Update xlayers

This commit is contained in:
D-X-Y
2021-05-22 23:04:24 +08:00
parent 5b09f059fd
commit 8109ed166a
6 changed files with 104 additions and 33 deletions

View File

@@ -31,12 +31,15 @@ class SuperSelfAttention(SuperModule):
qkv_bias: BoolSpaceType = False,
attn_drop: Optional[float] = None,
proj_drop: Optional[float] = None,
use_mask=False,
):
super(SuperSelfAttention, self).__init__()
self._input_dim = input_dim
self._proj_dim = proj_dim
self._num_heads = num_heads
self._qkv_bias = qkv_bias
self._use_mask = use_mask
self._infinity = 1e9
self.q_fc = SuperLinear(input_dim, input_dim, bias=qkv_bias)
self.k_fc = SuperLinear(input_dim, input_dim, bias=qkv_bias)
@@ -113,6 +116,12 @@ class SuperSelfAttention(SuperModule):
.permute(0, 2, 1, 3)
)
attn_v1 = (q_v1 @ k_v1.transpose(-2, -1)) * math.sqrt(head_dim)
if self._use_mask:
mask = torch.triu(
torch.ones((N, N), dtype=torch.bool, device=input.device), 1
)
mask = torch.unsqueeze(torch.unsqueeze(mask, dim=0), dim=0)
attn_v1 = attn_v1.masked_fill(mask, -self._infinity)
attn_v1 = attn_v1.softmax(dim=-1) # B * #head * N * N
attn_v1 = self.attn_drop(attn_v1)
feats_v1 = (attn_v1 @ v_v1).permute(0, 2, 1, 3).reshape(B, N, -1)
@@ -147,8 +156,14 @@ class SuperSelfAttention(SuperModule):
return outs
def extra_repr(self) -> str:
return "input_dim={:}, proj_dim={:}, num_heads={:}".format(
self._input_dim, self._proj_dim, self._num_heads
return (
"input_dim={:}, proj_dim={:}, num_heads={:}, mask={:}, infinity={:}".format(
self._input_dim,
self._proj_dim,
self._num_heads,
self._use_mask,
self._infinity,
)
)
@@ -181,6 +196,7 @@ class SuperQKVAttention(SuperModule):
self.attn_drop = nn.Dropout(attn_drop or 0.0)
self.proj = SuperLinear(proj_dim, proj_dim)
self.proj_drop = nn.Dropout(proj_drop or 0.0)
self._infinity = 1e9
@property
def num_heads(self):
@@ -232,7 +248,9 @@ class SuperQKVAttention(SuperModule):
if "proj" in abstract_child:
self.proj.apply_candidate(abstract_child["proj"])
def forward_qkv(self, q_tensor, k_tensor, v_tensor, num_head: int) -> torch.Tensor:
def forward_qkv(
self, q_tensor, k_tensor, v_tensor, num_head: int, mask=None
) -> torch.Tensor:
q = self.q_fc(q_tensor)
B, N, C = q.shape
@@ -257,6 +275,9 @@ class SuperQKVAttention(SuperModule):
)
# compute the attention map
attn_v1 = (q_v1 @ k_v1.transpose(-2, -1)) * math.sqrt(head_dim)
if mask is not None:
mask = torch.unsqueeze(mask, dim=1)
attn_v1 = attn_v1.masked_fill(mask, -self._infinity)
attn_v1 = attn_v1.softmax(dim=-1) # B * #head * N * S
attn_v1 = self.attn_drop(attn_v1)
@@ -281,26 +302,29 @@ class SuperQKVAttention(SuperModule):
feats = torch.cat([feats_v1, feats_v2], dim=-1)
return feats
def forward_candidate(self, q_tensor, k_tensor, v_tensor) -> torch.Tensor:
def forward_candidate(
self, q_tensor, k_tensor, v_tensor, mask=None
) -> torch.Tensor:
# check the num_heads:
if not spaces.is_determined(self._num_heads):
num_heads = self.abstract_child["_num_heads"].value
else:
num_heads = spaces.get_determined_value(self._num_heads)
feats = self.forward_qkv(q_tensor, k_tensor, v_tensor, num_heads)
feats = self.forward_qkv(q_tensor, k_tensor, v_tensor, num_heads, mask)
outs = self.proj(feats)
outs = self.proj_drop(outs)
return outs
def forward_raw(self, q_tensor, k_tensor, v_tensor) -> torch.Tensor:
feats = self.forward_qkv(q_tensor, k_tensor, v_tensor, self.num_heads)
def forward_raw(self, q_tensor, k_tensor, v_tensor, mask=None) -> torch.Tensor:
feats = self.forward_qkv(q_tensor, k_tensor, v_tensor, self.num_heads, mask)
outs = self.proj(feats)
outs = self.proj_drop(outs)
return outs
def extra_repr(self) -> str:
return "input_dim={:}, proj_dim={:}, num_heads={:}".format(
return "input_dim={:}, proj_dim={:}, num_heads={:}, infinity={:}".format(
(self.in_q_dim, self.in_k_dim, self.in_v_dim),
self._proj_dim,
self._num_heads,
self._infinity,
)

View File

@@ -117,16 +117,32 @@ class SuperModule(abc.ABC, nn.Module):
else:
return False, self._meta_info[BEST_SCORE_KEY]
def load_best(self):
if BEST_DIR_KEY not in self._meta_info or BEST_SCORE_KEY not in self._meta_info:
raise ValueError("Please call save_best at first")
best_save_path = os.path.join(
self._meta_info[BEST_DIR_KEY],
"best-{:}.pth".format(self.__class__.__name__),
)
def load_best(self, best_save_path=None):
if best_save_path is None:
if (
BEST_DIR_KEY not in self._meta_info
or BEST_SCORE_KEY not in self._meta_info
):
raise ValueError("Please call save_best at first")
best_save_name = self._meta_info.get(
BEST_NAME_KEY, "best-{:}.pth".format(self.__class__.__name__)
)
best_save_path = os.path.join(self._meta_info[BEST_DIR_KEY], best_save_name)
state_dict = torch.load(best_save_path)
self.load_state_dict(state_dict)
def has_best(self, best_name=None):
if BEST_DIR_KEY not in self._meta_info:
raise ValueError("Please set BEST_DIR_KEY at first")
if best_name is None:
best_save_name = self._meta_info.get(
BEST_NAME_KEY, "best-{:}.pth".format(self.__class__.__name__)
)
else:
best_save_name = best_name
best_save_path = os.path.join(self._meta_info[BEST_DIR_KEY], best_save_name)
return os.path.exists(best_save_path)
@property
def abstract_search_space(self):
raise NotImplementedError

View File

@@ -45,6 +45,7 @@ class SuperTransformerEncoderLayer(SuperModule):
norm_affine: bool = True,
act_layer: Callable[[], nn.Module] = nn.GELU,
order: LayerOrder = LayerOrder.PreNorm,
use_mask: bool = False,
):
super(SuperTransformerEncoderLayer, self).__init__()
mha = SuperSelfAttention(
@@ -54,6 +55,7 @@ class SuperTransformerEncoderLayer(SuperModule):
qkv_bias=qkv_bias,
attn_drop=drop,
proj_drop=drop,
use_mask=use_mask,
)
mlp = SuperMLPv2(
d_model,