Add int search space
This commit is contained in:
@@ -15,16 +15,37 @@ if str(lib_dir) not in sys.path:
|
||||
sys.path.insert(0, str(lib_dir))
|
||||
from config_utils import load_config, dict2config, configure2str
|
||||
from datasets import get_datasets, get_nas_search_loaders
|
||||
from procedures import prepare_seed, prepare_logger, save_checkpoint, copy_checkpoint, get_optim_scheduler
|
||||
from procedures import (
|
||||
prepare_seed,
|
||||
prepare_logger,
|
||||
save_checkpoint,
|
||||
copy_checkpoint,
|
||||
get_optim_scheduler,
|
||||
)
|
||||
from utils import get_model_infos, obtain_accuracy
|
||||
from log_utils import AverageMeter, time_string, convert_secs2time
|
||||
from models import get_cell_based_tiny_net, get_search_spaces
|
||||
from nas_201_api import NASBench201API as API
|
||||
|
||||
|
||||
def train_shared_cnn(xloader, shared_cnn, controller, criterion, scheduler, optimizer, epoch_str, print_freq, logger):
|
||||
def train_shared_cnn(
|
||||
xloader,
|
||||
shared_cnn,
|
||||
controller,
|
||||
criterion,
|
||||
scheduler,
|
||||
optimizer,
|
||||
epoch_str,
|
||||
print_freq,
|
||||
logger,
|
||||
):
|
||||
data_time, batch_time = AverageMeter(), AverageMeter()
|
||||
losses, top1s, top5s, xend = AverageMeter(), AverageMeter(), AverageMeter(), time.time()
|
||||
losses, top1s, top5s, xend = (
|
||||
AverageMeter(),
|
||||
AverageMeter(),
|
||||
AverageMeter(),
|
||||
time.time(),
|
||||
)
|
||||
|
||||
shared_cnn.train()
|
||||
controller.eval()
|
||||
@@ -56,7 +77,11 @@ def train_shared_cnn(xloader, shared_cnn, controller, criterion, scheduler, opti
|
||||
xend = time.time()
|
||||
|
||||
if step % print_freq == 0 or step + 1 == len(xloader):
|
||||
Sstr = "*Train-Shared-CNN* " + time_string() + " [{:}][{:03d}/{:03d}]".format(epoch_str, step, len(xloader))
|
||||
Sstr = (
|
||||
"*Train-Shared-CNN* "
|
||||
+ time_string()
|
||||
+ " [{:}][{:03d}/{:03d}]".format(epoch_str, step, len(xloader))
|
||||
)
|
||||
Tstr = "Time {batch_time.val:.2f} ({batch_time.avg:.2f}) Data {data_time.val:.2f} ({data_time.avg:.2f})".format(
|
||||
batch_time=batch_time, data_time=data_time
|
||||
)
|
||||
@@ -67,11 +92,29 @@ def train_shared_cnn(xloader, shared_cnn, controller, criterion, scheduler, opti
|
||||
return losses.avg, top1s.avg, top5s.avg
|
||||
|
||||
|
||||
def train_controller(xloader, shared_cnn, controller, criterion, optimizer, config, epoch_str, print_freq, logger):
|
||||
def train_controller(
|
||||
xloader,
|
||||
shared_cnn,
|
||||
controller,
|
||||
criterion,
|
||||
optimizer,
|
||||
config,
|
||||
epoch_str,
|
||||
print_freq,
|
||||
logger,
|
||||
):
|
||||
# config. (containing some necessary arg)
|
||||
# baseline: The baseline score (i.e. average val_acc) from the previous epoch
|
||||
data_time, batch_time = AverageMeter(), AverageMeter()
|
||||
GradnormMeter, LossMeter, ValAccMeter, EntropyMeter, BaselineMeter, RewardMeter, xend = (
|
||||
(
|
||||
GradnormMeter,
|
||||
LossMeter,
|
||||
ValAccMeter,
|
||||
EntropyMeter,
|
||||
BaselineMeter,
|
||||
RewardMeter,
|
||||
xend,
|
||||
) = (
|
||||
AverageMeter(),
|
||||
AverageMeter(),
|
||||
AverageMeter(),
|
||||
@@ -106,7 +149,9 @@ def train_controller(xloader, shared_cnn, controller, criterion, optimizer, conf
|
||||
if config.baseline is None:
|
||||
baseline = val_top1
|
||||
else:
|
||||
baseline = config.baseline - (1 - config.ctl_bl_dec) * (config.baseline - reward)
|
||||
