop_A = self.conv_1x1.get_flops([channels[0], channels[1]])
|
||||
flop_B = self.conv_3x3.get_flops([channels[1], channels[2]])
|
||||
flop_C = self.conv_1x4.get_flops([channels[2], channels[3]])
|
||||
if hasattr(self.downsample, "get_flops"):
|
||||
flop_D = self.downsample.get_flops([channels[0], channels[-1]])
|
||||
else:
|
||||
flop_D = 0
|
||||
if (
|
||||
channels[0] != channels[-1] and self.downsample is None
|
||||
): # this short-cut will be added during the infer-train
|
||||
flop_D = (
|
||||
channels[0]
|
||||
* channels[-1]
|
||||
* self.conv_1x4.OutShape[0]
|
||||
* self.conv_1x4.OutShape[1]
|
||||
)
|
||||
return flop_A + flop_B + flop_C + flop_D
|
||||
|
||||
def forward(self, inputs):
|
||||
if self.search_mode == "basic":
|
||||
return self.basic_forward(inputs)
|
||||
elif self.search_mode == "search":
|
||||
return self.search_forward(inputs)
|
||||
else:
|
||||
raise ValueError("invalid search_mode = {:}".format(self.search_mode))
|
||||
|
||||
def basic_forward(self, inputs):
|
||||
bottleneck = self.conv_1x1(inputs)
|
||||
bottleneck = self.conv_3x3(bottleneck)
|
||||
bottleneck = self.conv_1x4(bottleneck)
|
||||
if self.downsample is not None:
|
||||
residual = self.downsample(inputs)
|
||||
else:
|
||||
residual = inputs
|
||||
out = additive_func(residual, bottleneck)
|
||||
return nn.functional.relu(out, inplace=True)
|
||||
|
||||
def search_forward(self, tuple_inputs):
|
||||
assert (
|
||||
isinstance(tuple_inputs, tuple) and len(tuple_inputs) == 5
|
||||
), "invalid type input : {:}".format(type(tuple_inputs))
|
||||
inputs, expected_inC, probability, indexes, probs = tuple_inputs
|
||||
assert indexes.size(0) == 3 and probs.size(0) == 3 and probability.size(0) == 3
|
||||
out_1x1, expected_inC_1x1, expected_flop_1x1 = self.conv_1x1(
|
||||
(inputs, expected_inC, probability[0], indexes[0], probs[0])
|
||||
)
|
||||
out_3x3, expected_inC_3x3, expected_flop_3x3 = self.conv_3x3(
|
||||
(out_1x1, expected_inC_1x1, probability[1], indexes[1], probs[1])
|
||||
)
|
||||
out_1x4, expected_inC_1x4, expected_flop_1x4 = self.conv_1x4(
|
||||
(out_3x3, expected_inC_3x3, probability[2], indexes[2], probs[2])
|
||||
)
|
||||
if self.downsample is not None:
|
||||
residual, _, expected_flop_c = self.downsample(
|
||||
(inputs, expected_inC, probability[2], indexes[2], probs[2])
|
||||
)
|
||||
else:
|
||||
residual, expected_flop_c = inputs, 0
|
||||
out = additive_func(residual, out_1x4)
|
||||
return (
|
||||
nn.functional.relu(out, inplace=True),
|
||||
expected_inC_1x4,
|
||||
sum(
|
||||
[
|
||||
expected_flop_1x1,
|
||||
expected_flop_3x3,
|
||||
expected_flop_1x4,
|
||||
expected_flop_c,
|
||||
]
|
||||
),
|
||||
)
|
||||
|
||||
|
||||
class SearchWidthCifarResNet(nn.Module):
|
||||
def __init__(self, block_name, depth, num_classes):
|
||||
super(SearchWidthCifarResNet, self).__init__()
|
||||
|
||||
# Model type specifies number of layers for CIFAR-10 and CIFAR-100 model
|
||||
if block_name == "ResNetBasicblock":
|
||||
block = ResNetBasicblock
|
||||
assert (depth - 2) % 6 == 0, "depth should be one of 20, 32, 44, 56, 110"
|
||||
layer_blocks = (depth - 2) // 6
|
||||
elif block_name == "ResNetBottleneck":
|
||||
block = ResNetBottleneck
|
||||
assert (depth - 2) % 9 == 0, "depth should be one of 164"
|
||||
layer_blocks = (depth - 2) // 9
|
||||
else:
|
||||
raise ValueError("invalid block : {:}".format(block_name))
|
||||
|
||||
self.message = (
|
||||
"SearchWidthCifarResNet : Depth : {:} , Layers for each block : {:}".format(
|
||||
depth, layer_blocks
|
||||
)
|
||||
)
|
||||
self.num_classes = num_classes
|
||||
self.channels = [16]
|
||||
self.layers = nn.ModuleList(
|
||||
[
|
||||
ConvBNReLU(
|
||||
3, 16, 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=True
|
||||
)
|
||||
]
|
||||
)
|
||||
self.InShape = None
|
||||
for stage in range(3):
|
||||
for iL in range(layer_blocks):
|
||||
iC = self.channels[-1]
|
||||
planes = 16 * (2 ** stage)
|
||||
stride = 2 if stage > 0 and iL == 0 else 1
|
||||
module = block(iC, planes, stride)
|
||||
self.channels.append(module.out_dim)
|
||||
self.layers.append(module)
|
||||
self.message += "\nstage={:}, ilayer={:02d}/{:02d}, block={:03d}, iC={:3d}, oC={:3d}, stride={:}".format(
|
||||
stage,
|
||||
iL,
|
||||
layer_blocks,
|
||||
len(self.layers) - 1,
|
||||
iC,
|
||||
module.out_dim,
|
||||
stride,
|
||||
)
|
||||
|
||||
self.avgpool = nn.AvgPool2d(8)
|
||||
self.classifier = nn.Linear(module.out_dim, num_classes)
|
||||
self.InShape = None
|
||||
self.tau = -1
|
||||
self.search_mode = "basic"
|
||||
# assert sum(x.num_conv for x in self.layers) + 1 == depth, 'invalid depth check {:} vs {:}'.format(sum(x.num_conv for x in self.layers)+1, depth)
|
||||
|
||||
# parameters for width
|
||||
self.Ranges = []
|
||||
self.layer2indexRange = []
|
||||
for i, layer in enumerate(self.layers):
|
||||
start_index = len(self.Ranges)
|
||||
self.Ranges += layer.get_range()
|
||||
self.layer2indexRange.append((start_index, len(self.Ranges)))
|
||||
assert len(self.Ranges) + 1 == depth, "invalid depth check {:} vs {:}".format(
|
||||
len(self.Ranges) + 1, depth
|
||||
)
|
||||
|
||||
self.register_parameter(
|
||||
"width_attentions",
|
||||
nn.Parameter(torch.Tensor(len(self.Ranges), get_choices(None))),
|
||||
)
|
||||
nn.init.normal_(self.width_attentions, 0, 0.01)
|
||||
self.apply(initialize_resnet)
|
||||
|
||||
def arch_parameters(self):
|
||||
return [self.width_attentions]
|
||||
|
||||
def base_parameters(self):
|
||||
return (
|
||||
list(self.layers.parameters())
|
||||
+ list(self.avgpool.parameters())
|
||||
+ list(self.classifier.parameters())
|
||||
)
|
||||
|
||||
def get_flop(self, mode, config_dict, extra_info):
|
||||
if config_dict is not None:
|
||||
config_dict = config_dict.copy()
|
||||
# weights = [F.softmax(x, dim=0) for x in self.width_attentions]
|
||||
channels = [3]
|
||||
for i, weight in enumerate(self.width_attentions):
|
||||
if mode == "genotype":
|
||||
with torch.no_grad():
|
||||
probe = nn.functional.softmax(weight, dim=0)
|
||||
C = self.Ranges[i][torch.argmax(probe).item()]
|
||||
elif mode == "max":
|
||||
C = self.Ranges[i][-1]
|
||||
elif mode == "fix":
|
||||
C = int(math.sqrt(extra_info) * self.Ranges[i][-1])
|
||||
elif mode == "random":
|
||||
assert isinstance(extra_info, float), "invalid extra_info : {:}".format(
|
||||
extra_info
|
||||
)
|
||||
with torch.no_grad():
|
||||
prob = nn.functional.softmax(weight, dim=0)
|
||||
approximate_C = int(math.sqrt(extra_info) * self.Ranges[i][-1])
|
||||
for j in range(prob.size(0)):
|
||||
prob[j] = 1 / (
|
||||
abs(j - (approximate_C - self.Ranges[i][j])) + 0.2
|
||||
)
|
||||
C = self.Ranges[i][torch.multinomial(prob, 1, False).item()]
|
||||
else:
|
||||
raise ValueError("invalid mode : {:}".format(mode))
|
||||
channels.append(C)
|
||||
flop = 0
|
||||
for i, layer in enumerate(self.layers):
|
||||
s, e = self.layer2indexRange[i]
|
||||
xchl = tuple(channels[s : e + 1])
|
||||
flop += layer.get_flops(xchl)
|
||||
# the last fc layer
|
||||
flop += channels[-1] * self.classifier.out_features
|
||||
if config_dict is None:
|
||||
return flop / 1e6
|
||||
else:
|
||||
config_dict["xchannels"] = channels
|
||||
config_dict["super_type"] = "infer-width"
|
||||
config_dict["estimated_FLOP"] = flop / 1e6
|
||||
return flop / 1e6, config_dict
|
||||
|
||||
def get_arch_info(self):
|
||||
string = "for width, there are {:} attention probabilities.".format(
|
||||
len(self.width_attentions)
|
||||
)
|
||||
discrepancy = []
|
||||
with torch.no_grad():
|
||||
for i, att in enumerate(self.width_attentions):
|
||||
prob = nn.functional.softmax(att, dim=0)
|
||||
prob = prob.cpu()
|
||||
selc = prob.argmax().item()
|
||||
prob = prob.tolist()
|
||||
prob = ["{:.3f}".format(x) for x in prob]
|
||||
xstring = "{:03d}/{:03d}-th : {:}".format(
|
||||
i, len(self.width_attentions), " ".join(prob)
|
||||
)
|
||||
logt = ["{:.3f}".format(x) for x in att.cpu().tolist()]
|
||||
xstring += " || {:52s}".format(" ".join(logt))
|
||||
prob = sorted([float(x) for x in prob])
|
||||
disc = prob[-1] - prob[-2]
|
||||
xstring += " || dis={:.2f} || select={:}/{:}".format(
|
||||
disc, selc, len(prob)
|
||||
)
|
||||
discrepancy.append(disc)
|
||||
string += "\n{:}".format(xstring)
|
||||
return string, discrepancy
|
||||
|
||||
def set_tau(self, tau_max, tau_min, epoch_ratio):
|
||||
assert (
|
||||
epoch_ratio >= 0 and epoch_ratio <= 1
|
||||
), "invalid epoch-ratio : {:}".format(epoch_ratio)
|
||||
tau = tau_min + (tau_max - tau_min) * (1 + math.cos(math.pi * epoch_ratio)) / 2
|
||||
self.tau = tau
|
||||
|
||||
def get_message(self):
|
||||
return self.message
|
||||
|
||||
def forward(self, inputs):
|
||||
if self.search_mode == "basic":
|
||||
