Update LFNA
This commit is contained in:
@@ -1,7 +1,7 @@
|
||||
#####################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.04 #
|
||||
#####################################################
|
||||
# python exps/LFNA/basic-maml.py --env_version v1 --hidden_dim 16 --inner_step 5
|
||||
# python exps/LFNA/basic-maml.py --env_version v1 --inner_step 5
|
||||
# python exps/LFNA/basic-maml.py --env_version v2
|
||||
#####################################################
|
||||
import sys, time, copy, torch, random, argparse
|
||||
@@ -20,7 +20,7 @@ from utils import split_str2indexes
|
||||
|
||||
from procedures.advanced_main import basic_train_fn, basic_eval_fn
|
||||
from procedures.metric_utils import SaveMetric, MSEMetric, ComposeMetric
|
||||
from datasets.synthetic_core import get_synthetic_env
|
||||
from datasets.synthetic_core import get_synthetic_env, EnvSampler
|
||||
from models.xcore import get_model
|
||||
from xlayers import super_core
|
||||
|
||||
@@ -42,11 +42,10 @@ class MAML:
|
||||
self.meta_lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(
|
||||
self.meta_optimizer,
|
||||
milestones=[
|
||||
int(epochs * 0.25),
|
||||
int(epochs * 0.5),
|
||||
int(epochs * 0.75),
|
||||
int(epochs * 0.8),
|
||||
int(epochs * 0.9),
|
||||
],
|
||||
gamma=0.3,
|
||||
gamma=0.1,
|
||||
)
|
||||
self.inner_lr = inner_lr
|
||||
self.inner_step = inner_step
|
||||
@@ -85,33 +84,27 @@ class MAML:
|
||||
self.meta_optimizer.load_state_dict(state_dict["meta_optimizer"])
|
||||
self.meta_lr_scheduler.load_state_dict(state_dict["meta_lr_scheduler"])
|
||||
|
||||
def save_best(self, iepoch, score):
|
||||
if self._best_info["score"] is None or self._best_info["score"] < score:
|
||||
state_dict = dict(
|
||||
criterion=self.criterion.state_dict(),
|
||||
network=self.network.state_dict(),
|
||||
meta_optimizer=self.meta_optimizer.state_dict(),
|
||||
meta_lr_scheduler=self.meta_lr_scheduler.state_dict(),
|
||||
)
|
||||
self._best_info["state_dict"] = state_dict
|
||||
self._best_info["score"] = score
|
||||
self._best_info["iepoch"] = iepoch
|
||||
is_best = True
|
||||
else:
|
||||
is_best = False
|
||||
return self._best_info, is_best
|
||||
def state_dict(self):
|
||||
state_dict = dict()
|
||||
state_dict["criterion"] = self.criterion.state_dict()
|
||||
state_dict["network"] = self.network.state_dict()
|
||||
state_dict["meta_optimizer"] = self.meta_optimizer.state_dict()
|
||||
state_dict["meta_lr_scheduler"] = self.meta_lr_scheduler.state_dict()
|
||||
return state_dict
|
||||
|
||||
def save_best(self, score):
|
||||
success, best_score = self.network.save_best(score)
|
||||
return success, best_score
|
||||
|
||||
def load_best(self):
|
||||
self.network.load_best()
|
||||
|
||||
|
||||
def main(args):
|
||||
logger, env_info, model_kwargs = lfna_setup(args)
|
||||
model = get_model(dict(model_type="simple_mlp"), **model_kwargs)
|
||||
model = get_model(**model_kwargs)
|
||||
|
||||
total_time = env_info["total"]
|
||||
for i in range(total_time):
|
||||
for xkey in ("timestamp", "x", "y"):
|
||||
nkey = "{:}-{:}".format(i, xkey)
|
||||
assert nkey in env_info, "{:} no in {:}".format(nkey, list(env_info.keys()))
|
||||
train_time_bar = total_time // 2
|
||||
dynamic_env = get_synthetic_env(mode="train", version=args.env_version)
|
||||
|
||||
criterion = torch.nn.MSELoss()
|
||||
|
||||
@@ -120,83 +113,65 @@ def main(args):
|
||||
)
|
||||
|
||||
# meta-training
|
||||
last_success_epoch = 0
|
||||
per_epoch_time, start_time = AverageMeter(), time.time()
