update for NAS-Bench-102

This commit is contained in:
D-X-Y
2019-12-20 20:41:49 +11:00
parent 6c5fe506d5
commit 69ca0860aa
13 changed files with 656 additions and 46 deletions

View File

@@ -1,5 +1,5 @@
##################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
##################################################
from .api import AANASBenchAPI
from .api import NASBench102API
from .api import ArchResults, ResultsCount

View File

@@ -2,7 +2,7 @@
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
##################################################
import os, sys, copy, random, torch, numpy as np
from collections import OrderedDict
from collections import OrderedDict, defaultdict
def print_information(information, extra_info=None, show=False):
@@ -30,16 +30,17 @@ def print_information(information, extra_info=None, show=False):
return strings
class AANASBenchAPI(object):
class NASBench102API(object):
def __init__(self, file_path_or_dict, verbose=True):
if isinstance(file_path_or_dict, str):
if verbose: print('try to create AA-NAS-Bench api from {:}'.format(file_path_or_dict))
if verbose: print('try to create NAS-Bench-102 api from {:}'.format(file_path_or_dict))
assert os.path.isfile(file_path_or_dict), 'invalid path : {:}'.format(file_path_or_dict)
file_path_or_dict = torch.load(file_path_or_dict)
else:
file_path_or_dict = copy.deepcopy( file_path_or_dict )
assert isinstance(file_path_or_dict, dict), 'It should be a dict instead of {:}'.format(type(file_path_or_dict))
import pdb; pdb.set_trace() # we will update this api soon
keys = ('meta_archs', 'arch2infos', 'evaluated_indexes')
for key in keys: assert key in file_path_or_dict, 'Can not find key[{:}] in the dict'.format(key)
self.meta_archs = copy.deepcopy( file_path_or_dict['meta_archs'] )
@@ -144,27 +145,46 @@ class ArchResults(object):
def get_comput_costs(self, dataset):
x_seeds = self.dataset_seed[dataset]
results = [self.all_results[ (dataset, seed) ] for seed in x_seeds]
flops = [result.flop for result in results]
params = [result.params for result in results]
flops = [result.flop for result in results]
params = [result.params for result in results]
lantencies = [result.get_latency() for result in results]
return np.mean(flops), np.mean(params), np.mean(lantencies)
lantencies = [x for x in lantencies if x > 0]
mean_latency = np.mean(lantencies) if len(lantencies) > 0 else None
time_infos = defaultdict(list)
for result in results:
time_info = result.get_times()
for key, value in time_info.items(): time_infos[key].append( value )
info = {'flops' : np.mean(flops),
'params' : np.mean(params),
'latency': mean_latency}
for key, value in time_infos.items():
if len(value) > 0 and value[0] is not None:
info[key] = np.mean(value)
else: info[key] = None
return info
def get_metrics(self, dataset, setname, iepoch=None, is_random=False):
x_seeds = self.dataset_seed[dataset]
results = [self.all_results[ (dataset, seed) ] for seed in x_seeds]
loss, accuracy = [], []
infos = defaultdict(list)
for result in results:
if setname == 'train':
info = result.get_train(iepoch)
else:
info = result.get_eval(setname, iepoch)
loss.append( info['loss'] )
accuracy.append( info['accuracy'] )
for key, value in info.items(): infos[key].append( value )
return_info = dict()
if is_random:
index = random.randint(0, len(loss)-1)
return loss[index], accuracy[index]
index = random.randint(0, len(results)-1)
for key, value in infos.items(): return_info[key] = value[index]
else:
return float(np.mean(loss)), float(np.mean(accuracy))
for key, value in infos.items():
if len(value) > 0 and value[0] is not None:
return_info[key] = np.mean(value)
else: return_info[key] = None
return return_info
def show(self, is_print=False):
return print_information(self, None, is_print)
@@ -245,8 +265,10 @@ class ResultsCount(object):
def __init__(self, name, state_dict, train_accs, train_losses, params, flop, arch_config, seed, epochs, latency):
self.name = name
self.net_state_dict = state_dict
self.train_accs = copy.deepcopy(train_accs)
self.train_acc1es = copy.deepcopy(train_accs)
self.train_acc5es = None
self.train_losses = copy.deepcopy(train_losses)
self.train_times = None
self.arch_config = copy.deepcopy(arch_config)
self.params = params
self.flop = flop
@@ -256,44 +278,97 @@ class ResultsCount(object):
# evaluation results
self.reset_eval()
def update_train_info(self, train_acc1es, train_acc5es, train_losses, train_times):
