Complete xlayers.rearrange
This commit is contained in:
@@ -8,10 +8,14 @@ import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
import math
|
||||
import numpy as np
|
||||
import itertools
|
||||
import functools
|
||||
from collections import OrderedDict
|
||||
from typing import Optional, Callable
|
||||
|
||||
from xautodl import spaces
|
||||
from .misc_utils import ParsedExpression
|
||||
from .misc_utils import ParsedExpression, AnonymousAxis
|
||||
from .super_module import SuperModule
|
||||
from .super_module import IntSpaceType
|
||||
from .super_module import BoolSpaceType
|
||||
@@ -31,11 +35,133 @@ class SuperReArrange(SuperModule):
|
||||
left, right = pattern.split("->")
|
||||
left = ParsedExpression(left)
|
||||
right = ParsedExpression(right)
|
||||
difference = set.symmetric_difference(left.identifiers, right.identifiers)
|
||||
if difference:
|
||||
raise ValueError(
|
||||
"Identifiers only on one side of expression (should be on both): {}".format(
|
||||
difference
|
||||
)
|
||||
)
|
||||
|
||||
import pdb
|
||||
# parsing all dimensions to find out lengths
|
||||
axis_name2known_length = OrderedDict()
|
||||
for composite_axis in left.composition:
|
||||
for axis_name in composite_axis:
|
||||
if isinstance(axis_name, AnonymousAxis):
|
||||
axis_name2known_length[axis_name] = axis_name.value
|
||||
else:
|
||||
axis_name2known_length[axis_name] = None
|
||||
for axis_name in right.identifiers:
|
||||
if axis_name not in axis_name2known_length:
|
||||
if isinstance(axis_name, AnonymousAxis):
|
||||
axis_name2known_length[axis_name] = axis_name.value
|
||||
else:
|
||||
axis_name2known_length[axis_name] = None
|
||||
|
||||
pdb.set_trace()
|
||||
print("-")
|
||||
axis_name2position = {
|
||||
name: position for position, name in enumerate(axis_name2known_length)
|
||||
}
|
||||
for elementary_axis, axis_length in axes_lengths:
|
||||
if not ParsedExpression.check_axis_name(elementary_axis):
|
||||
raise ValueError("Invalid name for an axis", elementary_axis)
|
||||
if elementary_axis not in axis_name2known_length:
|
||||
raise ValueError(
|
||||
"Axis {} is not used in transform".format(elementary_axis)
|
||||
)
|
||||
axis_name2known_length[elementary_axis] = axis_length
|
||||
|
||||
input_composite_axes = []
|
||||
# some of shapes will be inferred later - all information is prepared for faster inference
|
||||
for composite_axis in left.composition:
|
||||
known = {
|
||||
axis
|
||||
for axis in composite_axis
|
||||
if axis_name2known_length[axis] is not None
|
||||
}
|
||||
unknown = {
|
||||
axis for axis in composite_axis if axis_name2known_length[axis] is None
|
||||
}
|
||||
if len(unknown) > 1:
|
||||
raise ValueError("Could not infer sizes for {}".format(unknown))
|
||||
assert len(unknown) + len(known) == len(composite_axis)
|
||||
input_composite_axes.append(
|
||||
(
|
||||
[axis_name2position[axis] for axis in known],
|
||||
[axis_name2position[axis] for axis in unknown],
|
||||
)
|
||||
)
|
||||
|
||||
axis_position_after_reduction = {}
|
||||
for axis_name in itertools.chain(*left.composition):
|
||||
if axis_name in right.identifiers:
|
||||
axis_position_after_reduction[axis_name] = len(
|
||||
axis_position_after_reduction
|
||||
)
|
||||
|
||||
result_axes_grouping = []
|
||||
for composite_axis in right.composition:
|
||||
result_axes_grouping.append(
|
||||
[axis_name2position[axis] for axis in composite_axis]
|
||||
)
|
||||
|
||||
ordered_axis_right = list(itertools.chain(*right.composition))
|
||||
axes_permutation = tuple(
|
||||
axis_position_after_reduction[axis]
|
||||
for axis in ordered_axis_right
|
||||
if axis in left.identifiers
|
||||
)
|
||||
#
|
||||
self.input_composite_axes = input_composite_axes
|
||||
self.output_composite_axes = result_axes_grouping
|
||||
self.elementary_axes_lengths = list(axis_name2known_length.values())
|
||||
self.axes_permutation = axes_permutation
|
||||
|
||||
@functools.lru_cache(maxsize=1024)
|
||||
def reconstruct_from_shape(self, shape):
|
||||
if len(shape) != len(self.input_composite_axes):
|
||||
raise ValueError(
|
||||
"Expected {} dimensions, got {}".format(
|
||||
len(self.input_composite_axes), len(shape)
|
||||
)
|
||||
)
|
||||
axes_lengths = list(self.elementary_axes_lengths)
|
||||
for input_axis, (known_axes, unknown_axes) in enumerate(
|
||||
self.input_composite_axes
|
||||
):
|
||||
length = shape[input_axis]
|
||||
known_product = 1
|
||||
for axis in known_axes:
|
||||
known_product *= axes_lengths[axis]
|
||||
if len(unknown_axes) == 0:
|
||||
if (
|
||||
isinstance(length, int)
|
||||
and isinstance(known_product, int)
|
||||
and length != known_product
|
||||
):
|
||||
raise ValueError(
|
||||
"Shape mismatch, {} != {}".format(length, known_product)
|
||||
)
|
||||
else:
|
||||
if (
|
||||
isinstance(length, int)
|
||||
and isinstance(known_product, int)
|
||||
and length % known_product != 0
|
||||
):
|
||||
raise ValueError(
|
||||
"Shape mismatch, can't divide axis of length {} in chunks of {}".format(
|
||||
length, known_product
|
||||
)
|
||||
)
|
||||
|
||||
(unknown_axis,) = unknown_axes
|
||||
axes_lengths[unknown_axis] = length // known_product
|
||||
# at this point all axes_lengths are computed (either have values or variables, but not Nones)
|
||||
final_shape = []
|
||||
for output_axis, grouping in enumerate(self.output_composite_axes):
|
||||
lengths = [axes_lengths[elementary_axis] for elementary_axis in grouping]
|
||||
final_shape.append(int(np.prod(lengths)))
|
||||
axes_reordering = self.axes_permutation
|
||||
return axes_lengths, axes_reordering, final_shape
|
||||
|
||||
@property
|
||||
def abstract_search_space(self):
|
||||
@@ -46,10 +172,13 @@ class SuperReArrange(SuperModule):
|
||||
self.forward_raw(input)
|
||||
|
||||
def forward_raw(self, input: torch.Tensor) -> torch.Tensor:
|
||||
import pdb
|
||||
|
||||
pdb.set_trace()
|
||||
raise NotImplementedError
|
||||
init_shape, axes_reordering, final_shape = self.reconstruct_from_shape(
|
||||
tuple(input.shape)
|
||||
)
|
||||
tensor = torch.reshape(input, init_shape)
|
||||
tensor = tensor.permute(axes_reordering)
|
||||
tensor = torch.reshape(tensor, final_shape)
|
||||
return tensor
|
||||
|
||||
def extra_repr(self) -> str:
|
||||
params = repr(self._pattern)
|
||||
|
Reference in New Issue
Block a user