return self.basic_forward(inputs)
|
||||
elif self.search_mode == "search":
|
||||
return self.search_forward(inputs)
|
||||
else:
|
||||
raise ValueError("invalid search_mode = {:}".format(self.search_mode))
|
||||
|
||||
def search_forward(self, inputs):
|
||||
flop_probs = nn.functional.softmax(self.width_attentions, dim=1)
|
||||
selected_widths, selected_probs = select2withP(self.width_attentions, self.tau)
|
||||
with torch.no_grad():
|
||||
selected_widths = selected_widths.cpu()
|
||||
|
||||
x, last_channel_idx, expected_inC, flops = inputs, 0, 3, []
|
||||
for i, layer in enumerate(self.layers):
|
||||
selected_w_index = selected_widths[
|
||||
last_channel_idx : last_channel_idx + layer.num_conv
|
||||
]
|
||||
selected_w_probs = selected_probs[
|
||||
last_channel_idx : last_channel_idx + layer.num_conv
|
||||
]
|
||||
layer_prob = flop_probs[
|
||||
last_channel_idx : last_channel_idx + layer.num_conv
|
||||
]
|
||||
x, expected_inC, expected_flop = layer(
|
||||
(x, expected_inC, layer_prob, selected_w_index, selected_w_probs)
|
||||
)
|
||||
last_channel_idx += layer.num_conv
|
||||
flops.append(expected_flop)
|
||||
flops.append(expected_inC * (self.classifier.out_features * 1.0 / 1e6))
|
||||
features = self.avgpool(x)
|
||||
features = features.view(features.size(0), -1)
|
||||
logits = linear_forward(features, self.classifier)
|
||||
return logits, torch.stack([sum(flops)])
|
||||
|
||||
def basic_forward(self, inputs):
|
||||
if self.InShape is None:
|
||||
self.InShape = (inputs.size(-2), inputs.size(-1))
|
||||
x = inputs
|
||||
for i, layer in enumerate(self.layers):
|
||||
x = layer(x)
|
||||
features = self.avgpool(x)
|
||||
features = features.view(features.size(0), -1)
|
||||
logits = self.classifier(features)
|
||||
return features, logits
|
766
xautodl/models/shape_searchs/SearchImagenetResNet.py
Normal file
766
xautodl/models/shape_searchs/SearchImagenetResNet.py
Normal file
@@ -0,0 +1,766 @@
|
||||
import math, torch
|
||||
from collections import OrderedDict
|
||||
from bisect import bisect_right
|
||||
import torch.nn as nn
|
||||
from ..initialization import initialize_resnet
|
||||
from ..SharedUtils import additive_func
|
||||
from .SoftSelect import select2withP, ChannelWiseInter
|
||||
from .SoftSelect import linear_forward
|
||||
from .SoftSelect import get_width_choices
|
||||
|
||||
|
||||
def get_depth_choices(layers):
|
||||
min_depth = min(layers)
|
||||
info = {"num": min_depth}
|
||||
for i, depth in enumerate(layers):
|
||||
choices = []
|
||||
for j in range(1, min_depth + 1):
|
||||
choices.append(int(float(depth) * j / min_depth))
|
||||
info[i] = choices
|
||||
return info
|
||||
|
||||
|
||||
def conv_forward(inputs, conv, choices):
|
||||
iC = conv.in_channels
|
||||
fill_size = list(inputs.size())
|
||||
fill_size[1] = iC - fill_size[1]
|
||||
filled = torch.zeros(fill_size, device=inputs.device)
|
||||
xinputs = torch.cat((inputs, filled), dim=1)
|
||||
outputs = conv(xinputs)
|
||||
selecteds = [outputs[:, :oC] for oC in choices]
|
||||
return selecteds
|
||||
|
||||
|
||||
class ConvBNReLU(nn.Module):
|
||||
num_conv = 1
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
nIn,
|
||||
nOut,
|
||||
kernel,
|
||||
stride,
|
||||
padding,
|
||||
bias,
|
||||
has_avg,
|
||||
has_bn,
|
||||
has_relu,
|
||||
last_max_pool=False,
|
||||
):
|
||||
super(ConvBNReLU, self).__init__()
|
||||
self.InShape = None
|
||||
self.OutShape = None
|
||||
self.choices = get_width_choices(nOut)
|
||||
self.register_buffer("choices_tensor", torch.Tensor(self.choices))
|
||||
|
||||
if has_avg:
|
||||
self.avg = nn.AvgPool2d(kernel_size=2, stride=2, padding=0)
|
||||
else:
|
||||
self.avg = None
|
||||
self.conv = nn.Conv2d(
|
||||
nIn,
|
||||
nOut,
|
||||
kernel_size=kernel,
|
||||
stride=stride,
|
||||
padding=padding,
|
||||
dilation=1,
|
||||
groups=1,
|
||||
bias=bias,
|
||||
)
|
||||
# if has_bn : self.bn = nn.BatchNorm2d(nOut)
|
||||
# else : self.bn = None
|
||||
self.has_bn = has_bn
|
||||
self.BNs = nn.ModuleList()
|
||||
for i, _out in enumerate(self.choices):
|
||||
self.BNs.append(nn.BatchNorm2d(_out))
|
||||
if has_relu:
|
||||
self.relu = nn.ReLU(inplace=True)
|
||||
else:
|
||||
self.relu = None
|
||||
|
||||
if last_max_pool:
|
||||
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
|
||||
else:
|
||||
self.maxpool = None
|
||||
self.in_dim = nIn
|
||||
self.out_dim = nOut
|
||||
self.search_mode = "basic"
|
||||
|
||||
def get_flops(self, channels, check_range=True, divide=1):
|
||||
iC, oC = channels
|
||||
if check_range:
|
||||
assert (
|
||||
iC <= self.conv.in_channels and oC <= self.conv.out_channels
|
||||
), "{:} vs {:} | {:} vs {:}".format(
|
||||
iC, self.conv.in_channels, oC, self.conv.out_channels
|
||||
)
|
||||
assert (
|
||||
isinstance(self.InShape, tuple) and len(self.InShape) == 2
|
||||
), "invalid in-shape : {:}".format(self.InShape)
|
||||
assert (
|
||||
isinstance(self.OutShape, tuple) and len(self.OutShape) == 2
|
||||
), "invalid out-shape : {:}".format(self.OutShape)
|
||||
# conv_per_position_flops = self.conv.kernel_size[0] * self.conv.kernel_size[1] * iC * oC / self.conv.groups
|
||||
conv_per_position_flops = (
|
||||
self.conv.kernel_size[0] * self.conv.kernel_size[1] * 1.0 / self.conv.groups
|
||||
)
|
||||
all_positions = self.OutShape[0] * self.OutShape[1]
|
||||
flops = (conv_per_position_flops * all_positions / divide) * iC * oC
|
||||
if self.conv.bias is not None:
|
||||
flops += all_positions / divide
|
||||
return flops
|
||||
|
||||
def get_range(self):
|
||||
return [self.choices]
|
||||
|
||||
def forward(self, inputs):
|
||||
if self.search_mode == "basic":
|
||||
return self.basic_forward(inputs)
|
||||
elif self.search_mode == "search":
|
||||
return self.search_forward(inputs)
|
||||
else:
|
||||
raise ValueError("invalid search_mode = {:}".format(self.search_mode))
|
||||
|
||||
def search_forward(self, tuple_inputs):
|
||||
assert (
|
||||
isinstance(tuple_inputs, tuple) and len(tuple_inputs) == 5
|
||||
), "invalid type input : {:}".format(type(tuple_inputs))
|
||||
inputs, expected_inC, probability, index, prob = tuple_inputs
|
||||
index, prob = torch.squeeze(index).tolist(), torch.squeeze(prob)
|
||||
probability = torch.squeeze(probability)
|
||||
assert len(index) == 2, "invalid length : {:}".format(index)
|
||||
# compute expected flop
|
||||
# coordinates = torch.arange(self.x_range[0], self.x_range[1]+1).type_as(probability)
|
||||
expected_outC = (self.choices_tensor * probability).sum()
|
||||
expected_flop = self.get_flops([expected_inC, expected_outC], False, 1e6)
|
||||
if self.avg:
|
||||
out = self.avg(inputs)
|
||||
else:
|
||||
out = inputs
|
||||
# convolutional layer
|
||||
out_convs = conv_forward(out, self.conv, [self.choices[i] for i in index])
|
||||
out_bns = [self.BNs[idx](out_conv) for idx, out_conv in zip(index, out_convs)]
|
||||
# merge
|
||||
out_channel = max([x.size(1) for x in out_bns])
|
||||
outA = ChannelWiseInter(out_bns[0], out_channel)
|
||||
outB = ChannelWiseInter(out_bns[1], out_channel)
|
||||
out = outA * prob[0] + outB * prob[1]
|
||||
# out = additive_func(out_bns[0]*prob[0], out_bns[1]*prob[1])
|
||||
|
||||
if self.relu:
|
||||
out = self.relu(out)
|
||||
if self.maxpool:
|
||||
out = self.maxpool(out)
|
||||
return out, expected_outC, expected_flop
|
||||
|
||||
def basic_forward(self, inputs):
|
||||
if self.avg:
|
||||
out = self.avg(inputs)
|
||||
else:
|
||||
out = inputs
|
||||
conv = self.conv(out)
|
||||
if self.has_bn:
|
||||
out = self.BNs[-1](conv)
|
||||
else:
|
||||
out = conv
|
||||
if self.relu:
|
||||
out = self.relu(out)
|
||||
else:
|
||||
out = out
|
||||
if self.InShape is None:
|
||||
self.InShape = (inputs.size(-2), inputs.size(-1))
|
||||
self.OutShape = (out.size(-2), out.size(-1))
|
||||
if self.maxpool:
|
||||
out = self.maxpool(out)
|
||||
return out
|
||||
|
||||
|
||||
class ResNetBasicblock(nn.Module):
|
||||
expansion = 1
|
||||
num_conv = 2
|
||||
|
||||
def __init__(self, inplanes, planes, stride):
|
||||
super(ResNetBasicblock, self).__init__()
|
||||
assert stride == 1 or stride == 2, "invalid stride {:}".format(stride)
|
||||
self.conv_a = ConvBNReLU(
|
||||
inplanes,
|
||||
planes,
|
||||
3,
|
||||
stride,
|
||||
1,
|
||||
False,
|
||||
has_avg=False,
|
||||
has_bn=True,
|
||||
has_relu=True,
|
||||
)
|
||||
self.conv_b = ConvBNReLU(
|
||||
planes, planes, 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=False
|
||||
)
|
||||
if stride == 2:
|
||||
self.downsample = ConvBNReLU(
|
||||
inplanes,
|
||||
planes,
|
||||
1,
|
||||
1,
|
||||
0,
|
||||
False,
|
||||
has_avg=True,
|
||||
has_bn=True,
|
||||
has_relu=False,
|
||||
)
|
||||
elif inplanes != planes:
|
||||
self.downsample = ConvBNReLU(
|
