Update REA, REINFORCE, and RANDOM
This commit is contained in:
91
exps/algos-v2/random_wo_share.py
Normal file
91
exps/algos-v2/random_wo_share.py
Normal file
@@ -0,0 +1,91 @@
|
||||
##################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020 #
|
||||
##############################################################################
|
||||
# Random Search for Hyper-Parameter Optimization, JMLR 2012 ##################
|
||||
##############################################################################
|
||||
# python ./exps/algos-v2/random_wo_share.py --dataset cifar10 --search_space tss
|
||||
##############################################################################
|
||||
import os, sys, time, glob, random, argparse
|
||||
import numpy as np, collections
|
||||
from copy import deepcopy
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from pathlib import Path
|
||||
lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve()
|
||||
if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir))
|
||||
from config_utils import load_config, dict2config, configure2str
|
||||
from datasets import get_datasets, SearchDataset
|
||||
from procedures import prepare_seed, prepare_logger, save_checkpoint, copy_checkpoint, get_optim_scheduler
|
||||
from utils import get_model_infos, obtain_accuracy
|
||||
from log_utils import AverageMeter, time_string, convert_secs2time
|
||||
from models import get_search_spaces
|
||||
from nas_201_api import NASBench201API, NASBench301API
|
||||
from .regularized_ea import random_topology_func, random_size_func
|
||||
|
||||
|
||||
def main(xargs, api):
|
||||
torch.set_num_threads(4)
|
||||
prepare_seed(xargs.rand_seed)
|
||||
logger = prepare_logger(args)
|
||||
|
||||
search_space = get_search_spaces(xargs.search_space, 'nas-bench-301')
|
||||
if xargs.search_space == 'tss':
|
||||
random_arch = random_topology_func(search_space)
|
||||
else:
|
||||
random_arch = random_size_func(search_space)
|
||||
|
||||
x_start_time = time.time()
|
||||
logger.log('{:} use nas_bench : {:}'.format(time_string(), nas_bench))
|
||||
best_arch, best_acc, total_time_cost, history = None, -1, [], []
|
||||
while total_time_cost[-1] < xargs.time_budget:
|
||||
arch = random_arch()
|
||||
accuracy, _, _, total_cost = api.simulate_train_eval(arch, xargs.dataset, '12')
|
||||
total_time_cost.append(total_cost)
|
||||
history.append(arch)
|
||||
if best_arch is None or best_acc < accuracy:
|
||||
best_acc, best_arch = accuracy, arch
|
||||
logger.log('[{:03d}] : {:} : accuracy = {:.2f}%'.format(len(history), arch, accuracy))
|
||||
logger.log('{:} best arch is {:}, accuracy = {:.2f}%, visit {:} archs with {:.1f} s (real-cost = {:.3f} s).'.format(time_string(), best_arch, best_acc, len(history), total_time_cost, time.time()-x_start_time))
|
||||
|
||||
info = api.query_info_str_by_arch(best_arch, '200' if xargs.search_space == 'tss' else '90')
|
||||
logger.log('{:}'.format(info))
|
||||
logger.log('-'*100)
|
||||
logger.close()
|
||||
return logger.log_dir, total_time_cost, history
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser("Random NAS")
|
||||
parser.add_argument('--dataset', type=str, choices=['cifar10', 'cifar100', 'ImageNet16-120'], help='Choose between Cifar10/100 and ImageNet-16.')
|
||||
parser.add_argument('--search_space', type=str, choices=['tss', 'sss'], help='Choose the search space.')
|
||||
|
||||
parser.add_argument('--time_budget', type=int, default=20000, help='The total time cost budge for searching (in seconds).')
|
||||
parser.add_argument('--loops_if_rand', type=int, default=500, help='The total runs for evaluation.')
|
||||
# log
|
||||
parser.add_argument('--save_dir', type=str, help='Folder to save checkpoints and log.')
