Prototype generic nas model (cont.).
This commit is contained in:
@@ -242,6 +242,16 @@ class PartAwareOp(nn.Module):
|
||||
return outputs
|
||||
|
||||
|
||||
def drop_path(x, drop_prob):
|
||||
if drop_prob > 0.:
|
||||
keep_prob = 1. - drop_prob
|
||||
mask = x.new_zeros(x.size(0), 1, 1, 1)
|
||||
mask = mask.bernoulli_(keep_prob)
|
||||
x = torch.div(x, keep_prob)
|
||||
x.mul_(mask)
|
||||
return x
|
||||
|
||||
|
||||
# Searching for A Robust Neural Architecture in Four GPU Hours
|
||||
class GDAS_Reduction_Cell(nn.Module):
|
||||
|
||||
|
@@ -6,7 +6,7 @@ import torch.nn as nn
|
||||
from copy import deepcopy
|
||||
from typing import Text
|
||||
|
||||
from ..cell_operations import ResNetBasicblock
|
||||
from ..cell_operations import ResNetBasicblock, drop_path
|
||||
from .search_cells import NAS201SearchCell as SearchCell
|
||||
from .genotypes import Structure
|
||||
from .search_model_enas_utils import Controller
|
||||
@@ -48,6 +48,7 @@ class GenericNAS201Model(nn.Module):
|
||||
self.dynamic_cell = None
|
||||
self._tau = None
|
||||
self._algo = None
|
||||
self._drop_path = None
|
||||
|
||||
def set_algo(self, algo: Text):
|
||||
# used for searching
|
||||
@@ -62,7 +63,7 @@ class GenericNAS201Model(nn.Module):
|
||||
|
||||
def set_cal_mode(self, mode, dynamic_cell=None):
|
||||
assert mode in ['gdas', 'enas', 'urs', 'joint', 'select', 'dynamic']
|
||||
self.mode = mode
|
||||
self._mode = mode
|
||||
if mode == 'dynamic': self.dynamic_cell = deepcopy(dynamic_cell)
|
||||
else : self.dynamic_cell = None
|
||||
|
||||
@@ -70,6 +71,10 @@ class GenericNAS201Model(nn.Module):
|
||||
def mode(self):
|
||||
return self._mode
|
||||
|
||||
@property
|
||||
def drop_path(self):
|
||||
return self._drop_path
|
||||
|
||||
@property
|
||||
def weights(self):
|
||||
xlist = list(self._stem.parameters())
|
||||
@@ -100,6 +105,15 @@ class GenericNAS201Model(nn.Module):
|
||||
string += '\n {:02d}/{:02d} :: {:}'.format(i, len(self._cells), cell.extra_repr())
|
||||
return string
|
||||
|
||||
def show_alphas(self):
|
||||
with torch.no_grad():
|
||||
if self._algo == 'enas':
|
||||
import pdb; pdb.set_trace()
|
||||
print('-')
|
||||
else:
|
||||
return 'arch-parameters :\n{:}'.format( nn.functional.softmax(self.arch_parameters, dim=-1).cpu() )
|
||||
|
||||
|
||||
def extra_repr(self):
|
||||
return ('{name}(C={_C}, Max-Nodes={_max_nodes}, N={_layerN}, L={_Layer}, alg={_algo})'.format(name=self.__class__.__name__, **self.__dict__))
|
||||
|
||||
@@ -112,7 +126,7 @@ class GenericNAS201Model(nn.Module):
|
||||
node_str = '{:}<-{:}'.format(i, j)
|
||||
with torch.no_grad():
|
||||
weights = self.arch_parameters[ self.edge2index[node_str] ]
|
||||
op_name = self.op_names[ weights.argmax().item() ]
|
||||
op_name = self._op_names[ weights.argmax().item() ]
|
||||
xlist.append((op_name, j))
|
||||
genotypes.append(tuple(xlist))
|
||||
return Structure(genotypes)
|
||||
@@ -126,11 +140,11 @@ class GenericNAS201Model(nn.Module):
|
||||
for j in range(i):
|
||||
node_str = '{:}<-{:}'.format(i, j)
|
||||
if use_random:
|
||||
op_name = random.choice(self.op_names)
|
||||
op_name = random.choice(self._op_names)
|
||||
else:
|
||||
weights = alphas_cpu[ self.edge2index[node_str] ]
|
||||
op_index = torch.multinomial(weights, 1).item()
|
||||
op_name = self.op_names[ op_index ]
|
||||
op_name = self._op_names[ op_index ]
|
||||
xlist.append((op_name, j))
|
||||
genotypes.append(tuple(xlist))
|
||||
return Structure(genotypes)
|
||||
@@ -142,17 +156,20 @@ class GenericNAS201Model(nn.Module):
|
||||
for i, node_info in enumerate(arch.nodes):
|
||||
for op, xin in node_info:
|
||||
node_str = '{:}<-{:}'.format(i+1, xin)
|
||||
op_index = self.op_names.index(op)
|
||||
op_index = self._op_names.index(op)
|
||||
select_logits.append( logits[self.edge2index[node_str], op_index] )
|
||||
return sum(select_logits).item()
|
||||
|
||||
def return_topK(self, K):
|
||||
archs = Structure.gen_all(self.op_names, self._max_nodes, False)
|
||||
def return_topK(self, K, use_random=False):
|
||||
archs = Structure.gen_all(self._op_names, self._max_nodes, False)
|
||||
pairs = [(self.get_log_prob(arch), arch) for arch in archs]
|
||||
if K < 0 or K >= len(archs): K = len(archs)
|
||||
sorted_pairs = sorted(pairs, key=lambda x: -x[0])
|
||||
return_pairs = [sorted_pairs[_][1] for _ in range(K)]
|
||||
return return_pairs
|
||||
if use_random:
|
||||
return random.sample(archs, K)
|
||||
else:
|
||||
sorted_pairs = sorted(pairs, key=lambda x: -x[0])
|
||||
return_pairs = [sorted_pairs[_][1] for _ in range(K)]
|
||||
return return_pairs
|
||||
|
||||
def normalize_archp(self):
|
||||
if self.mode == 'gdas':
|
||||
|
Reference in New Issue
Block a user