||||
inplanes,
|
||||
planes,
|
||||
1,
|
||||
1,
|
||||
0,
|
||||
False,
|
||||
has_avg=False,
|
||||
has_bn=True,
|
||||
has_relu=False,
|
||||
)
|
||||
else:
|
||||
self.downsample = None
|
||||
self.out_dim = planes
|
||||
self.search_mode = "basic"
|
||||
|
||||
def get_range(self):
|
||||
return self.conv_a.get_range() + self.conv_b.get_range()
|
||||
|
||||
def get_flops(self, channels):
|
||||
assert len(channels) == 3, "invalid channels : {:}".format(channels)
|
||||
flop_A = self.conv_a.get_flops([channels[0], channels[1]])
|
||||
flop_B = self.conv_b.get_flops([channels[1], channels[2]])
|
||||
if hasattr(self.downsample, "get_flops"):
|
||||
flop_C = self.downsample.get_flops([channels[0], channels[-1]])
|
||||
else:
|
||||
flop_C = 0
|
||||
if (
|
||||
channels[0] != channels[-1] and self.downsample is None
|
||||
): # this short-cut will be added during the infer-train
|
||||
flop_C = (
|
||||
channels[0]
|
||||
* channels[-1]
|
||||
* self.conv_b.OutShape[0]
|
||||
* self.conv_b.OutShape[1]
|
||||
)
|
||||
return flop_A + flop_B + flop_C
|
||||
|
||||
def forward(self, inputs):
|
||||
if self.search_mode == "basic":
|
||||
return self.basic_forward(inputs)
|
||||
elif self.search_mode == "search":
|
||||
return self.search_forward(inputs)
|
||||
else:
|
||||
raise ValueError("invalid search_mode = {:}".format(self.search_mode))
|
||||
|
||||
def search_forward(self, tuple_inputs):
|
||||
assert (
|
||||
isinstance(tuple_inputs, tuple) and len(tuple_inputs) == 5
|
||||
), "invalid type input : {:}".format(type(tuple_inputs))
|
||||
inputs, expected_inC, probability, indexes, probs = tuple_inputs
|
||||
assert indexes.size(0) == 2 and probs.size(0) == 2 and probability.size(0) == 2
|
||||
# import pdb; pdb.set_trace()
|
||||
out_a, expected_inC_a, expected_flop_a = self.conv_a(
|
||||
(inputs, expected_inC, probability[0], indexes[0], probs[0])
|
||||
)
|
||||
out_b, expected_inC_b, expected_flop_b = self.conv_b(
|
||||
(out_a, expected_inC_a, probability[1], indexes[1], probs[1])
|
||||
)
|
||||
if self.downsample is not None:
|
||||
residual, _, expected_flop_c = self.downsample(
|
||||
(inputs, expected_inC, probability[1], indexes[1], probs[1])
|
||||
)
|
||||
else:
|
||||
residual, expected_flop_c = inputs, 0
|
||||
out = additive_func(residual, out_b)
|
||||
return (
|
||||
nn.functional.relu(out, inplace=True),
|
||||
expected_inC_b,
|
||||
sum([expected_flop_a, expected_flop_b, expected_flop_c]),
|
||||
)
|
||||
|
||||
def basic_forward(self, inputs):
|
||||
basicblock = self.conv_a(inputs)
|
||||
basicblock = self.conv_b(basicblock)
|
||||
if self.downsample is not None:
|
||||
residual = self.downsample(inputs)
|
||||
else:
|
||||
residual = inputs
|
||||
out = additive_func(residual, basicblock)
|
||||
return nn.functional.relu(out, inplace=True)
|
||||
|
||||
|
||||
class ResNetBottleneck(nn.Module):
|
||||
expansion = 4
|
||||
num_conv = 3
|
||||
|
||||
def __init__(self, inplanes, planes, stride):
|
||||
super(ResNetBottleneck, self).__init__()
|
||||
assert stride == 1 or stride == 2, "invalid stride {:}".format(stride)
|
||||
self.conv_1x1 = ConvBNReLU(
|
||||
inplanes, planes, 1, 1, 0, False, has_avg=False, has_bn=True, has_relu=True
|
||||
)
|
||||
self.conv_3x3 = ConvBNReLU(
|
||||
planes,
|
||||
planes,
|
||||
3,
|
||||
stride,
|
||||
1,
|
||||
False,
|
||||
has_avg=False,
|
||||
has_bn=True,
|
||||
has_relu=True,
|
||||
)
|
||||
self.conv_1x4 = ConvBNReLU(
|
||||
planes,
|
||||
planes * self.expansion,
|
||||
1,
|
||||
1,
|
||||
0,
|
||||
False,
|
||||
has_avg=False,
|
||||
has_bn=True,
|
||||
has_relu=False,
|
||||
)
|
||||
if stride == 2:
|
||||
self.downsample = ConvBNReLU(
|
||||
inplanes,
|
||||
planes * self.expansion,
|
||||
1,
|
||||
1,
|
||||
0,
|
||||
False,
|
||||
has_avg=True,
|
||||
has_bn=True,
|
||||
has_relu=False,
|
||||
)
|
||||
elif inplanes != planes * self.expansion:
|
||||
self.downsample = ConvBNReLU(
|
||||
inplanes,
|
||||
planes * self.expansion,
|
||||
1,
|
||||
1,
|
||||
0,
|
||||
False,
|
||||
has_avg=False,
|
||||
has_bn=True,
|
||||
has_relu=False,
|
||||
)
|
||||
else:
|
||||
self.downsample = None
|
||||
self.out_dim = planes * self.expansion
|
||||
self.search_mode = "basic"
|
||||
|
||||
def get_range(self):
|
||||
return (
|
||||
self.conv_1x1.get_range()
|
||||
+ self.conv_3x3.get_range()
|
||||
+ self.conv_1x4.get_range()
|
||||
)
|
||||
|
||||
def get_flops(self, channels):
|
||||
assert len(channels) == 4, "invalid channels : {:}".format(channels)
|
||||
flop_A = self.conv_1x1.get_flops([channels[0], channels[1]])
|
||||
flop_B = self.conv_3x3.get_flops([channels[1], channels[2]])
|
||||
flop_C = self.conv_1x4.get_flops([channels[2], channels[3]])
|
||||
if hasattr(self.downsample, "get_flops"):
|
||||
flop_D = self.downsample.get_flops([channels[0], channels[-1]])
|
||||
else:
|
||||
flop_D = 0
|
||||
if (
|
||||
channels[0] != channels[-1] and self.downsample is None
|
||||
): # this short-cut will be added during the infer-train
|
||||
flop_D = (
|
||||
channels[0]
|
||||
* channels[-1]
|
||||
* self.conv_1x4.OutShape[0]
|
||||
* self.conv_1x4.OutShape[1]
|
||||
)
|
||||
return flop_A + flop_B + flop_C + flop_D
|
||||
|
||||
def forward(self, inputs):
|
||||
if self.search_mode == "basic":
|
||||
return self.basic_forward(inputs)
|
||||
elif self.search_mode == "search":
|
||||
return self.search_forward(inputs)
|
||||
else:
|
||||
raise ValueError("invalid search_mode = {:}".format(self.search_mode))
|
||||
|
||||
def basic_forward(self, inputs):
|
||||
bottleneck = self.conv_1x1(inputs)
|
||||
bottleneck = self.conv_3x3(bottleneck)
|
||||
bottleneck = self.conv_1x4(bottleneck)
|
||||
if self.downsample is not None:
|
||||
residual = self.downsample(inputs)
|
||||
else:
|
||||
residual = inputs
|
||||
out = additive_func(residual, bottleneck)
|
||||
return nn.functional.relu(out, inplace=True)
|
||||
|
||||
def search_forward(self, tuple_inputs):
|
||||
assert (
|
||||
isinstance(tuple_inputs, tuple) and len(tuple_inputs) == 5
|
||||
), "invalid type input : {:}".format(type(tuple_inputs))
|
||||
inputs, expected_inC, probability, indexes, probs = tuple_inputs
|
||||
assert indexes.size(0) == 3 and probs.size(0) == 3 and probability.size(0) == 3
|
||||
out_1x1, expected_inC_1x1, expected_flop_1x1 = self.conv_1x1(
|
||||
(inputs, expected_inC, probability[0], indexes[0], probs[0])
|
||||
)
|
||||
out_3x3, expected_inC_3x3, expected_flop_3x3 = self.conv_3x3(
|
||||
(out_1x1, expected_inC_1x1, probability[1], indexes[1], probs[1])
|
||||
)
|
||||
out_1x4, expected_inC_1x4, expected_flop_1x4 = self.conv_1x4(
|
||||
(out_3x3, expected_inC_3x3, probability[2], indexes[2], probs[2])
|
||||
)
|
||||
if self.downsample is not None:
|
||||
residual, _, expected_flop_c = self.downsample(
|
||||
(inputs, expected_inC, probability[2], indexes[2], probs[2])
|
||||
)
|
||||
else:
|
||||
residual, expected_flop_c = inputs, 0
|
||||
out = additive_func(residual, out_1x4)
|
||||
return (
|
||||
nn.functional.relu(out, inplace=True),
|
||||
expected_inC_1x4,
|
||||
sum(
|
||||
[
|
||||
expected_flop_1x1,
|
||||
expected_flop_3x3,
|
||||
expected_flop_1x4,
|
||||
expected_flop_c,
|
||||
]
|
||||
),
|
||||
)
|
||||
|
||||
|
||||
class SearchShapeImagenetResNet(nn.Module):
|
||||
def __init__(self, block_name, layers, deep_stem, num_classes):
|
||||
super(SearchShapeImagenetResNet, self).__init__()
|
||||
|
||||
# Model type specifies number of layers for CIFAR-10 and CIFAR-100 model
|
||||
if block_name == "BasicBlock":
|
||||
block = ResNetBasicblock
|
||||
elif block_name == "Bottleneck":
|
||||
block = ResNetBottleneck
|
||||
else:
|
||||
raise ValueError("invalid block : {:}".format(block_name))
|
||||
|
||||
self.message = (
|
||||
"SearchShapeCifarResNet : Depth : {:} , Layers for each block : {:}".format(
|
||||
sum(layers) * block.num_conv, layers
|
||||
)
|
||||
)
|
||||
self.num_classes = num_classes
|
||||
if not deep_stem:
|
||||
self.layers = nn.ModuleList(
|
||||
[
|
||||
ConvBNReLU(
|
||||
3,
|
||||
64,
|
||||
7,
|
||||
2,
|
||||
3,
|
||||
False,
|
||||
has_avg=False,
|
||||
has_bn=True,
|
||||
has_relu=True,
|
||||
last_max_pool=True,
|
||||
)
|
||||
]
|
||||
)
|
||||
self.channels = [64]
|
||||
else:
|
||||
self.layers = nn.ModuleList(
|
||||
[
|
||||
ConvBNReLU(
|
||||
3, 32, 3, 2, 1, False, has_avg=False, has_bn=True, has_relu=True
|
||||
),
|
||||
ConvBNReLU(
|
||||
32,
|
||||
64,
|
||||
3,
|
||||
1,
|
||||
1,
|
||||
False,
|
||||
has_avg=False,
|
||||
has_bn=True,
|
||||
has_relu=True,
|
||||
last_max_pool=True,
|
||||
),
|
||||
]
|
||||
)
|
||||
self.channels = [32, 64]
|
||||
|
||||
meta_depth_info = get_depth_choices(layers)
|
||||
self.InShape = None
|
||||
self.depth_info = OrderedDict()
|
||||