|
||||
parser.add_argument('--rand_seed', type=int, default=-1, help='manual seed')
|
||||
args = parser.parse_args()
|
||||
|
||||
if args.search_space == 'tss':
|
||||
api = NASBench201API(verbose=False)
|
||||
elif args.search_space == 'sss':
|
||||
api = NASBench301API(verbose=False)
|
||||
else:
|
||||
raise ValueError('Invalid search space : {:}'.format(args.search_space))
|
||||
|
||||
args.save_dir = os.path.join('{:}-{:}'.format(args.save_dir, args.search_space), args.dataset, 'RANDOM')
|
||||
print('save-dir : {:}'.format(args.save_dir))
|
||||
|
||||
if args.rand_seed < 0:
|
||||
save_dir, all_info = None, {}
|
||||
for i in range(args.loops_if_rand):
|
||||
print ('{:} : {:03d}/{:03d}'.format(time_string(), i, args.loops_if_rand))
|
||||
args.rand_seed = random.randint(1, 100000)
|
||||
save_dir, all_archs, all_total_times = main(args, api)
|
||||
all_info[i] = {'all_archs': all_archs,
|
||||
'all_total_times': all_total_times}
|
||||
save_path = save_dir / 'results.pth'
|
||||
print('save into {:}'.format(save_path))
|
||||
torch.save(all_info, save_path)
|
||||
else:
|
||||
main(args, api)
|
@@ -3,12 +3,12 @@
|
||||
##################################################################
|
||||
# Regularized Evolution for Image Classifier Architecture Search #
|
||||
##################################################################
|
||||
# python ./exps/algos-v2/REA.py --dataset cifar10 --search_space tss --time_budget 12000 --ea_cycles 200 --ea_population 10 --ea_sample_size 3 --rand_seed 1
|
||||
# python ./exps/algos-v2/REA.py --dataset cifar100 --search_space tss --time_budget 12000 --ea_cycles 200 --ea_population 10 --ea_sample_size 3 --rand_seed 1
|
||||
# python ./exps/algos-v2/REA.py --dataset ImageNet16-120 --search_space tss --time_budget 12000 --ea_cycles 200 --ea_population 10 --ea_sample_size 3 --rand_seed 1
|
||||
# python ./exps/algos-v2/REA.py --dataset cifar10 --search_space sss --time_budget 12000 --ea_cycles 200 --ea_population 10 --ea_sample_size 3 --rand_seed 1
|
||||
# python ./exps/algos-v2/REA.py --dataset cifar100 --search_space sss --time_budget 12000 --ea_cycles 200 --ea_population 10 --ea_sample_size 3 --rand_seed 1
|
||||
# python ./exps/algos-v2/REA.py --dataset ImageNet16-120 --search_space sss --time_budget 12000 --ea_cycles 200 --ea_population 10 --ea_sample_size 3 --rand_seed 1
|
||||
# python ./exps/algos-v2/regularized_ea.py --dataset cifar10 --search_space tss --ea_cycles 200 --ea_population 10 --ea_sample_size 3 --rand_seed 1
|
||||
# python ./exps/algos-v2/regularized_ea.py --dataset cifar100 --search_space tss --ea_cycles 200 --ea_population 10 --ea_sample_size 3 --rand_seed 1
|
||||
# python ./exps/algos-v2/regularized_ea.py --dataset ImageNet16-120 --search_space tss --ea_cycles 200 --ea_population 10 --ea_sample_size 3 --rand_seed 1
|
||||
# python ./exps/algos-v2/regularized_ea.py --dataset cifar10 --search_space sss --ea_cycles 200 --ea_population 10 --ea_sample_size 3 --rand_seed 1
|
||||
# python ./exps/algos-v2/regularized_ea.py --dataset cifar100 --search_space sss --ea_cycles 200 --ea_population 10 --ea_sample_size 3 --rand_seed 1
|
||||
# python ./exps/algos-v2/regularized_ea.py --dataset ImageNet16-120 --search_space sss --ea_cycles 200 --ea_population 10 --ea_sample_size 3 --rand_seed 1
|
||||
##################################################################
|
||||
import os, sys, time, glob, random, argparse
|
||||
import numpy as np, collections
|
||||
@@ -160,7 +160,7 @@ def regularized_evolution(cycles, population_size, sample_size, time_budget, ran
|
||||
while len(population) < population_size:
|
||||
model = Model()
|
||||
model.arch = random_arch()
|
||||
model.accuracy, time_cost, total_cost = api.simulate_train_eval(model.arch, dataset, '12')
|
||||
model.accuracy, _, _, total_cost = api.simulate_train_eval(model.arch, dataset, '12')
|
||||
# Append the info
|
||||
population.append(model)
|
||||
history.append(model)
|
||||
@@ -183,7 +183,7 @@ def regularized_evolution(cycles, population_size, sample_size, time_budget, ran
|
||||
# Create the child model and store it.
|
||||
child = Model()
|
||||
child.arch = mutate_arch(parent.arch)
|
||||
child.accuracy, time_cost, total_cost = api.simulate_train_eval(model.arch, dataset, '12')
|
||||
child.accuracy, _, _, total_cost = api.simulate_train_eval(model.arch, dataset, '12')
|
||||
# Append the info
|
||||
population.append(child)
|
||||
history.append(child)
|
||||
@@ -195,11 +195,7 @@ def regularized_evolution(cycles, population_size, sample_size, time_budget, ran
|
||||
|
||||
|
||||
def main(xargs, api):
|
||||
assert torch.cuda.is_available(), 'CUDA is not available.'