baseline = config.baseline - (1 - config.ctl_bl_dec) * (
|
||||
config.baseline - reward
|
||||
)
|
||||
|
||||
loss = -1 * log_prob * (reward - baseline)
|
||||
|
||||
@@ -134,18 +179,29 @@ def train_controller(xloader, shared_cnn, controller, criterion, optimizer, conf
|
||||
Sstr = (
|
||||
"*Train-Controller* "
|
||||
+ time_string()
|
||||
+ " [{:}][{:03d}/{:03d}]".format(epoch_str, step, config.ctl_train_steps * config.ctl_num_aggre)
|
||||
+ " [{:}][{:03d}/{:03d}]".format(
|
||||
epoch_str, step, config.ctl_train_steps * config.ctl_num_aggre
|
||||
)
|
||||
)
|
||||
Tstr = "Time {batch_time.val:.2f} ({batch_time.avg:.2f}) Data {data_time.val:.2f} ({data_time.avg:.2f})".format(
|
||||
batch_time=batch_time, data_time=data_time
|
||||
)
|
||||
Wstr = "[Loss {loss.val:.3f} ({loss.avg:.3f}) Prec@1 {top1.val:.2f} ({top1.avg:.2f}) Reward {reward.val:.2f} ({reward.avg:.2f})] Baseline {basel.val:.2f} ({basel.avg:.2f})".format(
|
||||
loss=LossMeter, top1=ValAccMeter, reward=RewardMeter, basel=BaselineMeter
|
||||
loss=LossMeter,
|
||||
top1=ValAccMeter,
|
||||
reward=RewardMeter,
|
||||
basel=BaselineMeter,
|
||||
)
|
||||
Estr = "Entropy={:.4f} ({:.4f})".format(EntropyMeter.val, EntropyMeter.avg)
|
||||
logger.log(Sstr + " " + Tstr + " " + Wstr + " " + Estr)
|
||||
|
||||
return LossMeter.avg, ValAccMeter.avg, BaselineMeter.avg, RewardMeter.avg, baseline.item()
|
||||
return (
|
||||
LossMeter.avg,
|
||||
ValAccMeter.avg,
|
||||
BaselineMeter.avg,
|
||||
RewardMeter.avg,
|
||||
baseline.item(),
|
||||
)
|
||||
|
||||
|
||||
def get_best_arch(controller, shared_cnn, xloader, n_samples=10):
|
||||
@@ -164,7 +220,9 @@ def get_best_arch(controller, shared_cnn, xloader, n_samples=10):
|
||||
_, _, sampled_arch = controller()
|
||||
arch = shared_cnn.module.update_arch(sampled_arch)
|
||||
_, logits = shared_cnn(inputs)
|
||||
val_top1, val_top5 = obtain_accuracy(logits.cpu().data, targets.data, topk=(1, 5))
|
||||
val_top1, val_top5 = obtain_accuracy(
|
||||
logits.cpu().data, targets.data, topk=(1, 5)
|
||||
)
|
||||
|
||||
archs.append(arch)
|
||||
valid_accs.append(val_top1.item())
|
||||
@@ -188,7 +246,9 @@ def valid_func(xloader, network, criterion):
|
||||
_, logits = network(arch_inputs)
|
||||
arch_loss = criterion(logits, arch_targets)
|
||||
# record
|
||||
arch_prec1, arch_prec5 = obtain_accuracy(logits.data, arch_targets.data, topk=(1, 5))
|
||||
arch_prec1, arch_prec5 = obtain_accuracy(
|
||||
logits.data, arch_targets.data, topk=(1, 5)
|
||||
)
|
||||
arch_losses.update(arch_loss.item(), arch_inputs.size(0))
|
||||
arch_top1.update(arch_prec1.item(), arch_inputs.size(0))
|
||||
arch_top5.update(arch_prec5.item(), arch_inputs.size(0))
|
||||
@@ -207,11 +267,20 @@ def main(xargs):
|
||||
prepare_seed(xargs.rand_seed)
|
||||
logger = prepare_logger(args)
|
||||
|
||||
train_data, test_data, xshape, class_num = get_datasets(xargs.dataset, xargs.data_path, -1)
|
||||
train_data, test_data, xshape, class_num = get_datasets(
|
||||
xargs.dataset, xargs.data_path, -1
|
||||
)
|
||||
logger.log("use config from : {:}".format(xargs.config_path))
|
||||
config = load_config(xargs.config_path, {"class_num": class_num, "xshape": xshape}, logger)
|
||||
config = load_config(
|
||||
xargs.config_path, {"class_num": class_num, "xshape": xshape}, logger
|
||||
)
|
||||
_, train_loader, valid_loader = get_nas_search_loaders(
|
||||
train_data, test_data, xargs.dataset, "configs/nas-benchmark/", config.batch_size, xargs.workers
|
