Move to xautodl

This commit is contained in:
D-X-Y
2021-05-18 14:08:00 +00:00
parent 98fadf8086
commit 94a149b33f
149 changed files with 94 additions and 21 deletions

View File

@@ -0,0 +1,16 @@
##################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
##################################################
# every package does not rely on pytorch or tensorflow
# I tried to list all dependency here: os, sys, time, numpy, (possibly) matplotlib
##################################################
from .logger import Logger, PrintLogger
from .meter import AverageMeter
from .time_utils import (
time_for_file,
time_string,
time_string_short,
time_print,
convert_secs2time,
)
from .pickle_wrap import pickle_save, pickle_load

173
xautodl/log_utils/logger.py Normal file
View File

@@ -0,0 +1,173 @@
##################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
##################################################
from pathlib import Path
import importlib, warnings
import os, sys, time, numpy as np
if sys.version_info.major == 2: # Python 2.x
from StringIO import StringIO as BIO
else: # Python 3.x
from io import BytesIO as BIO
if importlib.util.find_spec("tensorflow"):
import tensorflow as tf
class PrintLogger(object):
def __init__(self):
"""Create a summary writer logging to log_dir."""
self.name = "PrintLogger"
def log(self, string):
print(string)
def close(self):
print("-" * 30 + " close printer " + "-" * 30)
class Logger(object):
def __init__(self, log_dir, seed, create_model_dir=True, use_tf=False):
"""Create a summary writer logging to log_dir."""
self.seed = int(seed)
self.log_dir = Path(log_dir)
self.model_dir = Path(log_dir) / "checkpoint"
self.log_dir.mkdir(parents=True, exist_ok=True)
if create_model_dir:
self.model_dir.mkdir(parents=True, exist_ok=True)
# self.meta_dir.mkdir(mode=0o775, parents=True, exist_ok=True)
self.use_tf = bool(use_tf)
self.tensorboard_dir = self.log_dir / (
"tensorboard-{:}".format(time.strftime("%d-%h", time.gmtime(time.time())))
)
# self.tensorboard_dir = self.log_dir / ('tensorboard-{:}'.format(time.strftime( '%d-%h-at-%H:%M:%S', time.gmtime(time.time()) )))
self.logger_path = self.log_dir / "seed-{:}-T-{:}.log".format(
self.seed, time.strftime("%d-%h-at-%H-%M-%S", time.gmtime(time.time()))
)
self.logger_file = open(self.logger_path, "w")
if self.use_tf:
self.tensorboard_dir.mkdir(mode=0o775, parents=True, exist_ok=True)
self.writer = tf.summary.FileWriter(str(self.tensorboard_dir))
else:
self.writer = None
def __repr__(self):
return "{name}(dir={log_dir}, use-tf={use_tf}, writer={writer})".format(
name=self.__class__.__name__, **self.__dict__
)
def path(self, mode):
valids = ("model", "best", "info", "log", None)
if mode is None:
return self.log_dir
elif mode == "model":