|
||||
torch.backends.cudnn.enabled = True
|
||||
torch.backends.cudnn.benchmark = False
|
||||
torch.backends.cudnn.deterministic = True
|
||||
torch.set_num_threads(xargs.workers)
|
||||
torch.set_num_threads(4)
|
||||
prepare_seed(xargs.rand_seed)
|
||||
logger = prepare_logger(args)
|
||||
|
||||
@@ -235,12 +231,11 @@ if __name__ == '__main__':
|
||||
parser.add_argument('--ea_cycles', type=int, help='The number of cycles in EA.')
|
||||
parser.add_argument('--ea_population', type=int, help='The population size in EA.')
|
||||
parser.add_argument('--ea_sample_size', type=int, help='The sample size in EA.')
|
||||
parser.add_argument('--time_budget', type=int, help='The total time cost budge for searching (in seconds).')
|
||||
parser.add_argument('--loops_if_rand', type=int, default=500, help='The total runs for evaluation.')
|
||||
parser.add_argument('--time_budget', type=int, default=20000, help='The total time cost budge for searching (in seconds).')
|
||||
parser.add_argument('--loops_if_rand', type=int, default=500, help='The total runs for evaluation.')
|
||||
# log
|
||||
parser.add_argument('--workers', type=int, default=2, help='number of data loading workers (default: 2)')
|
||||
parser.add_argument('--save_dir', type=str, default='./output/search', help='Folder to save checkpoints and log.')
|
||||
parser.add_argument('--rand_seed', type=int, default=-1, help='manual seed')
|
||||
parser.add_argument('--rand_seed', type=int, default=-1, help='manual seed')
|
||||
args = parser.parse_args()
|
||||
|
||||
if args.search_space == 'tss':
|
@@ -3,12 +3,12 @@
|
||||
#####################################################################################################
|
||||
# modified from https://github.com/pytorch/examples/blob/master/reinforcement_learning/reinforce.py #
|
||||
#####################################################################################################
|
||||
# python ./exps/algos-v2/reinforce.py --dataset cifar10 --search_space tss --time_budget 12000 --learning_rate 0.001
|
||||
# python ./exps/algos-v2/reinforce.py --dataset cifar100 --search_space tss --time_budget 12000 --learning_rate 0.001
|
||||
# python ./exps/algos-v2/reinforce.py --dataset ImageNet16-120 --search_space tss --time_budget 12000 --learning_rate 0.001
|
||||
# python ./exps/algos-v2/reinforce.py --dataset cifar10 --search_space sss --time_budget 12000 --learning_rate 0.001
|
||||
# python ./exps/algos-v2/reinforce.py --dataset cifar100 --search_space sss --time_budget 12000 --learning_rate 0.001
|
||||
# python ./exps/algos-v2/reinforce.py --dataset ImageNet16-120 --search_space sss --time_budget 12000 --learning_rate 0.001
|
||||
# python ./exps/algos-v2/reinforce.py --dataset cifar10 --search_space tss --learning_rate 0.001
|
||||
# python ./exps/algos-v2/reinforce.py --dataset cifar100 --search_space tss --learning_rate 0.001
|
||||
# python ./exps/algos-v2/reinforce.py --dataset ImageNet16-120 --search_space tss --learning_rate 0.001
|
||||
# python ./exps/algos-v2/reinforce.py --dataset cifar10 --search_space sss --learning_rate 0.001
|
||||
# python ./exps/algos-v2/reinforce.py --dataset cifar100 --search_space sss --learning_rate 0.001
|
||||
# python ./exps/algos-v2/reinforce.py --dataset ImageNet16-120 --search_space sss --learning_rate 0.001
|
||||
#####################################################################################################
|
||||
import os, sys, time, glob, random, argparse
|
||||
import numpy as np, collections
|
||||
@@ -120,15 +120,10 @@ def select_action(policy):
|
||||
|
||||
|
||||
def main(xargs, api):
|
||||
assert torch.cuda.is_available(), 'CUDA is not available.'