|
||||
# for iepoch in range(args.epochs):
|
||||
iepoch = 0
|
||||
while iepoch < args.epochs:
|
||||
for iepoch in range(args.epochs):
|
||||
need_time = "Time Left: {:}".format(
|
||||
convert_secs2time(per_epoch_time.avg * (args.epochs - iepoch), True)
|
||||
)
|
||||
logger.log(
|
||||
head_str = (
|
||||
"[{:}] [{:04d}/{:04d}] ".format(time_string(), iepoch, args.epochs)
|
||||
+ need_time
|
||||
)
|
||||
|
||||
maml.zero_grad()
|
||||
batch_indexes, meta_losses = [], []
|
||||
meta_losses = []
|
||||
for ibatch in range(args.meta_batch):
|
||||
sampled_timestamp = random.randint(0, train_time_bar)
|
||||
batch_indexes.append("{:5d}".format(sampled_timestamp))
|
||||
past_dataset = TimeData(
|
||||
sampled_timestamp,
|
||||
env_info["{:}-x".format(sampled_timestamp)],
|
||||
env_info["{:}-y".format(sampled_timestamp)],
|
||||
future_timestamp = dynamic_env.random_timestamp()
|
||||
_, (future_x, future_y) = dynamic_env(future_timestamp)
|
||||
past_timestamp = (
|
||||
future_timestamp - args.prev_time * dynamic_env.timestamp_interval
|
||||
)
|
||||
future_dataset = TimeData(
|
||||
sampled_timestamp + 1,
|
||||
env_info["{:}-x".format(sampled_timestamp + 1)],
|
||||
env_info["{:}-y".format(sampled_timestamp + 1)],
|
||||
)
|
||||
future_container = maml.adapt(past_dataset)
|
||||
future_y_hat = maml.predict(future_dataset.x, future_container)
|
||||
future_loss = maml.criterion(future_y_hat, future_dataset.y)
|
||||
_, (past_x, past_y) = dynamic_env(past_timestamp)
|
||||
|
||||
future_container = maml.adapt(TimeData(past_timestamp, past_x, past_y))
|
||||
future_y_hat = maml.predict(future_x, future_container)
|
||||
future_loss = maml.criterion(future_y_hat, future_y)
|
||||
meta_losses.append(future_loss)
|
||||
meta_loss = torch.stack(meta_losses).mean()
|
||||
meta_loss.backward()
|
||||
maml.step()
|
||||
|
||||
logger.log(
|
||||
"meta-loss: {:.4f} batch: {:}".format(
|
||||
meta_loss.item(), ",".join(batch_indexes)
|
||||
)
|
||||
)
|
||||
best_info, is_best = maml.save_best(iepoch, -meta_loss.item())
|
||||
if is_best:
|
||||
save_checkpoint(best_info, logger.path("best"), logger)
|
||||
logger.log("Save the best into {:}".format(logger.path("best")))
|
||||
if iepoch >= 10 and (
|
||||
torch.isnan(meta_loss).item() or meta_loss.item() >= args.fail_thresh
|
||||
):
|
||||
xdata = torch.load(logger.path("best"))
|
||||
maml.load_state_dict(xdata["state_dict"])
|
||||
iepoch = xdata["iepoch"]
|
||||
logger.log(
|
||||
"The training failed, re-use the previous best epoch [{:}]".format(
|
||||
iepoch
|
||||
)
|
||||
)
|
||||
else:
|
||||
iepoch = iepoch + 1
|
||||
logger.log(head_str + " meta-loss: {:.4f}".format(meta_loss.item()))
|
||||
success, best_score = maml.save_best(-meta_loss.item())
|
||||
if success:
|
||||
logger.log("Achieve the best with best_score = {:.3f}".format(best_score))
|
||||
save_checkpoint(maml.state_dict(), logger.path("model"), logger)
|
||||
last_success_epoch = iepoch
|
||||
if iepoch - last_success_epoch >= args.early_stop_thresh:
|
||||
logger.log("Early stop at {:}".format(iepoch))
|
||||
break
|
||||
|
||||
per_epoch_time.update(time.time() - start_time)
|
||||
start_time = time.time()
|
||||
|
||||
# meta-test
|
||||
maml.load_best()
|
||||
eval_env = env_info["dynamic_env"]
|
||||
assert eval_env.timestamp_interval == dynamic_env.timestamp_interval
|
||||
w_container_per_epoch = dict()
|
||||
for idx in range(1, env_info["total"]):
|
||||
past_dataset = TimeData(
|
||||
idx - 1,
|
||||
