Prototype generic nas model (cont.).

This commit is contained in:
D-X-Y
2020-07-18 22:49:35 +00:00
parent 68f9d037eb
commit 7ca2ca70b4
3 changed files with 115 additions and 52 deletions

View File

@@ -4,6 +4,14 @@
# python ./exps/algos-v2/search-cell.py --dataset cifar10 --data_path $TORCH_HOME/cifar.python --algo darts-v1 --rand_seed 1
# python ./exps/algos-v2/search-cell.py --dataset cifar100 --data_path $TORCH_HOME/cifar.python --algo darts-v1
# python ./exps/algos-v2/search-cell.py --dataset ImageNet16-120 --data_path $TORCH_HOME/cifar.python/ImageNet16 --algo darts-v1
####
# python ./exps/algos-v2/search-cell.py --dataset cifar10 --data_path $TORCH_HOME/cifar.python --algo darts-v2 --rand_seed 1
# python ./exps/algos-v2/search-cell.py --dataset cifar100 --data_path $TORCH_HOME/cifar.python --algo darts-v2
# python ./exps/algos-v2/search-cell.py --dataset ImageNet16-120 --data_path $TORCH_HOME/cifar.python/ImageNet16 --algo darts-v2
####
# python ./exps/algos-v2/search-cell.py --dataset cifar10 --data_path $TORCH_HOME/cifar.python --algo gdas --rand_seed 1
# python ./exps/algos-v2/search-cell.py --dataset cifar100 --data_path $TORCH_HOME/cifar.python --algo gdas
# python ./exps/algos-v2/search-cell.py --dataset ImageNet16-120 --data_path $TORCH_HOME/cifar.python/ImageNet16 --algo gdas
######################################################################################
import os, sys, time, random, argparse
import numpy as np
@@ -22,7 +30,7 @@ from models import get_cell_based_tiny_net, get_search_spaces
from nas_201_api import NASBench201API as API
def search_func(xloader, network, criterion, scheduler, w_optimizer, a_optimizer, epoch_str, print_freq, logger):
def search_func(xloader, network, criterion, scheduler, w_optimizer, a_optimizer, epoch_str, print_freq, algo, logger):
data_time, batch_time = AverageMeter(), AverageMeter()
base_losses, base_top1, base_top5 = AverageMeter(), AverageMeter(), AverageMeter()
arch_losses, arch_top1, arch_top5 = AverageMeter(), AverageMeter(), AverageMeter()
@@ -30,15 +38,26 @@ def search_func(xloader, network, criterion, scheduler, w_optimizer, a_optimizer
network.train()
for step, (base_inputs, base_targets, arch_inputs, arch_targets) in enumerate(xloader):
scheduler.update(None, 1.0 * step / len(xloader))
base_inputs = base_inputs.cuda(non_blocking=True)
arch_inputs = arch_inputs.cuda(non_blocking=True)
base_targets = base_targets.cuda(non_blocking=True)
arch_targets = arch_targets.cuda(non_blocking=True)
# measure data loading time
data_time.update(time.time() - end)
# update the weights
sampled_arch = network.module.dync_genotype(True)
network.module.set_cal_mode('dynamic', sampled_arch)
#network.module.set_cal_mode( 'urs' )
# Update the weights
if algo == 'setn':
sampled_arch = network.dync_genotype(True)
network.set_cal_mode('dynamic', sampled_arch)
elif algo == 'gdas':
network.set_cal_mode('gdas', None)
elif algo.startswith('darts'):
network.set_cal_mode('joint', None)
elif algo == 'random':
network.set_cal_mode('urs', None)
else:
raise ValueError('Invalid algo name : {:}'.format(algo))
network.zero_grad()
_, logits = network(base_inputs)
base_loss = criterion(logits, base_targets)
@@ -51,7 +70,16 @@ def search_func(xloader, network, criterion, scheduler, w_optimizer, a_optimizer
base_top5.update (base_prec5.item(), base_inputs.size(0))
# update the architecture-weight
network.module.set_cal_mode( 'joint' )
if algo == 'setn':
network.set_cal_mode('joint')
elif algo == 'gdas':
network.set_cal_mode('gdas', None)
elif algo.startswith('darts'):
network.set_cal_mode('joint', None)
elif algo == 'random':
network.set_cal_mode('urs', None)
else:
raise ValueError('Invalid algo name : {:}'.format(algo))
network.zero_grad()
_, logits = network(arch_inputs)
arch_loss = criterion(logits, arch_targets)
@@ -73,36 +101,38 @@ def search_func(xloader, network, criterion, scheduler, w_optimizer, a_optimizer
Wstr = 'Base [Loss {loss.val:.3f} ({loss.avg:.3f}) Prec@1 {top1.val:.2f} ({top1.avg:.2f}) Prec@5 {top5.val:.2f} ({top5.avg:.2f})]'.format(loss=base_losses, top1=base_top1, top5=base_top5)