self.depth_at_i = OrderedDict()
|
||||
for stage, layer_blocks in enumerate(layers):
|
||||
cur_block_choices = meta_depth_info[stage]
|
||||
assert (
|
||||
cur_block_choices[-1] == layer_blocks
|
||||
), "stage={:}, {:} vs {:}".format(stage, cur_block_choices, layer_blocks)
|
||||
block_choices, xstart = [], len(self.layers)
|
||||
for iL in range(layer_blocks):
|
||||
iC = self.channels[-1]
|
||||
planes = 64 * (2 ** stage)
|
||||
stride = 2 if stage > 0 and iL == 0 else 1
|
||||
module = block(iC, planes, stride)
|
||||
self.channels.append(module.out_dim)
|
||||
self.layers.append(module)
|
||||
self.message += "\nstage={:}, ilayer={:02d}/{:02d}, block={:03d}, iC={:3d}, oC={:3d}, stride={:}".format(
|
||||
stage,
|
||||
iL,
|
||||
layer_blocks,
|
||||
len(self.layers) - 1,
|
||||
iC,
|
||||
module.out_dim,
|
||||
stride,
|
||||
)
|
||||
# added for depth
|
||||
layer_index = len(self.layers) - 1
|
||||
if iL + 1 in cur_block_choices:
|
||||
block_choices.append(layer_index)
|
||||
if iL + 1 == layer_blocks:
|
||||
self.depth_info[layer_index] = {
|
||||
"choices": block_choices,
|
||||
"stage": stage,
|
||||
"xstart": xstart,
|
||||
}
|
||||
self.depth_info_list = []
|
||||
for xend, info in self.depth_info.items():
|
||||
self.depth_info_list.append((xend, info))
|
||||
xstart, xstage = info["xstart"], info["stage"]
|
||||
for ilayer in range(xstart, xend + 1):
|
||||
idx = bisect_right(info["choices"], ilayer - 1)
|
||||
self.depth_at_i[ilayer] = (xstage, idx)
|
||||
|
||||
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
|
||||
self.classifier = nn.Linear(module.out_dim, num_classes)
|
||||
self.InShape = None
|
||||
self.tau = -1
|
||||
self.search_mode = "basic"
|
||||
# assert sum(x.num_conv for x in self.layers) + 1 == depth, 'invalid depth check {:} vs {:}'.format(sum(x.num_conv for x in self.layers)+1, depth)
|
||||
|
||||
# parameters for width
|
||||
self.Ranges = []
|
||||
self.layer2indexRange = []
|
||||
for i, layer in enumerate(self.layers):
|
||||
start_index = len(self.Ranges)
|
||||
self.Ranges += layer.get_range()
|
||||
self.layer2indexRange.append((start_index, len(self.Ranges)))
|
||||
|
||||
self.register_parameter(
|
||||
"width_attentions",
|
||||
nn.Parameter(torch.Tensor(len(self.Ranges), get_width_choices(None))),
|
||||
)
|
||||
self.register_parameter(
|
||||
"depth_attentions",
|
||||
nn.Parameter(torch.Tensor(len(layers), meta_depth_info["num"])),
|
||||
)
|
||||
nn.init.normal_(self.width_attentions, 0, 0.01)
|
||||
nn.init.normal_(self.depth_attentions, 0, 0.01)
|
||||
self.apply(initialize_resnet)
|
||||
|
||||
def arch_parameters(self, LR=None):
|
||||
if LR is None:
|
||||
return [self.width_attentions, self.depth_attentions]
|
||||
else:
|
||||
return [
|
||||
{"params": self.width_attentions, "lr": LR},
|
||||
{"params": self.depth_attentions, "lr": LR},
|
||||
]
|
||||
|
||||
def base_parameters(self):
|
||||
return (
|
||||
list(self.layers.parameters())
|
||||
+ list(self.avgpool.parameters())
|
||||
+ list(self.classifier.parameters())
|
||||
)
|
||||
|
||||
def get_flop(self, mode, config_dict, extra_info):
|
||||
if config_dict is not None:
|
||||
config_dict = config_dict.copy()
|
||||
# select channels
|
||||
channels = [3]
|
||||
for i, weight in enumerate(self.width_attentions):
|
||||
if mode == "genotype":
|
||||
with torch.no_grad():
|
||||
probe = nn.functional.softmax(weight, dim=0)
|
||||
C = self.Ranges[i][torch.argmax(probe).item()]
|
||||
else:
|
||||
raise ValueError("invalid mode : {:}".format(mode))
|
||||
channels.append(C)
|
||||
# select depth
|
||||
if mode == "genotype":
|
||||
with torch.no_grad():
|
||||
depth_probs = nn.functional.softmax(self.depth_attentions, dim=1)
|
||||
choices = torch.argmax(depth_probs, dim=1).cpu().tolist()
|
||||
else:
|
||||
raise ValueError("invalid mode : {:}".format(mode))
|
||||
selected_layers = []
|
||||
for choice, xvalue in zip(choices, self.depth_info_list):
|
||||
xtemp = xvalue[1]["choices"][choice] - xvalue[1]["xstart"] + 1
|
||||
selected_layers.append(xtemp)
|
||||
flop = 0
|
||||
for i, layer in enumerate(self.layers):
|
||||
s, e = self.layer2indexRange[i]
|
||||
xchl = tuple(channels[s : e + 1])
|
||||
if i in self.depth_at_i:
|
||||
xstagei, xatti = self.depth_at_i[i]
|
||||
if xatti <= choices[xstagei]: # leave this depth
|
||||
flop += layer.get_flops(xchl)
|
||||
else:
|
||||
flop += 0 # do not use this layer
|
||||
else:
|
||||
flop += layer.get_flops(xchl)
|
||||
# the last fc layer
|
||||
flop += channels[-1] * self.classifier.out_features
|
||||
if config_dict is None:
|
||||
return flop / 1e6
|
||||
else:
|
||||
config_dict["xchannels"] = channels
|
||||
config_dict["xblocks"] = selected_layers
|
||||
config_dict["super_type"] = "infer-shape"
|
||||
config_dict["estimated_FLOP"] = flop / 1e6
|
||||
return flop / 1e6, config_dict
|
||||
|
||||
def get_arch_info(self):
|
||||
string = (
|
||||
"for depth and width, there are {:} + {:} attention probabilities.".format(
|
||||
len(self.depth_attentions), len(self.width_attentions)
|
||||
)
|
||||
)
|
||||
string += "\n{:}".format(self.depth_info)
|
||||
discrepancy = []
|
||||
with torch.no_grad():
|
||||
for i, att in enumerate(self.depth_attentions):
|
||||
prob = nn.functional.softmax(att, dim=0)
|
||||
prob = prob.cpu()
|
||||
selc = prob.argmax().item()
|
||||
prob = prob.tolist()
|
||||
prob = ["{:.3f}".format(x) for x in prob]
|
||||
xstring = "{:03d}/{:03d}-th : {:}".format(
|
||||
i, len(self.depth_attentions), " ".join(prob)
|
||||
)
|
||||
logt = ["{:.4f}".format(x) for x in att.cpu().tolist()]
|
||||
xstring += " || {:17s}".format(" ".join(logt))
|
||||
prob = sorted([float(x) for x in prob])
|
||||
disc = prob[-1] - prob[-2]
|
||||
xstring += " || discrepancy={:.2f} || select={:}/{:}".format(
|
||||
disc, selc, len(prob)
|
||||
)
|
||||
discrepancy.append(disc)
|
||||
string += "\n{:}".format(xstring)
|
||||
string += "\n-----------------------------------------------"
|
||||
for i, att in enumerate(self.width_attentions):
|
||||
prob = nn.functional.softmax(att, dim=0)
|
||||
prob = prob.cpu()
|
||||
selc = prob.argmax().item()
|
||||
prob = prob.tolist()
|
||||
prob = ["{:.3f}".format(x) for x in prob]
|
||||
xstring = "{:03d}/{:03d}-th : {:}".format(
|
||||
i, len(self.width_attentions), " ".join(prob)
|
||||
)
|
||||
logt = ["{:.3f}".format(x) for x in att.cpu().tolist()]
|
||||
xstring += " || {:52s}".format(" ".join(logt))
|
||||
prob = sorted([float(x) for x in prob])
|
||||
disc = prob[-1] - prob[-2]
|
||||
xstring += " || dis={:.2f} || select={:}/{:}".format(
|
||||
disc, selc, len(prob)
|
||||
)
|
||||
discrepancy.append(disc)
|
||||
string += "\n{:}".format(xstring)
|
||||
return string, discrepancy
|
||||
|
||||
def set_tau(self, tau_max, tau_min, epoch_ratio):
|
||||
assert (
|
||||
epoch_ratio >= 0 and epoch_ratio <= 1
|
||||
), "invalid epoch-ratio : {:}".format(epoch_ratio)
|
||||
tau = tau_min + (tau_max - tau_min) * (1 + math.cos(math.pi * epoch_ratio)) / 2
|
||||
self.tau = tau
|
||||
|
||||
def get_message(self):
|
||||
return self.message
|
||||
|
||||
def forward(self, inputs):
|
||||
if self.search_mode == "basic":
|
||||
return self.basic_forward(inputs)
|
||||
elif self.search_mode == "search":
|
||||
return self.search_forward(inputs)
|
||||
else:
|
||||
raise ValueError("invalid search_mode = {:}".format(self.search_mode))
|
||||
|
||||
def search_forward(self, inputs):
|
||||
flop_width_probs = nn.functional.softmax(self.width_attentions, dim=1)
|
||||
flop_depth_probs = nn.functional.softmax(self.depth_attentions, dim=1)
|
||||
flop_depth_probs = torch.flip(
|
||||
torch.cumsum(torch.flip(flop_depth_probs, [1]), 1), [1]
|
||||
)
|
||||
selected_widths, selected_width_probs = select2withP(
|
||||
self.width_attentions, self.tau
|
||||
)
|
||||
selected_depth_probs = select2withP(self.depth_attentions, self.tau, True)
|
||||
with torch.no_grad():
|
||||
selected_widths = selected_widths.cpu()
|
||||
|
||||
x, last_channel_idx, expected_inC, flops = inputs, 0, 3, []
|
||||
feature_maps = []
|
||||
for i, layer in enumerate(self.layers):
|
||||
selected_w_index = selected_widths[
|
||||
last_channel_idx : last_channel_idx + layer.num_conv
|
||||
]
|
||||
selected_w_probs = selected_width_probs[
|
||||
last_channel_idx : last_channel_idx + layer.num_conv
|
||||
]
|
||||
layer_prob = flop_width_probs[
|
||||
last_channel_idx : last_channel_idx + layer.num_conv
|
||||
]
|
||||
x, expected_inC, expected_flop = layer(
|
||||
(x, expected_inC, layer_prob, selected_w_index, selected_w_probs)
|
||||
)
|
||||
feature_maps.append(x)
|
||||
last_channel_idx += layer.num_conv
|
||||
if i in self.depth_info: # aggregate the information
|
||||
choices = self.depth_info[i]["choices"]
|
||||