||||
train_data,
|
||||
test_data,
|
||||
xargs.dataset,
|
||||
"configs/nas-benchmark/",
|
||||
config.batch_size,
|
||||
xargs.workers,
|
||||
)
|
||||
# since ENAS will train the controller on valid-loader, we need to use train transformation for valid-loader
|
||||
valid_loader.dataset.transform = deepcopy(train_loader.dataset.transform)
|
||||
@@ -242,9 +311,14 @@ def main(xargs):
|
||||
shared_cnn = get_cell_based_tiny_net(model_config)
|
||||
controller = shared_cnn.create_controller()
|
||||
|
||||
w_optimizer, w_scheduler, criterion = get_optim_scheduler(shared_cnn.parameters(), config)
|
||||
w_optimizer, w_scheduler, criterion = get_optim_scheduler(
|
||||
shared_cnn.parameters(), config
|
||||
)
|
||||
a_optimizer = torch.optim.Adam(
|
||||
controller.parameters(), lr=config.controller_lr, betas=config.controller_betas, eps=config.controller_eps
|
||||
controller.parameters(),
|
||||
lr=config.controller_lr,
|
||||
betas=config.controller_betas,
|
||||
eps=config.controller_eps,
|
||||
)
|
||||
logger.log("w-optimizer : {:}".format(w_optimizer))
|
||||
logger.log("a-optimizer : {:}".format(a_optimizer))
|
||||
@@ -259,12 +333,22 @@ def main(xargs):
|
||||
else:
|
||||
api = API(xargs.arch_nas_dataset)
|
||||
logger.log("{:} create API = {:} done".format(time_string(), api))
|
||||
shared_cnn, controller, criterion = torch.nn.DataParallel(shared_cnn).cuda(), controller.cuda(), criterion.cuda()
|
||||
shared_cnn, controller, criterion = (
|
||||
torch.nn.DataParallel(shared_cnn).cuda(),
|
||||
controller.cuda(),
|
||||
criterion.cuda(),
|
||||
)
|
||||
|
||||
last_info, model_base_path, model_best_path = logger.path("info"), logger.path("model"), logger.path("best")
|
||||
last_info, model_base_path, model_best_path = (
|
||||
logger.path("info"),
|
||||
logger.path("model"),
|
||||
logger.path("best"),
|
||||
)
|
||||
|
||||
if last_info.exists(): # automatically resume from previous checkpoint
|
||||
logger.log("=> loading checkpoint of the last-info '{:}' start".format(last_info))
|
||||
logger.log(
|
||||
"=> loading checkpoint of the last-info '{:}' start".format(last_info)
|
||||
)
|
||||
last_info = torch.load(last_info)
|
||||
start_epoch = last_info["epoch"]
|
||||
checkpoint = torch.load(last_info["last_checkpoint"])
|
||||
@@ -277,7 +361,9 @@ def main(xargs):
|
||||
w_optimizer.load_state_dict(checkpoint["w_optimizer"])
|
||||
a_optimizer.load_state_dict(checkpoint["a_optimizer"])
|
||||
logger.log(
|
||||
"=> loading checkpoint of the last-info '{:}' start with {:}-th epoch.".format(last_info, start_epoch)
|
||||
"=> loading checkpoint of the last-info '{:}' start with {:}-th epoch.".format(
|
||||
last_info, start_epoch
|
||||
)
|
||||
)
|
||||
else:
|
||||
logger.log("=> do not find the last-info file : {:}".format(last_info))
|
||||
@@ -292,7 +378,9 @@ def main(xargs):
|
||||
)
|
||||
for epoch in range(start_epoch, total_epoch):
|
||||
w_scheduler.update(epoch, 0.0)
|
||||
need_time = "Time Left: {:}".format(convert_secs2time(epoch_time.val * (total_epoch - epoch), True))
|
||||
need_time = "Time Left: {:}".format(
|
||||
convert_secs2time(epoch_time.val * (total_epoch - epoch), True)
|
||||
)
|
||||
epoch_str = "{:03d}-{:03d}".format(epoch, total_epoch)
|
||||
logger.log(
|
||||
"\n[Search the {:}-th epoch] {:}, LR={:}, baseline={:}".format(
|
||||
@@ -339,7 +427,13 @@ def main(xargs):
|
||||
search_time.update(time.time() - start_time)
|
||||
logger.log(
|
||||
