Add int search space

This commit is contained in:
D-X-Y
2021-03-18 16:02:55 +08:00
parent ece6ac5f41
commit 63c8bb9bc8
67 changed files with 5150 additions and 1474 deletions

View File

@@ -31,12 +31,22 @@ def main(args):
prepare_seed(args.rand_seed)
logger = prepare_logger(args)
train_data, valid_data, xshape, class_num = get_datasets(args.dataset, args.data_path, args.cutout_length)
train_data, valid_data, xshape, class_num = get_datasets(
args.dataset, args.data_path, args.cutout_length
)
train_loader = torch.utils.data.DataLoader(
train_data, batch_size=args.batch_size, shuffle=True, num_workers=args.workers, pin_memory=True
train_data,
batch_size=args.batch_size,
shuffle=True,
num_workers=args.workers,
pin_memory=True,
)
valid_loader = torch.utils.data.DataLoader(
valid_data, batch_size=args.batch_size, shuffle=False, num_workers=args.workers, pin_memory=True
valid_data,
batch_size=args.batch_size,
shuffle=False,
num_workers=args.workers,
pin_memory=True,
)
# get configures
model_config = load_config(args.model_config, {"class_num": class_num}, logger)
@@ -54,26 +64,44 @@ def main(args):
logger.log("model ====>>>>:\n{:}".format(base_model))
logger.log("model information : {:}".format(base_model.get_message()))
logger.log("-" * 50)
logger.log("Params={:.2f} MB, FLOPs={:.2f} M ... = {:.2f} G".format(param, flop, flop / 1e3))
logger.log(
"Params={:.2f} MB, FLOPs={:.2f} M ... = {:.2f} G".format(
param, flop, flop / 1e3
)
)
logger.log("-" * 50)
logger.log("train_data : {:}".format(train_data))
logger.log("valid_data : {:}".format(valid_data))
optimizer, scheduler, criterion = get_optim_scheduler(base_model.parameters(), optim_config)
optimizer, scheduler, criterion = get_optim_scheduler(
base_model.parameters(), optim_config
)
logger.log("optimizer : {:}".format(optimizer))
logger.log("scheduler : {:}".format(scheduler))
logger.log("criterion : {:}".format(criterion))
last_info, model_base_path, model_best_path = logger.path("info"), logger.path("model"), logger.path("best")
last_info, model_base_path, model_best_path = (
logger.path("info"),
logger.path("model"),
logger.path("best"),
)
network, criterion = torch.nn.DataParallel(base_model).cuda(), criterion.cuda()
if last_info.exists(): # automatically resume from previous checkpoint
logger.log("=> loading checkpoint of the last-info '{:}' start".format(last_info))
logger.log(
"=> loading checkpoint of the last-info '{:}' start".format(last_info)
)
last_infox = torch.load(last_info)
start_epoch = last_infox["epoch"] + 1
last_checkpoint_path = last_infox["last_checkpoint"]
if not last_checkpoint_path.exists():
logger.log("Does not find {:}, try another path".format(last_checkpoint_path))
last_checkpoint_path = last_info.parent / last_checkpoint_path.parent.name / last_checkpoint_path.name
logger.log(
"Does not find {:}, try another path".format(last_checkpoint_path)
)
last_checkpoint_path = (
last_info.parent
/ last_checkpoint_path.parent.name
/ last_checkpoint_path.name
)
checkpoint = torch.load(last_checkpoint_path)
base_model.load_state_dict(checkpoint["base-model"])
scheduler.load_state_dict(checkpoint["scheduler"])
@@ -81,10 +109,14 @@ def main(args):
valid_accuracies = checkpoint["valid_accuracies"]
max_bytes = checkpoint["max_bytes"]
logger.log(
"=> loading checkpoint of the last-info '{:}' start with {:}-th epoch.".format(last_info, start_epoch)
"=> loading checkpoint of the last-info '{:}' start with {:}-th epoch.".format(
last_info, start_epoch
)
)
elif args.resume is not None:
assert Path(args.resume).exists(), "Can not find the resume file : {:}".format(args.resume)
assert Path(args.resume).exists(), "Can not find the resume file : {:}".format(
args.resume
)
checkpoint = torch.load(args.resume)
start_epoch = checkpoint["epoch"] + 1