xstagei = self.depth_info[i]["stage"]
|
||||
# print ('iL={:}, choices={:}, stage={:}, probs={:}'.format(i, choices, xstagei, selected_depth_probs[xstagei].cpu().tolist()))
|
||||
# for A, W in zip(choices, selected_depth_probs[xstagei]):
|
||||
# print('Size = {:}, W = {:}'.format(feature_maps[A].size(), W))
|
||||
possible_tensors = []
|
||||
max_C = max(feature_maps[A].size(1) for A in choices)
|
||||
for tempi, A in enumerate(choices):
|
||||
xtensor = ChannelWiseInter(feature_maps[A], max_C)
|
||||
possible_tensors.append(xtensor)
|
||||
weighted_sum = sum(
|
||||
xtensor * W
|
||||
for xtensor, W in zip(
|
||||
possible_tensors, selected_depth_probs[xstagei]
|
||||
)
|
||||
)
|
||||
x = weighted_sum
|
||||
|
||||
if i in self.depth_at_i:
|
||||
xstagei, xatti = self.depth_at_i[i]
|
||||
x_expected_flop = flop_depth_probs[xstagei, xatti] * expected_flop
|
||||
else:
|
||||
x_expected_flop = expected_flop
|
||||
flops.append(x_expected_flop)
|
||||
flops.append(expected_inC * (self.classifier.out_features * 1.0 / 1e6))
|
||||
features = self.avgpool(x)
|
||||
features = features.view(features.size(0), -1)
|
||||
logits = linear_forward(features, self.classifier)
|
||||
return logits, torch.stack([sum(flops)])
|
||||
|
||||
def basic_forward(self, inputs):
|
||||
if self.InShape is None:
|
||||
self.InShape = (inputs.size(-2), inputs.size(-1))
|
||||
x = inputs
|
||||
for i, layer in enumerate(self.layers):
|
||||
x = layer(x)
|
||||
features = self.avgpool(x)
|
||||
features = features.view(features.size(0), -1)
|
||||
logits = self.classifier(features)
|
||||
return features, logits
|
466
xautodl/models/shape_searchs/SearchSimResNet_width.py
Normal file
466
xautodl/models/shape_searchs/SearchSimResNet_width.py
Normal file
@@ -0,0 +1,466 @@
|
||||
##################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
|
||||
##################################################
|
||||
import math, torch
|
||||
import torch.nn as nn
|
||||
from ..initialization import initialize_resnet
|
||||
from ..SharedUtils import additive_func
|
||||
from .SoftSelect import select2withP, ChannelWiseInter
|
||||
from .SoftSelect import linear_forward
|
||||
from .SoftSelect import get_width_choices as get_choices
|
||||
|
||||
|
||||
def conv_forward(inputs, conv, choices):
|
||||
iC = conv.in_channels
|
||||
fill_size = list(inputs.size())
|
||||
fill_size[1] = iC - fill_size[1]
|
||||
filled = torch.zeros(fill_size, device=inputs.device)
|
||||
xinputs = torch.cat((inputs, filled), dim=1)
|
||||
outputs = conv(xinputs)
|
||||
selecteds = [outputs[:, :oC] for oC in choices]
|
||||
return selecteds
|
||||
|
||||
|
||||
class ConvBNReLU(nn.Module):
|
||||
num_conv = 1
|
||||
|
||||
def __init__(
|
||||
self, nIn, nOut, kernel, stride, padding, bias, has_avg, has_bn, has_relu
|
||||
):
|
||||
super(ConvBNReLU, self).__init__()
|
||||
self.InShape = None
|
||||
self.OutShape = None
|
||||
self.choices = get_choices(nOut)
|
||||
self.register_buffer("choices_tensor", torch.Tensor(self.choices))
|
||||
|
||||
if has_avg:
|
||||
self.avg = nn.AvgPool2d(kernel_size=2, stride=2, padding=0)
|
||||
else:
|
||||
self.avg = None
|
||||
self.conv = nn.Conv2d(
|
||||
nIn,
|
||||
nOut,
|
||||
kernel_size=kernel,
|
||||
stride=stride,
|
||||
padding=padding,
|
||||
dilation=1,
|
||||
groups=1,
|
||||
bias=bias,
|
||||
)
|
||||
# if has_bn : self.bn = nn.BatchNorm2d(nOut)
|
||||
# else : self.bn = None
|
||||
self.has_bn = has_bn
|
||||
self.BNs = nn.ModuleList()
|
||||
for i, _out in enumerate(self.choices):
|
||||
self.BNs.append(nn.BatchNorm2d(_out))
|
||||
if has_relu:
|
||||
self.relu = nn.ReLU(inplace=True)
|
||||
else:
|
||||
self.relu = None
|
||||
self.in_dim = nIn
|
||||
self.out_dim = nOut
|
||||
self.search_mode = "basic"
|
||||
|
||||
def get_flops(self, channels, check_range=True, divide=1):
|
||||
iC, oC = channels
|
||||
if check_range:
|
||||
assert (
|
||||
iC <= self.conv.in_channels and oC <= self.conv.out_channels
|
||||
), "{:} vs {:} | {:} vs {:}".format(
|
||||
iC, self.conv.in_channels, oC, self.conv.out_channels
|
||||
)
|
||||
assert (
|
||||
isinstance(self.InShape, tuple) and len(self.InShape) == 2
|
||||
), "invalid in-shape : {:}".format(self.InShape)
|
||||
assert (
|
||||
isinstance(self.OutShape, tuple) and len(self.OutShape) == 2
|
||||
), "invalid out-shape : {:}".format(self.OutShape)
|
||||
# conv_per_position_flops = self.conv.kernel_size[0] * self.conv.kernel_size[1] * iC * oC / self.conv.groups
|
||||
conv_per_position_flops = (
|
||||
self.conv.kernel_size[0] * self.conv.kernel_size[1] * 1.0 / self.conv.groups
|
||||
)
|
||||
all_positions = self.OutShape[0] * self.OutShape[1]
|
||||
flops = (conv_per_position_flops * all_positions / divide) * iC * oC
|
||||
if self.conv.bias is not None:
|
||||
flops += all_positions / divide
|
||||
return flops
|
||||
|
||||
def get_range(self):
|
||||
return [self.choices]
|
||||
|
||||
def forward(self, inputs):
|
||||
if self.search_mode == "basic":
|
||||
return self.basic_forward(inputs)
|
||||
elif self.search_mode == "search":
|
||||
return self.search_forward(inputs)
|
||||
else:
|
||||
raise ValueError("invalid search_mode = {:}".format(self.search_mode))
|
||||
|
||||
def search_forward(self, tuple_inputs):
|
||||
assert (
|
||||
isinstance(tuple_inputs, tuple) and len(tuple_inputs) == 5
|
||||
), "invalid type input : {:}".format(type(tuple_inputs))
|
||||
inputs, expected_inC, probability, index, prob = tuple_inputs
|
||||
index, prob = torch.squeeze(index).tolist(), torch.squeeze(prob)
|
||||
probability = torch.squeeze(probability)
|
||||
assert len(index) == 2, "invalid length : {:}".format(index)
|
||||
# compute expected flop
|
||||
# coordinates = torch.arange(self.x_range[0], self.x_range[1]+1).type_as(probability)
|
||||
expected_outC = (self.choices_tensor * probability).sum()
|
||||
expected_flop = self.get_flops([expected_inC, expected_outC], False, 1e6)
|
||||
if self.avg:
|
||||
out = self.avg(inputs)
|
||||
else:
|
||||
out = inputs
|
||||
# convolutional layer
|
||||
out_convs = conv_forward(out, self.conv, [self.choices[i] for i in index])
|
||||
out_bns = [self.BNs[idx](out_conv) for idx, out_conv in zip(index, out_convs)]
|
||||
# merge
|
||||
out_channel = max([x.size(1) for x in out_bns])
|
||||
outA = ChannelWiseInter(out_bns[0], out_channel)
|
||||
outB = ChannelWiseInter(out_bns[1], out_channel)
|
||||
out = outA * prob[0] + outB * prob[1]
|
||||
# out = additive_func(out_bns[0]*prob[0], out_bns[1]*prob[1])
|
||||
|
||||
if self.relu:
|
||||
out = self.relu(out)
|
||||
else:
|
||||
out = out
|
||||
return out, expected_outC, expected_flop
|
||||
|
||||
def basic_forward(self, inputs):
|
||||
if self.avg:
|
||||
out = self.avg(inputs)
|
||||
else:
|
||||
out = inputs
|
||||
conv = self.conv(out)
|
||||
if self.has_bn:
|
||||
out = self.BNs[-1](conv)
|
||||
else:
|
||||
out = conv
|
||||
if self.relu:
|
||||
out = self.relu(out)
|
||||
else:
|
||||
out = out
|
||||
if self.InShape is None:
|
||||
self.InShape = (inputs.size(-2), inputs.size(-1))
|
||||
self.OutShape = (out.size(-2), out.size(-1))
|
||||
return out
|
||||
|
||||
|
||||
class SimBlock(nn.Module):
|
||||
expansion = 1
|
||||
num_conv = 1
|
||||
|
||||
def __init__(self, inplanes, planes, stride):
|
||||
super(SimBlock, self).__init__()
|
||||
assert stride == 1 or stride == 2, "invalid stride {:}".format(stride)
|
||||
self.conv = ConvBNReLU(
|
||||
inplanes,
|
||||
planes,
|
||||
3,
|
||||
stride,
|
||||
1,
|
||||
False,
|
||||
has_avg=False,
|
||||
has_bn=True,
|
||||
has_relu=True,
|
||||
)
|
||||
if stride == 2:
|
||||
self.downsample = ConvBNReLU(
|
||||
inplanes,
|
||||
planes,
|
||||
1,
|
||||
1,
|
||||
0,
|
||||
False,
|
||||
has_avg=True,
|
||||
has_bn=False,
|
||||
has_relu=False,
|
||||
)
|
||||
elif inplanes != planes:
|
||||
self.downsample = ConvBNReLU(
|
||||
inplanes,
|
||||
planes,
|
||||
1,
|
||||
1,
|
||||
0,
|
||||
False,
|
||||
has_avg=False,
|
||||
has_bn=True,
|
||||
has_relu=False,
|
||||
)
|
||||
else:
|
||||
self.downsample = None
|
||||
self.out_dim = planes
|
||||
self.search_mode = "basic"
|
||||
|
||||
def get_range(self):
|
||||
return self.conv.get_range()
|
||||
|
||||
def get_flops(self, channels):
|
||||
assert len(channels) == 2, "invalid channels : {:}".format(channels)
|
||||
flop_A = self.conv.get_flops([channels[0], channels[1]])
|
||||
if hasattr(self.downsample, "get_flops"):
|
||||
flop_C = self.downsample.get_flops([channels[0], channels[-1]])
|
||||
else:
|
||||
flop_C = 0
|
||||
if (
|
||||
channels[0] != channels[-1] and self.downsample is None
|
||||
): # this short-cut will be added during the infer-train
|
||||
flop_C = (
|
||||
channels[0]
|
||||
* channels[-1]
|
||||
* self.conv.OutShape[0]
|