self.train_acc1es = train_acc1es
self.train_acc5es = train_acc5es
self.train_losses = train_losses
self.train_times = train_times
def reset_eval(self):
self.eval_names = []
self.eval_accs = {}
self.eval_acc1es = {}
self.eval_times = {}
self.eval_losses = {}
def update_latency(self, latency):
self.latency = copy.deepcopy( latency )
def update_eval(self, accs, losses, times): # old version
data_names = set([x.split('@')[0] for x in accs.keys()])
for data_name in data_names:
assert data_name not in self.eval_names, '{:} has already been added into eval-names'.format(data_name)
self.eval_names.append( data_name )
for iepoch in range(self.epochs):
xkey = '{:}@{:}'.format(data_name, iepoch)
self.eval_acc1es[ xkey ] = accs[ xkey ]
self.eval_losses[ xkey ] = losses[ xkey ]
self.eval_times [ xkey ] = times[ xkey ]
def update_OLD_eval(self, name, accs, losses): # old version
assert name not in self.eval_names, '{:} has already added'.format(name)
self.eval_names.append( name )
for iepoch in range(self.epochs):
if iepoch in accs:
self.eval_acc1es['{:}@{:}'.format(name,iepoch)] = accs[iepoch]
self.eval_losses['{:}@{:}'.format(name,iepoch)] = losses[iepoch]
def __repr__(self):
num_eval = len(self.eval_names)
set_name = '[' + ', '.join(self.eval_names) + ']'
return ('{name}({xname}, arch={arch}, FLOP={flop:.2f}M, Param={param:.3f}MB, seed={seed}, {num_eval} eval-sets: {set_name})'.format(name=self.__class__.__name__, xname=self.name, arch=self.arch_config['arch_str'], flop=self.flop, param=self.params, seed=self.seed, num_eval=num_eval, set_name=set_name))
def get_latency(self):
if self.latency is None: return -1
else: return sum(self.latency) / len(self.latency)
def update_eval(self, name, accs, losses):
assert name not in self.eval_names, '{:} has already added'.format(name)
self.eval_names.append( name )
self.eval_accs[name] = copy.deepcopy( accs )
self.eval_losses[name] = copy.deepcopy( losses )
def get_times(self):
if self.train_times is not None and isinstance(self.train_times, dict):
train_times = list( self.train_times.values() )
time_info = {'T-train@epoch': np.mean(train_times), 'T-train@total': np.sum(train_times)}
for name in self.eval_names:
xtimes = [self.eval_times['{:}@{:}'.format(name,i)] for i in range(self.epochs)]
time_info['T-{:}@epoch'.format(name)] = np.mean(xtimes)
time_info['T-{:}@total'.format(name)] = np.sum(xtimes)
else:
time_info = {'T-train@epoch': None, 'T-train@total': None }
for name in self.eval_names:
time_info['T-{:}@epoch'.format(name)] = None
time_info['T-{:}@total'.format(name)] = None
return time_info
def __repr__(self):
num_eval = len(self.eval_names)
return ('{name}({xname}, arch={arch}, FLOP={flop:.2f}M, Param={param:.3f}MB, seed={seed}, {num_eval} eval-sets)'.format(name=self.__class__.__name__, xname=self.name, arch=self.arch_config['arch_str'], flop=self.flop, param=self.params, seed=self.seed, num_eval=num_eval))
def valid_evaluation_set(self):
def get_eval_set(self):
return self.eval_names
def get_train(self, iepoch=None):
if iepoch is None: iepoch = self.epochs-1
assert 0 <= iepoch < self.epochs, 'invalid iepoch={:} < {:}'.format(iepoch, self.epochs)
return {'loss': self.train_losses[iepoch], 'accuracy': self.train_accs[iepoch]}
if self.train_times is not None: xtime = self.train_times[iepoch]
else : xtime = None
return {'iepoch' : iepoch,
'loss' : self.train_losses[iepoch],
'accuracy': self.train_acc1es[iepoch],
'time' : xtime}
def get_eval(self, name, iepoch=None):
if iepoch is None: iepoch = self.epochs-1
assert 0 <= iepoch < self.epochs, 'invalid iepoch={:} < {:}'.format(iepoch, self.epochs)
return {'loss': self.eval_losses[name][iepoch], 'accuracy': self.eval_accs[name][iepoch]}
if isinstance(self.eval_times,dict) and len(self.eval_times) > 0:
xtime = self.eval_times['{:}@{:}'.format(name,iepoch)]
else: xtime = None
return {'iepoch' : iepoch,
'loss' : self.eval_losses['{:}@{:}'.format(name,iepoch)],
'accuracy': self.eval_acc1es['{:}@{:}'.format(name,iepoch)],
'time' : xtime}
def get_net_param(self):
return self.net_state_dict
def get_config(self, str2structure):
#return copy.deepcopy(self.arch_config)
return {'name': 'infer.tiny', 'C': self.arch_config['channel'], \
'N' : self.arch_config['num_cells'], \
'genotype': str2structure(self.arch_config['arch_str']), 'num_classes': self.arch_config['class_num']}
def state_dict(self):
_state_dict = {key: value for key, value in self.__dict__.items()}
return _state_dict