Astr = 'Arch [Loss {loss.val:.3f} ({loss.avg:.3f}) Prec@1 {top1.val:.2f} ({top1.avg:.2f}) Prec@5 {top5.val:.2f} ({top5.avg:.2f})]'.format(loss=arch_losses, top1=arch_top1, top5=arch_top5)
logger.log(Sstr + ' ' + Tstr + ' ' + Wstr + ' ' + Astr)
#print (nn.functional.softmax(network.module.arch_parameters, dim=-1))
#print (network.module.arch_parameters)
return base_losses.avg, base_top1.avg, base_top5.avg, arch_losses.avg, arch_top1.avg, arch_top5.avg
def get_best_arch(xloader, network, n_samples):
def get_best_arch(xloader, network, n_samples, algo):
with torch.no_grad():
network.eval()
archs, valid_accs = network.module.return_topK(n_samples), []
#print ('obtain the top-{:} architectures'.format(n_samples))
if algo == 'random':
archs, valid_accs = network.return_topK(n_samples, True), []
elif algo == 'setn':
archs, valid_accs = network.return_topK(n_samples, False), []
elif algo.startswith('darts') or algo == 'gdas':
arch = network.genotype
archs, valid_accs = [arch], []
else:
raise ValueError('Invalid algorithm name : {:}'.format(algo))
loader_iter = iter(xloader)
for i, sampled_arch in enumerate(archs):
network.module.set_cal_mode('dynamic', sampled_arch)
network.set_cal_mode('dynamic', sampled_arch)
try:
inputs, targets = next(loader_iter)
except:
loader_iter = iter(xloader)
inputs, targets = next(loader_iter)
_, logits = network(inputs)
_, logits = network(inputs.cuda(non_blocking=True))
val_top1, val_top5 = obtain_accuracy(logits.cpu().data, targets.data, topk=(1, 5))
valid_accs.append(val_top1.item())
best_idx = np.argmax(valid_accs)
best_arch, best_valid_acc = archs[best_idx], valid_accs[best_idx]
return best_arch, best_valid_acc
def valid_func(xloader, network, criterion):
def valid_func(xloader, network, criterion, algo, logger):
data_time, batch_time = AverageMeter(), AverageMeter()
arch_losses, arch_top1, arch_top5 = AverageMeter(), AverageMeter(), AverageMeter()
end = time.time()
@@ -113,7 +143,7 @@ def valid_func(xloader, network, criterion):
# measure data loading time
data_time.update(time.time() - end)
# prediction
_, logits = network(arch_inputs)
_, logits = network(arch_inputs.cuda(non_blocking=True))
arch_loss = criterion(logits, arch_targets)
# record
arch_prec1, arch_prec5 = obtain_accuracy(logits.data, arch_targets.data, topk=(1, 5))
@@ -166,7 +196,6 @@ def main(xargs):
logger.log('{:} create API = {:} done'.format(time_string(), api))
last_info, model_base_path, model_best_path = logger.path('info'), logger.path('model'), logger.path('best')
# network, criterion = torch.nn.DataParallel(search_model).cuda(), criterion.cuda()
network, criterion = search_model.cuda(), criterion.cuda() # use a single GPU
last_info, model_base_path, model_best_path = logger.path('info'), logger.path('model'), logger.path('best')
@@ -185,7 +214,7 @@ def main(xargs):
logger.log("=> loading checkpoint of the last-info '{:}' start with {:}-th epoch.".format(last_info, start_epoch))
else:
logger.log("=> do not find the last-info file : {:}".format(last_info))
start_epoch, valid_accuracies, genotypes = 0, {'best': -1}, {}
start_epoch, valid_accuracies, genotypes = 0, {'best': -1}, {-1: network.return_topK(1, True)[0]}
# start training
start_time, search_time, epoch_time, total_epoch = time.time(), AverageMeter(), AverageMeter(), config.epochs + config.warmup
@@ -195,28 +224,25 @@ def main(xargs):
epoch_str = '{:03d}-{:03d}'.format(epoch, total_epoch)
logger.log('\n[Search the {:}-th epoch] {:}, LR={:}'.format(epoch_str, need_time, min(w_scheduler.get_lr())))
import pdb; pdb.set_trace()
search_w_loss, search_w_top1, search_w_top5, search_a_loss, search_a_top1, search_a_top5 \
= search_func(search_loader, network, criterion, w_scheduler, w_optimizer, a_optimizer, epoch_str, xargs.print_freq, logger)
= search_func(search_loader, network, criterion, w_scheduler, w_optimizer, a_optimizer, epoch_str, xargs.print_freq, xargs.algo, logger)
search_time.update(time.time() - start_time)
logger.log('[{:}] search [base] : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%, time-cost={:.1f} s'.format(epoch_str, search_w_loss, search_w_top1, search_w_top5, search_time.sum))