||||
* self.conv.OutShape[1]
|
||||
)
|
||||
return flop_A + flop_C
|
||||
|
||||
def forward(self, inputs):
|
||||
if self.search_mode == "basic":
|
||||
return self.basic_forward(inputs)
|
||||
elif self.search_mode == "search":
|
||||
return self.search_forward(inputs)
|
||||
else:
|
||||
raise ValueError("invalid search_mode = {:}".format(self.search_mode))
|
||||
|
||||
def search_forward(self, tuple_inputs):
|
||||
assert (
|
||||
isinstance(tuple_inputs, tuple) and len(tuple_inputs) == 5
|
||||
), "invalid type input : {:}".format(type(tuple_inputs))
|
||||
inputs, expected_inC, probability, indexes, probs = tuple_inputs
|
||||
assert (
|
||||
indexes.size(0) == 1 and probs.size(0) == 1 and probability.size(0) == 1
|
||||
), "invalid size : {:}, {:}, {:}".format(
|
||||
indexes.size(), probs.size(), probability.size()
|
||||
)
|
||||
out, expected_next_inC, expected_flop = self.conv(
|
||||
(inputs, expected_inC, probability[0], indexes[0], probs[0])
|
||||
)
|
||||
if self.downsample is not None:
|
||||
residual, _, expected_flop_c = self.downsample(
|
||||
(inputs, expected_inC, probability[-1], indexes[-1], probs[-1])
|
||||
)
|
||||
else:
|
||||
residual, expected_flop_c = inputs, 0
|
||||
out = additive_func(residual, out)
|
||||
return (
|
||||
nn.functional.relu(out, inplace=True),
|
||||
expected_next_inC,
|
||||
sum([expected_flop, expected_flop_c]),
|
||||
)
|
||||
|
||||
def basic_forward(self, inputs):
|
||||
basicblock = self.conv(inputs)
|
||||
if self.downsample is not None:
|
||||
residual = self.downsample(inputs)
|
||||
else:
|
||||
residual = inputs
|
||||
out = additive_func(residual, basicblock)
|
||||
return nn.functional.relu(out, inplace=True)
|
||||
|
||||
|
||||
class SearchWidthSimResNet(nn.Module):
|
||||
def __init__(self, depth, num_classes):
|
||||
super(SearchWidthSimResNet, self).__init__()
|
||||
|
||||
assert (
|
||||
depth - 2
|
||||
) % 3 == 0, "depth should be one of 5, 8, 11, 14, ... instead of {:}".format(
|
||||
depth
|
||||
)
|
||||
layer_blocks = (depth - 2) // 3
|
||||
self.message = (
|
||||
"SearchWidthSimResNet : Depth : {:} , Layers for each block : {:}".format(
|
||||
depth, layer_blocks
|
||||
)
|
||||
)
|
||||
self.num_classes = num_classes
|
||||
self.channels = [16]
|
||||
self.layers = nn.ModuleList(
|
||||
[
|
||||
ConvBNReLU(
|
||||
3, 16, 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=True
|
||||
)
|
||||
]
|
||||
)
|
||||
self.InShape = None
|
||||
for stage in range(3):
|
||||
for iL in range(layer_blocks):
|
||||
iC = self.channels[-1]
|
||||
planes = 16 * (2 ** stage)
|
||||
stride = 2 if stage > 0 and iL == 0 else 1
|
||||
module = SimBlock(iC, planes, stride)
|
||||
self.channels.append(module.out_dim)
|
||||
self.layers.append(module)
|
||||
self.message += "\nstage={:}, ilayer={:02d}/{:02d}, block={:03d}, iC={:3d}, oC={:3d}, stride={:}".format(
|
||||
stage,
|
||||
iL,
|
||||
layer_blocks,
|
||||
len(self.layers) - 1,
|
||||
iC,
|
||||
module.out_dim,
|
||||
stride,
|
||||
)
|
||||
|
||||
self.avgpool = nn.AvgPool2d(8)
|
||||
self.classifier = nn.Linear(module.out_dim, num_classes)
|
||||
self.InShape = None
|
||||
self.tau = -1
|
||||
self.search_mode = "basic"
|
||||
# assert sum(x.num_conv for x in self.layers) + 1 == depth, 'invalid depth check {:} vs {:}'.format(sum(x.num_conv for x in self.layers)+1, depth)
|
||||
|
||||
# parameters for width
|
||||
self.Ranges = []
|
||||
self.layer2indexRange = []
|
||||
for i, layer in enumerate(self.layers):
|
||||
start_index = len(self.Ranges)
|
||||
self.Ranges += layer.get_range()
|
||||
self.layer2indexRange.append((start_index, len(self.Ranges)))
|
||||
assert len(self.Ranges) + 1 == depth, "invalid depth check {:} vs {:}".format(
|
||||
len(self.Ranges) + 1, depth
|
||||
)
|
||||
|
||||
self.register_parameter(
|
||||
"width_attentions",
|
||||
nn.Parameter(torch.Tensor(len(self.Ranges), get_choices(None))),
|
||||
)
|
||||
nn.init.normal_(self.width_attentions, 0, 0.01)
|
||||
self.apply(initialize_resnet)
|
||||
|
||||
def arch_parameters(self):
|
||||
return [self.width_attentions]
|
||||
|
||||
def base_parameters(self):
|
||||
return (
|
||||
list(self.layers.parameters())
|
||||
+ list(self.avgpool.parameters())
|
||||
+ list(self.classifier.parameters())
|
||||
)
|
||||
|
||||
def get_flop(self, mode, config_dict, extra_info):
|
||||
if config_dict is not None:
|
||||
config_dict = config_dict.copy()
|
||||
# weights = [F.softmax(x, dim=0) for x in self.width_attentions]
|
||||
channels = [3]
|
||||
for i, weight in enumerate(self.width_attentions):
|
||||
if mode == "genotype":
|
||||
with torch.no_grad():
|
||||
probe = nn.functional.softmax(weight, dim=0)
|
||||
C = self.Ranges[i][torch.argmax(probe).item()]
|
||||
elif mode == "max":
|
||||
C = self.Ranges[i][-1]
|
||||
elif mode == "fix":
|
||||
C = int(math.sqrt(extra_info) * self.Ranges[i][-1])
|
||||
elif mode == "random":
|
||||
assert isinstance(extra_info, float), "invalid extra_info : {:}".format(
|
||||
extra_info
|
||||
)
|
||||
with torch.no_grad():
|
||||
prob = nn.functional.softmax(weight, dim=0)
|
||||
approximate_C = int(math.sqrt(extra_info) * self.Ranges[i][-1])
|
||||
for j in range(prob.size(0)):
|
||||
prob[j] = 1 / (
|
||||
abs(j - (approximate_C - self.Ranges[i][j])) + 0.2
|
||||
)
|
||||
C = self.Ranges[i][torch.multinomial(prob, 1, False).item()]
|
||||
else:
|
||||
raise ValueError("invalid mode : {:}".format(mode))
|
||||
channels.append(C)
|
||||
flop = 0
|
||||
for i, layer in enumerate(self.layers):
|
||||
s, e = self.layer2indexRange[i]
|
||||
xchl = tuple(channels[s : e + 1])
|
||||
flop += layer.get_flops(xchl)
|
||||
# the last fc layer
|
||||
flop += channels[-1] * self.classifier.out_features
|
||||
if config_dict is None:
|
||||
return flop / 1e6
|
||||
else:
|
||||
config_dict["xchannels"] = channels
|
||||
config_dict["super_type"] = "infer-width"
|
||||
config_dict["estimated_FLOP"] = flop / 1e6
|
||||
return flop / 1e6, config_dict
|
||||
|
||||
def get_arch_info(self):
|
||||
string = "for width, there are {:} attention probabilities.".format(
|
||||
len(self.width_attentions)
|
||||
)
|
||||
discrepancy = []
|
||||
with torch.no_grad():
|
||||
for i, att in enumerate(self.width_attentions):
|
||||
prob = nn.functional.softmax(att, dim=0)
|
||||
prob = prob.cpu()
|
||||
selc = prob.argmax().item()
|
||||
prob = prob.tolist()
|
||||
prob = ["{:.3f}".format(x) for x in prob]
|
||||
xstring = "{:03d}/{:03d}-th : {:}".format(
|
||||
i, len(self.width_attentions), " ".join(prob)
|
||||
)
|
||||
logt = ["{:.3f}".format(x) for x in att.cpu().tolist()]
|
||||
xstring += " || {:52s}".format(" ".join(logt))
|
||||
prob = sorted([float(x) for x in prob])
|
||||
disc = prob[-1] - prob[-2]
|
||||
xstring += " || dis={:.2f} || select={:}/{:}".format(
|
||||
disc, selc, len(prob)
|
||||
)
|
||||
discrepancy.append(disc)
|
||||
string += "\n{:}".format(xstring)
|
||||
return string, discrepancy
|
||||
|
||||
def set_tau(self, tau_max, tau_min, epoch_ratio):
|
||||
assert (
|
||||
epoch_ratio >= 0 and epoch_ratio <= 1
|
||||
), "invalid epoch-ratio : {:}".format(epoch_ratio)
|
||||
tau = tau_min + (tau_max - tau_min) * (1 + math.cos(math.pi * epoch_ratio)) / 2
|
||||
self.tau = tau
|
||||
|
||||
def get_message(self):
|
||||
return self.message
|
||||
|
||||
def forward(self, inputs):
|
||||
if self.search_mode == "basic":
|
||||
return self.basic_forward(inputs)
|
||||
elif self.search_mode == "search":
|
||||
return self.search_forward(inputs)
|
||||
else:
|
||||
raise ValueError("invalid search_mode = {:}".format(self.search_mode))
|
||||
|
||||
def search_forward(self, inputs):
|
||||
flop_probs = nn.functional.softmax(self.width_attentions, dim=1)
|
||||
selected_widths, selected_probs = select2withP(self.width_attentions, self.tau)
|
||||
with torch.no_grad():
|
||||
selected_widths = selected_widths.cpu()
|
||||
|
||||
x, last_channel_idx, expected_inC, flops = inputs, 0, 3, []
|
||||
for i, layer in enumerate(self.layers):
|
||||
selected_w_index = selected_widths[
|
||||
last_channel_idx : last_channel_idx + layer.num_conv
|
||||
]
|
||||
selected_w_probs = selected_probs[
|
||||
last_channel_idx : last_channel_idx + layer.num_conv
|
||||
]
|
||||
layer_prob = flop_probs[
|
||||
last_channel_idx : last_channel_idx + layer.num_conv
|
||||
]
|
||||
x, expected_inC, expected_flop = layer(
|
||||
(x, expected_inC, layer_prob, selected_w_index, selected_w_probs)
|
||||
)
|
||||
last_channel_idx += layer.num_conv
|
||||
flops.append(expected_flop)
|
||||
flops.append(expected_inC * (self.classifier.out_features * 1.0 / 1e6))
|
||||
features = self.avgpool(x)
|
||||
features = features.view(features.size(0), -1)
|
||||
logits = linear_forward(features, self.classifier)
|
