Upgrade NAS-API to v2.0:
we use an abstract class NASBenchMetaAPI to define the spec of an API; it can be inherited to support different kinds of NAS API, while keep the query interface the same.
This commit is contained in:
71
docs/NeurIPS-2019-TAS.md
Normal file
71
docs/NeurIPS-2019-TAS.md
Normal file
@@ -0,0 +1,71 @@
|
||||
# [Network Pruning via Transformable Architecture Search](https://arxiv.org/abs/1905.09717)
|
||||
|
||||
[](https://paperswithcode.com/sota/network-pruning-on-cifar-100?p=network-pruning-via-transformable)
|
||||
|
||||
Network Pruning via Transformable Architecture Search is accepted by NeurIPS 2019.
|
||||
In this paper, we proposed a differentiable searching strategy for transformable architectures, i.e., searching for the depth and width of a deep neural network.
|
||||
You could see the highlight of our Transformable Architecture Search (TAS) at our [project page](https://xuanyidong.com/assets/projects/NeurIPS-2019-TAS.html).
|
||||
|
||||
<p float="left">
|
||||
<img src="https://d-x-y.github.com/resources/paper-icon/NIPS-2019-TAS.png" width="680px"/>
|
||||
<img src="https://d-x-y.github.com/resources/videos/NeurIPS-2019-TAS/TAS-arch.gif?raw=true" width="180px"/>
|
||||
</p>
|
||||
|
||||
|
||||
## Requirements and Preparation
|
||||
|
||||
Please install `Python>=3.6` and `PyTorch>=1.2.0`.
|
||||
|
||||
CIFAR and ImageNet should be downloaded and extracted into `$TORCH_HOME`.
|
||||
The proposed method utilized knowledge distillation (KD), which require pre-trained models. Please download these models from [Google Drive](https://drive.google.com/open?id=1ANmiYEGX-IQZTfH8w0aSpj-Wypg-0DR-) (or train by yourself) and save into `.latent-data`.
|
||||
|
||||
**LOGS**:
|
||||
We provide some logs at [Google Drive](https://drive.google.com/open?id=1_qUY4DTtuW_l6ZonynQAC9ttqy35fxZ-). It includes (1) logs of training searched shape of ResNet-18 and ResNet-50 on ImageNet, (2) logs of searching and training for ResNet-164 on CIFAR, (3) logs of searching and training for ResNet56 on CIFAR-10, (4) logs of searching and training for ResNet110 on CIFAR-100.
|
||||
|
||||
## Usage
|
||||
|
||||
Use `bash ./scripts/prepare.sh` to prepare data splits for `CIFAR-10`, `CIFARR-100`, and `ILSVRC2012`.
|
||||
If you do not have `ILSVRC2012` data, pleasee comment L12 in `./scripts/prepare.sh`.
|
||||
|
||||
args: `cifar10` indicates the dataset name, `ResNet56` indicates the basemodel name, `CIFARX` indicates the searching hyper-parameters, `0.47/0.57` indicates the expected FLOP ratio, `-1` indicates the random seed.
|
||||
|
||||
**Model Configuration**
|
||||
|
||||
The searched shapes for ResNet-20/32/56/110/164 and ResNet-18/50 in Table 3/4 in the original paper are listed in [`configs/NeurIPS-2019`](https://github.com/D-X-Y/AutoDL-Projects/tree/master/configs/NeurIPS-2019).
|
||||
|
||||
**Search for the depth configuration of ResNet**
|
||||
```
|
||||
CUDA_VISIBLE_DEVICES=0,1 bash ./scripts-search/search-depth-gumbel.sh cifar10 ResNet110 CIFARX 0.57 -1
|
||||
```
|
||||
|
||||
**Search for the width configuration of ResNet**
|
||||
```
|
||||
CUDA_VISIBLE_DEVICES=0,1 bash ./scripts-search/search-width-gumbel.sh cifar10 ResNet110 CIFARX 0.57 -1
|
||||
```
|
||||
|
||||
**Search for both depth and width configuration of ResNet**
|
||||
```
|
||||
CUDA_VISIBLE_DEVICES=0,1 bash ./scripts-search/search-shape-cifar.sh cifar10 ResNet56 CIFARX 0.47 -1
|
||||
```
|
||||
|
||||
**Training the searched shape config from TAS:**
|
||||
If you want to directly train a model with searched configuration of TAS, try these:
|
||||
```
|
||||
CUDA_VISIBLE_DEVICES=0,1 bash ./scripts/tas-infer-train.sh cifar10 C010-ResNet32 -1
|
||||
CUDA_VISIBLE_DEVICES=0,1 bash ./scripts/tas-infer-train.sh cifar100 C100-ResNet32 -1
|
||||
CUDA_VISIBLE_DEVICES=0,1,2,3 bash ./scripts/tas-infer-train.sh imagenet-1k ImageNet-ResNet18V1 -1
|
||||
CUDA_VISIBLE_DEVICES=0,1,2,3 bash ./scripts/tas-infer-train.sh imagenet-1k ImageNet-ResNet50V1 -1
|
||||
```
|
||||
|
||||
|
||||
# Citation
|
||||
|
||||
If you find that this project helps your research, please consider citing the following paper:
|
||||
```
|
||||
@inproceedings{dong2019tas,
|
||||
title = {Network Pruning via Transformable Architecture Search},
|
||||
author = {Dong, Xuanyi and Yang, Yi},
|
||||
booktitle = {Neural Information Processing Systems (NeurIPS)},
|
||||
year = {2019}
|
||||
}
|
||||
```
|
Reference in New Issue
Block a user