logger.log('[{:}] search [arch] : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%'.format(epoch_str, search_a_loss, search_a_top1, search_a_top5))
genotype, temp_accuracy = get_best_arch(valid_loader, network, xargs.select_num)
network.module.set_cal_mode('dynamic', genotype)
valid_a_loss , valid_a_top1 , valid_a_top5 = valid_func(valid_loader, network, criterion)
genotype, temp_accuracy = get_best_arch(valid_loader, network, xargs.eval_candidate_num, xargs.algo)
if xargs.algo == 'setn':
network.set_cal_mode('dynamic', genotype)
elif xargs.algo == 'gdas':
network.set_cal_mode('gdas', None)
elif xargs.algo.startswith('darts'):
network.set_cal_mode('joint', None)
elif xargs.algo == 'random':
network.set_cal_mode('urs', None)
else:
raise ValueError('Invalid algorithm name : {:}'.format(xargs.algo))
valid_a_loss , valid_a_top1 , valid_a_top5 = valid_func(valid_loader, network, criterion, xargs.algo, logger)
logger.log('[{:}] evaluate : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}% | {:}'.format(epoch_str, valid_a_loss, valid_a_top1, valid_a_top5, genotype))
#search_model.set_cal_mode('urs')
#valid_a_loss , valid_a_top1 , valid_a_top5 = valid_func(valid_loader, network, criterion)
#logger.log('[{:}] URS---evaluate : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%'.format(epoch_str, valid_a_loss, valid_a_top1, valid_a_top5))
#search_model.set_cal_mode('joint')
#valid_a_loss , valid_a_top1 , valid_a_top5 = valid_func(valid_loader, network, criterion)
#logger.log('[{:}] JOINT-evaluate : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%'.format(epoch_str, valid_a_loss, valid_a_top1, valid_a_top5))
#search_model.set_cal_mode('select')
#valid_a_loss , valid_a_top1 , valid_a_top5 = valid_func(valid_loader, network, criterion)
#logger.log('[{:}] Selec-evaluate : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%'.format(epoch_str, valid_a_loss, valid_a_top1, valid_a_top5))
# check the best accuracy
valid_accuracies[epoch] = valid_a_top1
genotypes[epoch] = genotype
@@ -245,15 +271,25 @@ def main(xargs):
# the final post procedure : count the time
start_time = time.time()
genotype, temp_accuracy = get_best_arch(valid_loader, network, xargs.select_num)
genotype, temp_accuracy = get_best_arch(valid_loader, network, xargs.eval_candidate_num, xargs.algo)
if xargs.algo == 'setn':
network.set_cal_mode('dynamic', genotype)
elif xargs.algo == 'gdas':
network.set_cal_mode('gdas', None)
elif xargs.algo.startswith('darts'):
network.set_cal_mode('joint', None)
elif xargs.algo == 'random':
network.set_cal_mode('urs', None)
else:
raise ValueError('Invalid algorithm name : {:}'.format(xargs.algo))
search_time.update(time.time() - start_time)
network.module.set_cal_mode('dynamic', genotype)
valid_a_loss , valid_a_top1 , valid_a_top5 = valid_func(valid_loader, network, criterion)
valid_a_loss , valid_a_top1 , valid_a_top5 = valid_func(valid_loader, network, criterion, xargs.algo, logger)
logger.log('Last : the gentotype is : {:}, with the validation accuracy of {:.3f}%.'.format(genotype, valid_a_top1))
logger.log('\n' + '-'*100)
# check the performance from the architecture dataset
logger.log('SETN : run {:} epochs, cost {:.1f} s, last-geno is {:}.'.format(total_epoch, search_time.sum, genotype))
logger.log('[{:}] run {:} epochs, cost {:.1f} s, last-geno is {:}.'.format(xargs.algo, total_epoch, search_time.sum, genotype))
if api is not None: logger.log('{:}'.format(api.query_by_arch(genotype, '200') ))
logger.close()
@@ -281,7 +317,7 @@ if __name__ == '__main__':
# log
parser.add_argument('--workers', type=int, default=2, help='number of data loading workers (default: 2)')
parser.add_argument('--save_dir', type=str, default='./output/search', help='Folder to save checkpoints and log.')
parser.add_argument('--print_freq', type=int, help='print frequency (default: 200)')
parser.add_argument('--print_freq', type=int, default=200, help='print frequency (default: 200)')
parser.add_argument('--rand_seed', type=int, help='manual seed')
args = parser.parse_args()
if args.rand_seed is None or args.rand_seed < 0: args.rand_seed = random.randint(1, 100000)