return self.model_dir / "seed-{:}-basic.pth".format(self.seed)
elif mode == "best":
return self.model_dir / "seed-{:}-best.pth".format(self.seed)
elif mode == "info":
return self.log_dir / "seed-{:}-last-info.pth".format(self.seed)
elif mode == "log":
return self.log_dir
else:
raise TypeError("Unknow mode = {:}, valid modes = {:}".format(mode, valids))
def extract_log(self):
return self.logger_file
def close(self):
self.logger_file.close()
if self.writer is not None:
self.writer.close()
def log(self, string, save=True, stdout=False):
if stdout:
sys.stdout.write(string)
sys.stdout.flush()
else:
print(string)
if save:
self.logger_file.write("{:}\n".format(string))
self.logger_file.flush()
def scalar_summary(self, tags, values, step):
"""Log a scalar variable."""
if not self.use_tf:
warnings.warn("Do set use-tensorflow installed but call scalar_summary")
else:
assert isinstance(tags, list) == isinstance(
values, list
), "Type : {:} vs {:}".format(type(tags), type(values))
if not isinstance(tags, list):
tags, values = [tags], [values]
for tag, value in zip(tags, values):
summary = tf.Summary(
value=[tf.Summary.Value(tag=tag, simple_value=value)]
)
self.writer.add_summary(summary, step)
self.writer.flush()
def image_summary(self, tag, images, step):
"""Log a list of images."""
import scipy
if not self.use_tf:
warnings.warn("Do set use-tensorflow installed but call scalar_summary")
return
img_summaries = []
for i, img in enumerate(images):
# Write the image to a string
try:
s = StringIO()
except:
s = BytesIO()
scipy.misc.toimage(img).save(s, format="png")
# Create an Image object
img_sum = tf.Summary.Image(
encoded_image_string=s.getvalue(),
height=img.shape[0],
width=img.shape[1],
)
# Create a Summary value
img_summaries.append(
tf.Summary.Value(tag="{}/{}".format(tag, i), image=img_sum)
)
# Create and write Summary
summary = tf.Summary(value=img_summaries)
self.writer.add_summary(summary, step)
self.writer.flush()
def histo_summary(self, tag, values, step, bins=1000):
"""Log a histogram of the tensor of values."""
if not self.use_tf:
raise ValueError("Do not have tensorflow")
import tensorflow as tf
# Create a histogram using numpy
counts, bin_edges = np.histogram(values, bins=bins)
# Fill the fields of the histogram proto
hist = tf.HistogramProto()
hist.min = float(np.min(values))
hist.max = float(np.max(values))
hist.num = int(np.prod(values.shape))
hist.sum = float(np.sum(values))
hist.sum_squares = float(np.sum(values ** 2))
# Drop the start of the first bin
bin_edges = bin_edges[1:]
# Add bin edges and counts
for edge in bin_edges:
hist.bucket_limit.append(edge)
for c in counts:
hist.bucket.append(c)
# Create and write Summary
summary = tf.Summary(value=[tf.Summary.Value(tag=tag, histo=hist)])
self.writer.add_summary(summary, step)
self.writer.flush()