base_model.load_state_dict(checkpoint["base-model"])
@@ -92,9 +124,15 @@ def main(args):
optimizer.load_state_dict(checkpoint["optimizer"])
valid_accuracies = checkpoint["valid_accuracies"]
max_bytes = checkpoint["max_bytes"]
logger.log("=> loading checkpoint from '{:}' start with {:}-th epoch.".format(args.resume, start_epoch))
logger.log(
"=> loading checkpoint from '{:}' start with {:}-th epoch.".format(
args.resume, start_epoch
)
)
elif args.init_model is not None:
assert Path(args.init_model).exists(), "Can not find the initialization file : {:}".format(args.init_model)
assert Path(
args.init_model
).exists(), "Can not find the initialization file : {:}".format(args.init_model)
checkpoint = torch.load(args.init_model)
base_model.load_state_dict(checkpoint["base-model"])
start_epoch, valid_accuracies, max_bytes = 0, {"best": -1}, {}
@@ -111,13 +149,17 @@ def main(args):
epoch_time = AverageMeter()
for epoch in range(start_epoch, total_epoch):
scheduler.update(epoch, 0.0)
need_time = "Time Left: {:}".format(convert_secs2time(epoch_time.avg * (total_epoch - epoch), True))
need_time = "Time Left: {:}".format(
convert_secs2time(epoch_time.avg * (total_epoch - epoch), True)
)
epoch_str = "epoch={:03d}/{:03d}".format(epoch, total_epoch)
LRs = scheduler.get_lr()
find_best = False
# set-up drop-out ratio
if hasattr(base_model, "update_drop_path"):
base_model.update_drop_path(model_config.drop_path_prob * epoch / total_epoch)
base_model.update_drop_path(
model_config.drop_path_prob * epoch / total_epoch
)
logger.log(
"\n***{:s}*** start {:s} {:s}, LR=[{:.6f} ~ {:.6f}], scheduler={:}".format(
time_string(), epoch_str, need_time, min(LRs), max(LRs), scheduler
@@ -126,7 +168,15 @@ def main(args):
# train for one epoch
train_loss, train_acc1, train_acc5 = train_func(
train_loader, network, criterion, scheduler, optimizer, optim_config, epoch_str, args.print_freq, logger
train_loader,
network,
criterion,
scheduler,
optimizer,
optim_config,
epoch_str,
args.print_freq,
logger,
)
# log the results
logger.log(
@@ -139,7 +189,13 @@ def main(args):
if (epoch % args.eval_frequency == 0) or (epoch + 1 == total_epoch):
logger.log("-" * 150)
valid_loss, valid_acc1, valid_acc5 = valid_func(
valid_loader, network, criterion, optim_config, epoch_str, args.print_freq_eval, logger
valid_loader,
network,
criterion,
optim_config,
epoch_str,
args.print_freq_eval,
logger,
)
valid_accuracies[epoch] = valid_acc1
logger.log(
@@ -158,13 +214,24 @@ def main(args):
find_best = True
logger.log(
"Currently, the best validation accuracy found at {:03d}-epoch :: acc@1={:.2f}, acc@5={:.2f}, error@1={:.2f}, error@5={:.2f}, save into {:}.".format(
epoch, valid_acc1, valid_acc5, 100 - valid_acc1, 100 - valid_acc5, model_best_path
epoch,
valid_acc1,
valid_acc5,
100 - valid_acc1,
100 - valid_acc5,
model_best_path,
)
)
num_bytes = torch.cuda.max_memory_cached(next(network.parameters()).device) * 1.0
num_bytes = (
torch.cuda.max_memory_cached(next(network.parameters()).device) * 1.0
)
logger.log(
"[GPU-Memory-Usage on {:} is {:} bytes, {:.2f} KB, {:.2f} MB, {:.2f} GB.]".format(
next(network.parameters()).device, int(num_bytes), num_bytes / 1e3, num_bytes / 1e6, num_bytes / 1e9
next(network.parameters()).device,
int(num_bytes),
num_bytes / 1e3,
num_bytes / 1e6,
num_bytes / 1e9,
)
)
max_bytes[epoch] = num_bytes
@@ -208,7 +275,9 @@ def main(args):
logger.log("\n" + "-" * 200)
logger.log(
"Finish training/validation in {:} with Max-GPU-Memory of {:.2f} MB, and save final checkpoint into {:}".format(
convert_secs2time(epoch_time.sum, True), max(v for k, v in max_bytes.items()) / 1e6, logger.path("info")
convert_secs2time(epoch_time.sum, True),
max(v for k, v in max_bytes.items()) / 1e6,
logger.path("info"),
)
)
logger.log("-" * 200 + "\n")