env_info["{:}-x".format(idx - 1)],
|
||||
env_info["{:}-y".format(idx - 1)],
|
||||
for idx in range(args.prev_time, len(eval_env)):
|
||||
future_timestamp, (future_x, future_y) = eval_env[idx]
|
||||
past_timestamp = (
|
||||
future_timestamp.item() - args.prev_time * eval_env.timestamp_interval
|
||||
)
|
||||
current_container = maml.adapt(past_dataset)
|
||||
w_container_per_epoch[idx] = current_container.no_grad_clone()
|
||||
_, (past_x, past_y) = eval_env(past_timestamp)
|
||||
future_container = maml.adapt(TimeData(past_timestamp, past_x, past_y))
|
||||
w_container_per_epoch[idx] = future_container.no_grad_clone()
|
||||
with torch.no_grad():
|
||||
current_x = env_info["{:}-x".format(idx)]
|
||||
current_y = env_info["{:}-y".format(idx)]
|
||||
current_y_hat = maml.predict(current_x, w_container_per_epoch[idx])
|
||||
current_loss = maml.criterion(current_y_hat, current_y)
|
||||
logger.log(
|
||||
"meta-test: [{:03d}] -> loss={:.4f}".format(idx, current_loss.item())
|
||||
)
|
||||
future_y_hat = maml.predict(future_x, w_container_per_epoch[idx])
|
||||
future_loss = maml.criterion(future_y_hat, future_y)
|
||||
logger.log("meta-test: [{:03d}] -> loss={:.4f}".format(idx, future_loss.item()))
|
||||
save_checkpoint(
|
||||
{"w_container_per_epoch": w_container_per_epoch},
|
||||
logger.path(None) / "final-ckp.pth",
|
||||
@@ -224,13 +199,13 @@ if __name__ == "__main__":
|
||||
parser.add_argument(
|
||||
"--hidden_dim",
|
||||
type=int,
|
||||
required=True,
|
||||
default=16,
|
||||
help="The hidden dimension.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--meta_lr",
|
||||
type=float,
|
||||
default=0.05,
|
||||
default=0.01,
|
||||
help="The learning rate for the MAML optimizer (default is Adam)",
|
||||
)
|
||||
parser.add_argument(
|
||||
@@ -242,24 +217,36 @@ if __name__ == "__main__":
|
||||
parser.add_argument(
|
||||
"--inner_lr",
|
||||
type=float,
|
||||
default=0.01,
|
||||
default=0.005,
|
||||
help="The learning rate for the inner optimization",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--inner_step", type=int, default=1, help="The inner loop steps for MAML."
|
||||
)
|
||||
parser.add_argument(
|
||||
"--prev_time",
|
||||
type=int,
|
||||
default=5,
|
||||
help="The gap between prev_time and current_timestamp",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--meta_batch",
|
||||
type=int,
|
||||
default=10,
|
||||
default=64,
|
||||
help="The batch size for the meta-model",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--epochs",
|
||||
type=int,
|
||||
default=1000,
|
||||
default=2000,
|
||||
help="The total number of epochs.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--early_stop_thresh",
|
||||
type=int,
|
||||
default=50,
|
||||
help="The maximum epochs for early stop.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--workers",
|
||||
type=int,
|
||||
@@ -272,7 +259,13 @@ if __name__ == "__main__":
|
||||
if args.rand_seed is None or args.rand_seed < 0:
|
||||
args.rand_seed = random.randint(1, 100000)
|
||||
assert args.save_dir is not None, "The save dir argument can not be None"
|
||||
args.save_dir = "{:}-s{:}-{:}-d{:}".format(
|
||||
args.save_dir, args.inner_step, args.env_version, args.hidden_dim
|
||||
args.save_dir = "{:}-s{:}-mlr{:}-d{:}-prev{:}-e{:}-env{:}".format(
|
||||
args.save_dir,
|
||||
args.inner_step,
|
||||
args.meta_lr,
|
||||
args.hidden_dim,
|
||||
args.prev_time,
|
||||
args.epochs,
|
||||
args.env_version,
|
||||
)
|
||||
main(args)
|
||||
|
Reference in New Issue
Block a user