||||
return logits, torch.stack([sum(flops)])
|
||||
|
||||
def basic_forward(self, inputs):
|
||||
if self.InShape is None:
|
||||
self.InShape = (inputs.size(-2), inputs.size(-1))
|
||||
x = inputs
|
||||
for i, layer in enumerate(self.layers):
|
||||
x = layer(x)
|
||||
features = self.avgpool(x)
|
||||
features = features.view(features.size(0), -1)
|
||||
logits = self.classifier(features)
|
||||
return features, logits
|
128
xautodl/models/shape_searchs/SoftSelect.py
Normal file
128
xautodl/models/shape_searchs/SoftSelect.py
Normal file
@@ -0,0 +1,128 @@
|
||||
##################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
|
||||
##################################################
|
||||
import math, torch
|
||||
import torch.nn as nn
|
||||
|
||||
|
||||
def select2withP(logits, tau, just_prob=False, num=2, eps=1e-7):
|
||||
if tau <= 0:
|
||||
new_logits = logits
|
||||
probs = nn.functional.softmax(new_logits, dim=1)
|
||||
else:
|
||||
while True: # a trick to avoid the gumbels bug
|
||||
gumbels = -torch.empty_like(logits).exponential_().log()
|
||||
new_logits = (logits.log_softmax(dim=1) + gumbels) / tau
|
||||
probs = nn.functional.softmax(new_logits, dim=1)
|
||||
if (
|
||||
(not torch.isinf(gumbels).any())
|
||||
and (not torch.isinf(probs).any())
|
||||
and (not torch.isnan(probs).any())
|
||||
):
|
||||
break
|
||||
|
||||
if just_prob:
|
||||
return probs
|
||||
|
||||
# with torch.no_grad(): # add eps for unexpected torch error
|
||||
# probs = nn.functional.softmax(new_logits, dim=1)
|
||||
# selected_index = torch.multinomial(probs + eps, 2, False)
|
||||
with torch.no_grad(): # add eps for unexpected torch error
|
||||
probs = probs.cpu()
|
||||
selected_index = torch.multinomial(probs + eps, num, False).to(logits.device)
|
||||
selected_logit = torch.gather(new_logits, 1, selected_index)
|
||||
selcted_probs = nn.functional.softmax(selected_logit, dim=1)
|
||||
return selected_index, selcted_probs
|
||||
|
||||
|
||||
def ChannelWiseInter(inputs, oC, mode="v2"):
|
||||
if mode == "v1":
|
||||
return ChannelWiseInterV1(inputs, oC)
|
||||
elif mode == "v2":
|
||||
return ChannelWiseInterV2(inputs, oC)
|
||||
else:
|
||||
raise ValueError("invalid mode : {:}".format(mode))
|
||||
|
||||
|
||||
def ChannelWiseInterV1(inputs, oC):
|
||||
assert inputs.dim() == 4, "invalid dimension : {:}".format(inputs.size())
|
||||
|
||||
def start_index(a, b, c):
|
||||
return int(math.floor(float(a * c) / b))
|
||||
|
||||
def end_index(a, b, c):
|
||||
return int(math.ceil(float((a + 1) * c) / b))
|
||||
|
||||
batch, iC, H, W = inputs.size()
|
||||
outputs = torch.zeros((batch, oC, H, W), dtype=inputs.dtype, device=inputs.device)
|
||||
if iC == oC:
|
||||
return inputs
|
||||
for ot in range(oC):
|
||||
istartT, iendT = start_index(ot, oC, iC), end_index(ot, oC, iC)
|
||||
values = inputs[:, istartT:iendT].mean(dim=1)
|
||||
outputs[:, ot, :, :] = values
|
||||
return outputs
|
||||
|
||||
|
||||
def ChannelWiseInterV2(inputs, oC):
|
||||
assert inputs.dim() == 4, "invalid dimension : {:}".format(inputs.size())
|
||||
batch, C, H, W = inputs.size()
|
||||
if C == oC:
|
||||
return inputs
|
||||
else:
|
||||
return nn.functional.adaptive_avg_pool3d(inputs, (oC, H, W))
|
||||
# inputs_5D = inputs.view(batch, 1, C, H, W)
|
||||
# otputs_5D = nn.functional.interpolate(inputs_5D, (oC,H,W), None, 'area', None)
|
||||
# otputs = otputs_5D.view(batch, oC, H, W)
|
||||
# otputs_5D = nn.functional.interpolate(inputs_5D, (oC,H,W), None, 'trilinear', False)
|
||||
# return otputs
|
||||
|
||||
|
||||
def linear_forward(inputs, linear):
|
||||
if linear is None:
|
||||
return inputs
|
||||
iC = inputs.size(1)
|
||||
weight = linear.weight[:, :iC]
|
||||
if linear.bias is None:
|
||||
bias = None
|
||||
else:
|
||||
bias = linear.bias
|
||||
return nn.functional.linear(inputs, weight, bias)
|
||||
|
||||
|
||||
def get_width_choices(nOut):
|
||||
xsrange = [0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]
|
||||
if nOut is None:
|
||||
return len(xsrange)
|
||||
else:
|
||||
Xs = [int(nOut * i) for i in xsrange]
|
||||
# xs = [ int(nOut * i // 10) for i in range(2, 11)]
|
||||
# Xs = [x for i, x in enumerate(xs) if i+1 == len(xs) or xs[i+1] > x+1]
|
||||
Xs = sorted(list(set(Xs)))
|
||||
return tuple(Xs)
|
||||
|
||||
|
||||
def get_depth_choices(nDepth):
|
||||
if nDepth is None:
|
||||
return 3
|
||||
else:
|
||||
assert nDepth >= 3, "nDepth should be greater than 2 vs {:}".format(nDepth)
|
||||
if nDepth == 1:
|
||||
return (1, 1, 1)
|
||||
elif nDepth == 2:
|
||||
return (1, 1, 2)
|
||||
elif nDepth >= 3:
|
||||
return (nDepth // 3, nDepth * 2 // 3, nDepth)
|
||||
else:
|
||||
raise ValueError("invalid Depth : {:}".format(nDepth))
|
||||
|
||||
|
||||
def drop_path(x, drop_prob):
|
||||
if drop_prob > 0.0:
|
||||
keep_prob = 1.0 - drop_prob
|
||||
mask = x.new_zeros(x.size(0), 1, 1, 1)
|
||||
mask = mask.bernoulli_(keep_prob)
|
||||
x = x * (mask / keep_prob)
|
||||
# x.div_(keep_prob)
|
||||
# x.mul_(mask)
|
||||
return x
|
9
xautodl/models/shape_searchs/__init__.py
Normal file
9
xautodl/models/shape_searchs/__init__.py
Normal file
@@ -0,0 +1,9 @@
|
||||
##################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
|
||||
##################################################
|
||||
from .SearchCifarResNet_width import SearchWidthCifarResNet
|
||||
from .SearchCifarResNet_depth import SearchDepthCifarResNet
|
||||
from .SearchCifarResNet import SearchShapeCifarResNet
|
||||
from .SearchSimResNet_width import SearchWidthSimResNet
|
||||
from .SearchImagenetResNet import SearchShapeImagenetResNet
|
||||
from .generic_size_tiny_cell_model import GenericNAS301Model
|
209
xautodl/models/shape_searchs/generic_size_tiny_cell_model.py
Normal file
209
xautodl/models/shape_searchs/generic_size_tiny_cell_model.py
Normal file
@@ -0,0 +1,209 @@
|
||||
#####################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 #
|
||||
#####################################################
|
||||
# Here, we utilized three techniques to search for the number of channels:
|
||||
# - channel-wise interpolation from "Network Pruning via Transformable Architecture Search, NeurIPS 2019"
|
||||
# - masking + Gumbel-Softmax (mask_gumbel) from "FBNetV2: Differentiable Neural Architecture Search for Spatial and Channel Dimensions, CVPR 2020"
|
||||
# - masking + sampling (mask_rl) from "Can Weight Sharing Outperform Random Architecture Search? An Investigation With TuNAS, CVPR 2020"
|
||||
from typing import List, Text, Any
|
||||
import random, torch
|
||||
import torch.nn as nn
|
||||
|
||||
from models.cell_operations import ResNetBasicblock
|
||||
from models.cell_infers.cells import InferCell
|
||||
from models.shape_searchs.SoftSelect import select2withP, ChannelWiseInter
|
||||
|
||||
|
||||
class GenericNAS301Model(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
candidate_Cs: List[int],
|
||||
max_num_Cs: int,
|
||||
genotype: Any,
|
||||
num_classes: int,
|
||||
affine: bool,
|
||||
track_running_stats: bool,
|
||||
):
|
||||
super(GenericNAS301Model, self).__init__()
|
||||
self._max_num_Cs = max_num_Cs
|
||||
self._candidate_Cs = candidate_Cs
|
||||
if max_num_Cs % 3 != 2:
|
||||
raise ValueError("invalid number of layers : {:}".format(max_num_Cs))
|
||||
self._num_stage = N = max_num_Cs // 3
|
||||
self._max_C = max(candidate_Cs)
|
||||
|
||||
stem = nn.Sequential(
|
||||
nn.Conv2d(3, self._max_C, kernel_size=3, padding=1, bias=not affine),
|
||||
nn.BatchNorm2d(
|
||||
self._max_C, affine=affine, track_running_stats=track_running_stats
|
||||
),
|
||||
)
|
||||
|
||||
layer_reductions = [False] * N + [True] + [False] * N + [True] + [False] * N
|
||||
|
||||
c_prev = self._max_C
|
||||
self._cells = nn.ModuleList()
|
||||
self._cells.append(stem)
|
||||
for index, reduction in enumerate(layer_reductions):
|
||||
if reduction:
|
||||
cell = ResNetBasicblock(c_prev, self._max_C, 2, True)
|
||||
else:
|
||||
cell = InferCell(
|
||||
genotype, c_prev, self._max_C, 1, affine, track_running_stats
|
||||
)
|
||||
self._cells.append(cell)
|
||||
c_prev = cell.out_dim
|
||||
self._num_layer = len(self._cells)
|
||||
|
||||
self.lastact = nn.Sequential(
|
||||
nn.BatchNorm2d(
|
||||
c_prev, affine=affine, track_running_stats=track_running_stats
|
||||
),
|
||||
nn.ReLU(inplace=True),
|
||||
)
|
||||
self.global_pooling = nn.AdaptiveAvgPool2d(1)
|
||||
self.classifier = nn.Linear(c_prev, num_classes)
|
||||
# algorithm related
|
||||
self.register_buffer("_tau", torch.zeros(1))
|
||||
self._algo = None
|
||||
self._warmup_ratio = None
|
||||
|
||||
def set_algo(self, algo: Text):
|
||||
# used for searching
|
||||
assert self._algo is None, "This functioin can only be called once."
