Re-org GeMOSA codes

This commit is contained in:
D-X-Y
2021-05-27 11:17:57 +08:00
parent a507f8dd94
commit 8961215416
8 changed files with 82 additions and 162 deletions

View File

@@ -4,6 +4,7 @@
from .math_base_funcs import LinearFunc, QuadraticFunc, CubicFunc, QuarticFunc
from .math_dynamic_funcs import DynamicLinearFunc
from .math_dynamic_funcs import DynamicQuadraticFunc
from .math_dynamic_funcs import DynamicSinQuadraticFunc
from .math_adv_funcs import ConstantFunc
from .math_adv_funcs import ComposedSinFunc, ComposedCosFunc
from .math_dynamic_generator import GaussianDGenerator

View File

@@ -5,9 +5,6 @@ import math
import abc
import copy
import numpy as np
from typing import Optional
import torch
import torch.utils.data as data
from .math_base_funcs import FitFunc
@@ -68,10 +65,11 @@ class DynamicQuadraticFunc(DynamicFunc):
def __init__(self, params=None):
super(DynamicQuadraticFunc, self).__init__(3, params)
def __call__(self, x, timestamp=None):
def __call__(
self,
x,
):
self.check_valid()
if timestamp is None:
timestamp = self._timestamp
a = self._params[0](timestamp)
b = self._params[1](timestamp)
c = self._params[2](timestamp)
@@ -80,10 +78,38 @@ class DynamicQuadraticFunc(DynamicFunc):
return a * x * x + b * x + c
def __repr__(self):
return "{name}({a} * x^2 + {b} * x + {c}, timestamp={timestamp})".format(
return "{name}({a} * x^2 + {b} * x + {c})".format(
name=self.__class__.__name__,
a=self._params[0],
b=self._params[1],
c=self._params[2],
)
class DynamicSinQuadraticFunc(DynamicFunc):
"""The dynamic quadratic function that outputs f(x) = sin(a * x^2 + b * x + c).
The a, b, and c is a function of timestamp.
"""
def __init__(self, params=None):
super(DynamicSinQuadraticFunc, self).__init__(3, params)
def __call__(
self,
x,
):
self.check_valid()
a = self._params[0](timestamp)
b = self._params[1](timestamp)
c = self._params[2](timestamp)
convert_fn = lambda x: x[-1] if isinstance(x, (tuple, list)) else x
a, b, c = convert_fn(a), convert_fn(b), convert_fn(c)
return math.sin(a * x * x + b * x + c)
def __repr__(self):
return "{name}({a} * x^2 + {b} * x + {c})".format(
name=self.__class__.__name__,
a=self._params[0],
b=self._params[1],
c=self._params[2],
timestamp=self._timestamp,
)

View File

@@ -3,7 +3,7 @@ from .synthetic_utils import TimeStamp
from .synthetic_env import SyntheticDEnv
from .math_core import LinearFunc
from .math_core import DynamicLinearFunc
from .math_core import DynamicQuadraticFunc
from .math_core import DynamicQuadraticFunc, DynamicSinQuadraticFunc
from .math_core import (
ConstantFunc,
ComposedSinFunc as SinFunc,
@@ -63,9 +63,9 @@ def get_synthetic_env(total_timestamp=1600, num_per_task=1000, mode=None, versio
time_generator = TimeStamp(
min_timestamp=0, max_timestamp=max_time, num=total_timestamp, mode=mode
)
oracle_map = DynamicQuadraticFunc(
oracle_map = DynamicSinQuadraticFunc(
params={
0: LinearFunc(params={0: 0.1, 1: 0}), # 0.1 * t
0: CosFunc(params={0: 0.5, 1: 1, 2: 1}), # 0.5 cos(t) + 1
1: SinFunc(params={0: 1, 1: 1, 2: 0}), # sin(t)
2: ConstantFunc(0),
}

View File

@@ -1,6 +1,3 @@
import math
import random
from typing import List, Optional, Dict
import torch
import torch.utils.data as data
@@ -43,6 +40,18 @@ class SyntheticDEnv(data.Dataset):
self._oracle_map = oracle_map
self._num_per_task = num_per_task
self._noise = noise
self._meta_info = dict()
def set_regression(self):
self._meta_info["task"] = "regression"
def set_classification(self, num_classes):
self._meta_info["task"] = "classification"
self._meta_info["num_classes"] = int(num_classes)
@property
def meta_info(self):
return self._meta_info
@property
def min_timestamp(self):
@@ -60,13 +69,6 @@ class SyntheticDEnv(data.Dataset):
def mode(self):
return self._time_generator.mode
def random_timestamp(self, min_timestamp=None, max_timestamp=None):
if min_timestamp is None:
min_timestamp = self.min_timestamp
if max_timestamp is None:
max_timestamp = self.max_timestamp
return random.random() * (max_timestamp - min_timestamp) + min_timestamp
def get_timestamp(self, index):
if index is None:
timestamps = []