|
||||
torch.backends.cudnn.enabled = True
|
||||
torch.backends.cudnn.benchmark = False
|
||||
torch.backends.cudnn.deterministic = True
|
||||
torch.set_num_threads(xargs.workers)
|
||||
torch.set_num_threads(4)
|
||||
prepare_seed(xargs.rand_seed)
|
||||
logger = prepare_logger(args)
|
||||
|
||||
|
||||
search_space = get_search_spaces(xargs.search_space, 'nas-bench-301')
|
||||
if xargs.search_space == 'tss':
|
||||
policy = PolicyTopology(search_space)
|
||||
@@ -144,6 +139,7 @@ def main(xargs, api):
|
||||
|
||||
# nas dataset load
|
||||
logger.log('{:} use api : {:}'.format(time_string(), api))
|
||||
api.reset_time()
|
||||
|
||||
# REINFORCE
|
||||
x_start_time = time.time()
|
||||
@@ -153,7 +149,7 @@ def main(xargs, api):
|
||||
start_time = time.time()
|
||||
log_prob, action = select_action( policy )
|
||||
arch = policy.generate_arch( action )
|
||||
reward, _, current_total_cost = api.simulate_train_eval(arch, xargs.dataset, '12')
|
||||
reward, _, _, current_total_cost = api.simulate_train_eval(arch, xargs.dataset, '12')
|
||||
trace.append((reward, arch))
|
||||
total_costs.append(current_total_cost)
|
||||
|
||||
@@ -177,7 +173,7 @@ def main(xargs, api):
|
||||
logger.log('-'*100)
|
||||
logger.close()
|
||||
|
||||
return logger.log_dir, [api.query_index_by_arch(x[0]) for x in trace], total_costs
|
||||
return logger.log_dir, [api.query_index_by_arch(x[1]) for x in trace], total_costs
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
@@ -186,15 +182,14 @@ if __name__ == '__main__':
|
||||
parser.add_argument('--dataset', type=str, choices=['cifar10', 'cifar100', 'ImageNet16-120'], help='Choose between Cifar10/100 and ImageNet-16.')
|
||||
parser.add_argument('--search_space', type=str, choices=['tss', 'sss'], help='Choose the search space.')
|
||||
parser.add_argument('--learning_rate', type=float, help='The learning rate for REINFORCE.')
|
||||
parser.add_argument('--EMA_momentum', type=float, default=0.9, help='The momentum value for EMA.')
|
||||
parser.add_argument('--time_budget', type=int, help='The total time cost budge for searching (in seconds).')
|
||||
parser.add_argument('--loops_if_rand', type=int, default=500, help='The total runs for evaluation.')
|
||||
parser.add_argument('--EMA_momentum', type=float, default=0.9, help='The momentum value for EMA.')
|
||||
parser.add_argument('--time_budget', type=int, default=20000, help='The total time cost budge for searching (in seconds).')
|
||||
parser.add_argument('--loops_if_rand', type=int, default=500, help='The total runs for evaluation.')
|
||||
# log
|
||||
parser.add_argument('--workers', type=int, default=2, help='number of data loading workers (default: 2)')
|
||||
parser.add_argument('--save_dir', type=str, default='./output/search', help='Folder to save checkpoints and log.')
|
||||
parser.add_argument('--arch_nas_dataset', type=str, help='The path to load the architecture dataset (tiny-nas-benchmark).')
|
||||
parser.add_argument('--print_freq', type=int, help='print frequency (default: 200)')
|
||||
parser.add_argument('--rand_seed', type=int, default=-1, help='manual seed')
|
||||
parser.add_argument('--rand_seed', type=int, default=-1, help='manual seed')
|
||||
args = parser.parse_args()
|
||||
|
||||
if args.search_space == 'tss':
|
||||
|
17
exps/algos-v2/run-all.sh
Normal file
17
exps/algos-v2/run-all.sh
Normal file
@@ -0,0 +1,17 @@
|
||||
#!/bin/bash
|
||||
# bash ./exps/algos-v2/run-all.sh
|
||||
echo script name: $0
|
||||
echo $# arguments
|
||||
|
||||
datasets="cifar10 cifar100 ImageNet16-120"
|
||||
search_spaces="tss sss"
|
||||
|
||||
|
||||
for dataset in ${datasets}
|
||||
do
|
||||
for search_space in ${search_spaces}
|
||||
do
|
||||
python ./exps/algos-v2/reinforce.py --dataset ${dataset} --search_space ${search_space} --learning_rate 0.001
|
||||
python ./exps/algos-v2/regularized_ea.py --dataset ${dataset} --search_space ${search_space} --ea_cycles 200 --ea_population 10 --ea_sample_size 3
|
||||
done
|
||||
done
|
Reference in New Issue
Block a user