|
||||
assert algo in ["mask_gumbel", "mask_rl", "tas"], "invalid algo : {:}".format(
|
||||
algo
|
||||
)
|
||||
self._algo = algo
|
||||
self._arch_parameters = nn.Parameter(
|
||||
1e-3 * torch.randn(self._max_num_Cs, len(self._candidate_Cs))
|
||||
)
|
||||
# if algo == 'mask_gumbel' or algo == 'mask_rl':
|
||||
self.register_buffer(
|
||||
"_masks", torch.zeros(len(self._candidate_Cs), max(self._candidate_Cs))
|
||||
)
|
||||
for i in range(len(self._candidate_Cs)):
|
||||
self._masks.data[i, : self._candidate_Cs[i]] = 1
|
||||
|
||||
@property
|
||||
def tau(self):
|
||||
return self._tau
|
||||
|
||||
def set_tau(self, tau):
|
||||
self._tau.data[:] = tau
|
||||
|
||||
@property
|
||||
def warmup_ratio(self):
|
||||
return self._warmup_ratio
|
||||
|
||||
def set_warmup_ratio(self, ratio: float):
|
||||
self._warmup_ratio = ratio
|
||||
|
||||
@property
|
||||
def weights(self):
|
||||
xlist = list(self._cells.parameters())
|
||||
xlist += list(self.lastact.parameters())
|
||||
xlist += list(self.global_pooling.parameters())
|
||||
xlist += list(self.classifier.parameters())
|
||||
return xlist
|
||||
|
||||
@property
|
||||
def alphas(self):
|
||||
return [self._arch_parameters]
|
||||
|
||||
def show_alphas(self):
|
||||
with torch.no_grad():
|
||||
return "arch-parameters :\n{:}".format(
|
||||
nn.functional.softmax(self._arch_parameters, dim=-1).cpu()
|
||||
)
|
||||
|
||||
@property
|
||||
def random(self):
|
||||
cs = []
|
||||
for i in range(self._max_num_Cs):
|
||||
index = random.randint(0, len(self._candidate_Cs) - 1)
|
||||
cs.append(str(self._candidate_Cs[index]))
|
||||
return ":".join(cs)
|
||||
|
||||
@property
|
||||
def genotype(self):
|
||||
cs = []
|
||||
for i in range(self._max_num_Cs):
|
||||
with torch.no_grad():
|
||||
index = self._arch_parameters[i].argmax().item()
|
||||
cs.append(str(self._candidate_Cs[index]))
|
||||
return ":".join(cs)
|
||||
|
||||
def get_message(self) -> Text:
|
||||
string = self.extra_repr()
|
||||
for i, cell in enumerate(self._cells):
|
||||
string += "\n {:02d}/{:02d} :: {:}".format(
|
||||
i, len(self._cells), cell.extra_repr()
|
||||
)
|
||||
return string
|
||||
|
||||
def extra_repr(self):
|
||||
return "{name}(candidates={_candidate_Cs}, num={_max_num_Cs}, N={_num_stage}, L={_num_layer})".format(
|
||||
name=self.__class__.__name__, **self.__dict__
|
||||
)
|
||||
|
||||
def forward(self, inputs):
|
||||
feature = inputs
|
||||
|
||||
log_probs = []
|
||||
for i, cell in enumerate(self._cells):
|
||||
feature = cell(feature)
|
||||
# apply different searching algorithms
|
||||
idx = max(0, i - 1)
|
||||
if self._warmup_ratio is not None:
|
||||
if random.random() < self._warmup_ratio:
|
||||
mask = self._masks[-1]
|
||||
else:
|
||||
mask = self._masks[random.randint(0, len(self._masks) - 1)]
|
||||
feature = feature * mask.view(1, -1, 1, 1)
|
||||
elif self._algo == "mask_gumbel":
|
||||
weights = nn.functional.gumbel_softmax(
|
||||
self._arch_parameters[idx : idx + 1], tau=self.tau, dim=-1
|
||||
)
|
||||
mask = torch.matmul(weights, self._masks).view(1, -1, 1, 1)
|
||||
feature = feature * mask
|
||||
elif self._algo == "tas":
|
||||
selected_cs, selected_probs = select2withP(
|
||||
self._arch_parameters[idx : idx + 1], self.tau, num=2
|
||||
)
|
||||
with torch.no_grad():
|
||||
i1, i2 = selected_cs.cpu().view(-1).tolist()
|
||||
c1, c2 = self._candidate_Cs[i1], self._candidate_Cs[i2]
|
||||
out_channel = max(c1, c2)
|
||||
out1 = ChannelWiseInter(feature[:, :c1], out_channel)
|
||||
out2 = ChannelWiseInter(feature[:, :c2], out_channel)
|
||||
out = out1 * selected_probs[0, 0] + out2 * selected_probs[0, 1]
|
||||
if feature.shape[1] == out.shape[1]:
|
||||
feature = out
|
||||
else:
|
||||
miss = torch.zeros(
|
||||
feature.shape[0],
|
||||
feature.shape[1] - out.shape[1],
|
||||
feature.shape[2],
|
||||
feature.shape[3],
|
||||
device=feature.device,
|
||||
)
|
||||
feature = torch.cat((out, miss), dim=1)
|
||||
elif self._algo == "mask_rl":
|
||||
prob = nn.functional.softmax(
|
||||
self._arch_parameters[idx : idx + 1], dim=-1
|
||||
)
|
||||
dist = torch.distributions.Categorical(prob)
|
||||
action = dist.sample()
|
||||
log_probs.append(dist.log_prob(action))
|
||||
mask = self._masks[action.item()].view(1, -1, 1, 1)
|
||||
feature = feature * mask
|
||||
else:
|
||||
raise ValueError("invalid algorithm : {:}".format(self._algo))
|
||||
|
||||
out = self.lastact(feature)
|
||||
out = self.global_pooling(out)
|
||||
out = out.view(out.size(0), -1)
|
||||
logits = self.classifier(out)
|
||||
|
||||
return out, logits, log_probs
|
20
xautodl/models/shape_searchs/test.py
Normal file
20
xautodl/models/shape_searchs/test.py
Normal file
@@ -0,0 +1,20 @@
|
||||
##################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
|
||||
##################################################
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from SoftSelect import ChannelWiseInter
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
tensors = torch.rand((16, 128, 7, 7))
|
||||
|
||||
for oc in range(200, 210):
|
||||
out_v1 = ChannelWiseInter(tensors, oc, "v1")
|
||||
out_v2 = ChannelWiseInter(tensors, oc, "v2")
|
||||
assert (out_v1 == out_v2).any().item() == 1
|
||||
for oc in range(48, 160):
|
||||
out_v1 = ChannelWiseInter(tensors, oc, "v1")
|
||||
out_v2 = ChannelWiseInter(tensors, oc, "v2")
|
||||
assert (out_v1 == out_v2).any().item() == 1
|
67
xautodl/models/xcore.py
Normal file
67
xautodl/models/xcore.py
Normal file
@@ -0,0 +1,67 @@
|
||||
#######################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.04 #
|
||||
#######################################################
|
||||
# Use module in xlayers to construct different models #
|
||||
#######################################################
|
||||
from typing import List, Text, Dict, Any
|
||||
import torch
|
||||
|
||||
__all__ = ["get_model"]
|
||||
|
||||
|
||||
from xlayers.super_core import SuperSequential
|
||||
from xlayers.super_core import SuperLinear
|
||||
from xlayers.super_core import SuperDropout
|
||||
from xlayers.super_core import super_name2norm
|
||||
from xlayers.super_core import super_name2activation
|
||||
|
||||
|
||||
def get_model(config: Dict[Text, Any], **kwargs):
|
||||
model_type = config.get("model_type", "simple_mlp")
|
||||
if model_type == "simple_mlp":
|
||||
act_cls = super_name2activation[kwargs["act_cls"]]
|
||||
norm_cls = super_name2norm[kwargs["norm_cls"]]
|
||||
mean, std = kwargs.get("mean", None), kwargs.get("std", None)
|
||||
if "hidden_dim" in kwargs:
|
||||
hidden_dim1 = kwargs.get("hidden_dim")
|
||||
hidden_dim2 = kwargs.get("hidden_dim")
|
||||
else:
|
||||
hidden_dim1 = kwargs.get("hidden_dim1", 200)
|
||||
hidden_dim2 = kwargs.get("hidden_dim2", 100)
|
||||
model = SuperSequential(
|
||||
norm_cls(mean=mean, std=std),
|
||||
SuperLinear(kwargs["input_dim"], hidden_dim1),
|
||||
act_cls(),
|
||||
SuperLinear(hidden_dim1, hidden_dim2),
|
||||
act_cls(),
|
||||
SuperLinear(hidden_dim2, kwargs["output_dim"]),
|
||||
)
|
||||
elif model_type == "norm_mlp":
|
||||
act_cls = super_name2activation[kwargs["act_cls"]]
|
||||
norm_cls = super_name2norm[kwargs["norm_cls"]]
|
||||
sub_layers, last_dim = [], kwargs["input_dim"]
|
||||
for i, hidden_dim in enumerate(kwargs["hidden_dims"]):
|
||||
if last_dim > 1:
|
||||
sub_layers.append(norm_cls(last_dim, elementwise_affine=False))
|
||||
sub_layers.append(SuperLinear(last_dim, hidden_dim))
|
||||
sub_layers.append(act_cls())
|
||||
last_dim = hidden_dim
|
||||
sub_layers.append(SuperLinear(last_dim, kwargs["output_dim"]))
|
||||
model = SuperSequential(*sub_layers)
|
||||
elif model_type == "dual_norm_mlp":
|
||||
act_cls = super_name2activation[kwargs["act_cls"]]
|
||||
norm_cls = super_name2norm[kwargs["norm_cls"]]
|
||||
sub_layers, last_dim = [], kwargs["input_dim"]
|
||||
for i, hidden_dim in enumerate(kwargs["hidden_dims"]):
|
||||
if i > 0:
|
||||
sub_layers.append(norm_cls(last_dim, elementwise_affine=False))
|
||||
sub_layers.append(SuperLinear(last_dim, hidden_dim))
|
||||
sub_layers.append(SuperDropout(kwargs["dropout"]))
|
||||
sub_layers.append(SuperLinear(hidden_dim, hidden_dim))
|
||||
sub_layers.append(act_cls())
|
||||
last_dim = hidden_dim
|
||||
sub_layers.append(SuperLinear(last_dim, kwargs["output_dim"]))
|
||||
model = SuperSequential(*sub_layers)
|
||||
else:
|
||||
raise TypeError("Unkonwn model type: {:}".format(model_type))
|
||||
return model
|
Reference in New Issue
Block a user