120
xautodl/log_utils/meter.py Normal file
View File

@@ -0,0 +1,120 @@
import numpy as np
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0.0
self.avg = 0.0
self.sum = 0.0
self.count = 0.0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def __repr__(self):
return "{name}(val={val}, avg={avg}, count={count})".format(
name=self.__class__.__name__, **self.__dict__
)
class RecorderMeter(object):
"""Computes and stores the minimum loss value and its epoch index"""
def __init__(self, total_epoch):
self.reset(total_epoch)
def reset(self, total_epoch):
assert total_epoch > 0, "total_epoch should be greater than 0 vs {:}".format(
total_epoch
)
self.total_epoch = total_epoch
self.current_epoch = 0
self.epoch_losses = np.zeros(
(self.total_epoch, 2), dtype=np.float32
) # [epoch, train/val]
self.epoch_losses = self.epoch_losses - 1
self.epoch_accuracy = np.zeros(
(self.total_epoch, 2), dtype=np.float32
) # [epoch, train/val]
self.epoch_accuracy = self.epoch_accuracy
def update(self, idx, train_loss, train_acc, val_loss, val_acc):
assert (
idx >= 0 and idx < self.total_epoch
), "total_epoch : {} , but update with the {} index".format(
self.total_epoch, idx
)
self.epoch_losses[idx, 0] = train_loss
self.epoch_losses[idx, 1] = val_loss
self.epoch_accuracy[idx, 0] = train_acc
self.epoch_accuracy[idx, 1] = val_acc
self.current_epoch = idx + 1
return self.max_accuracy(False) == self.epoch_accuracy[idx, 1]
def max_accuracy(self, istrain):
if self.current_epoch <= 0:
return 0
if istrain:
return self.epoch_accuracy[: self.current_epoch, 0].max()
else:
return self.epoch_accuracy[: self.current_epoch, 1].max()
def plot_curve(self, save_path):
import matplotlib
matplotlib.use("agg")
import matplotlib.pyplot as plt
title = "the accuracy/loss curve of train/val"
dpi = 100
width, height = 1600, 1000
legend_fontsize = 10
figsize = width / float(dpi), height / float(dpi)
fig = plt.figure(figsize=figsize)
x_axis = np.array([i for i in range(self.total_epoch)]) # epochs
y_axis = np.zeros(self.total_epoch)
plt.xlim(0, self.total_epoch)
plt.ylim(0, 100)
interval_y = 5
interval_x = 5
plt.xticks(np.arange(0, self.total_epoch + interval_x, interval_x))
plt.yticks(np.arange(0, 100 + interval_y, interval_y))
plt.grid()
plt.title(title, fontsize=20)
plt.xlabel("the training epoch", fontsize=16)
plt.ylabel("accuracy", fontsize=16)
y_axis[:] = self.epoch_accuracy[:, 0]
plt.plot(x_axis, y_axis, color="g", linestyle="-", label="train-accuracy", lw=2)
plt.legend(loc=4, fontsize=legend_fontsize)
y_axis[:] = self.epoch_accuracy[:, 1]
plt.plot(x_axis, y_axis, color="y", linestyle="-", label="valid-accuracy", lw=2)
plt.legend(loc=4, fontsize=legend_fontsize)
y_axis[:] = self.epoch_losses[:, 0]
plt.plot(
x_axis, y_axis * 50, color="g", linestyle=":", label="train-loss-x50", lw=2
)
plt.legend(loc=4, fontsize=legend_fontsize)
y_axis[:] = self.epoch_losses[:, 1]
plt.plot(
x_axis, y_axis * 50, color="y", linestyle=":", label="valid-loss-x50", lw=2
)
plt.legend(loc=4, fontsize=legend_fontsize)
if save_path is not None:
fig.savefig(save_path, dpi=dpi, bbox_inches="tight")
print("---- save figure {} into {}".format(title, save_path))
plt.close(fig)

View File

@@ -0,0 +1,21 @@
#####################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 #
#####################################################
import pickle
from pathlib import Path
def pickle_save(obj, path):
file_path = Path(path)
file_dir = file_path.parent
file_dir.mkdir(parents=True, exist_ok=True)
with file_path.open("wb") as f:
pickle.dump(obj, f)
def pickle_load(path):
if not Path(path).exists():
raise ValueError("{:} does not exists".format(path))
with Path(path).open("rb") as f:
data = pickle.load(f)
return data

View File

@@ -0,0 +1,49 @@
#####################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 #
#####################################################
import time, sys
import numpy as np
def time_for_file():
ISOTIMEFORMAT = "%d-%h-at-%H-%M-%S"
return "{:}".format(time.strftime(ISOTIMEFORMAT, time.gmtime(time.time())))
def time_string():
ISOTIMEFORMAT = "%Y-%m-%d %X"
string = "[{:}]".format(time.strftime(ISOTIMEFORMAT, time.gmtime(time.time())))
return string
def time_string_short():
ISOTIMEFORMAT = "%Y%m%d"
string = "{:}".format(time.strftime(ISOTIMEFORMAT, time.gmtime(time.time())))
return string
def time_print(string, is_print=True):
if is_print:
print("{} : {}".format(time_string(), string))
def convert_secs2time(epoch_time, return_str=False):
need_hour = int(epoch_time / 3600)
need_mins = int((epoch_time - 3600 * need_hour) / 60)
need_secs = int(epoch_time - 3600 * need_hour - 60 * need_mins)
if return_str:
str = "[{:02d}:{:02d}:{:02d}]".format(need_hour, need_mins, need_secs)
return str
else:
return need_hour, need_mins, need_secs
def print_log(print_string, log):
# if isinstance(log, Logger): log.log('{:}'.format(print_string))
if hasattr(log, "log"):
log.log("{:}".format(print_string))
else:
print("{:}".format(print_string))
if log is not None:
log.write("{:}\n".format(print_string))
log.flush()