"[{:}] controller : loss={:.2f}, accuracy={:.2f}%, baseline={:.2f}, reward={:.2f}, current-baseline={:.4f}, time-cost={:.1f} s".format(
|
||||
epoch_str, ctl_loss, ctl_acc, ctl_baseline, ctl_reward, baseline, search_time.sum
|
||||
epoch_str,
|
||||
ctl_loss,
|
||||
ctl_acc,
|
||||
ctl_baseline,
|
||||
ctl_reward,
|
||||
baseline,
|
||||
search_time.sum,
|
||||
)
|
||||
)
|
||||
best_arch, _ = get_best_arch(controller, shared_cnn, valid_loader)
|
||||
@@ -356,7 +450,9 @@ def main(xargs):
|
||||
else:
|
||||
find_best = False
|
||||
|
||||
logger.log("<<<--->>> The {:}-th epoch : {:}".format(epoch_str, genotypes[epoch]))
|
||||
logger.log(
|
||||
"<<<--->>> The {:}-th epoch : {:}".format(epoch_str, genotypes[epoch])
|
||||
)
|
||||
# save checkpoint
|
||||
save_path = save_checkpoint(
|
||||
{
|
||||
@@ -397,18 +493,32 @@ def main(xargs):
|
||||
start_time = time.time()
|
||||
|
||||
logger.log("\n" + "-" * 100)
|
||||
logger.log("During searching, the best architecture is {:}".format(genotypes["best"]))
|
||||
logger.log(
|
||||
"During searching, the best architecture is {:}".format(genotypes["best"])
|
||||
)
|
||||
logger.log("Its accuracy is {:.2f}%".format(valid_accuracies["best"]))
|
||||
logger.log("Randomly select {:} architectures and select the best.".format(xargs.controller_num_samples))
|
||||
logger.log(
|
||||
"Randomly select {:} architectures and select the best.".format(
|
||||
xargs.controller_num_samples
|
||||
)
|
||||
)
|
||||
start_time = time.time()
|
||||
final_arch, _ = get_best_arch(controller, shared_cnn, valid_loader, xargs.controller_num_samples)
|
||||
final_arch, _ = get_best_arch(
|
||||
controller, shared_cnn, valid_loader, xargs.controller_num_samples
|
||||
)
|
||||
search_time.update(time.time() - start_time)
|
||||
shared_cnn.module.update_arch(final_arch)
|
||||
final_loss, final_top1, final_top5 = valid_func(valid_loader, shared_cnn, criterion)
|
||||
logger.log("The Selected Final Architecture : {:}".format(final_arch))
|
||||
logger.log("Loss={:.3f}, Accuracy@1={:.2f}%, Accuracy@5={:.2f}%".format(final_loss, final_top1, final_top5))
|
||||
logger.log(
|
||||
"ENAS : run {:} epochs, cost {:.1f} s, last-geno is {:}.".format(total_epoch, search_time.sum, final_arch)
|
||||
"Loss={:.3f}, Accuracy@1={:.2f}%, Accuracy@5={:.2f}%".format(
|
||||
final_loss, final_top1, final_top5
|
||||
)
|
||||
)
|
||||
logger.log(
|
||||
"ENAS : run {:} epochs, cost {:.1f} s, last-geno is {:}.".format(
|
||||
total_epoch, search_time.sum, final_arch
|
||||
)
|
||||
)
|
||||
if api is not None:
|
||||
logger.log("{:}".format(api.query_by_arch(final_arch)))
|
||||
@@ -434,18 +544,35 @@ if __name__ == "__main__":
|
||||
parser.add_argument("--search_space_name", type=str, help="The search space name.")
|
||||
parser.add_argument("--max_nodes", type=int, help="The maximum number of nodes.")
|
||||
parser.add_argument("--channel", type=int, help="The number of channels.")
|
||||
parser.add_argument("--num_cells", type=int, help="The number of cells in one stage.")
|
||||
parser.add_argument("--config_path", type=str, help="The config file to train ENAS.")
|
||||
parser.add_argument(
|
||||
"--num_cells", type=int, help="The number of cells in one stage."
|
||||
)
|
||||
parser.add_argument(
|
||||
"--config_path", type=str, help="The config file to train ENAS."
|
||||
)
|
||||
parser.add_argument("--controller_train_steps", type=int, help=".")
|
||||
parser.add_argument("--controller_num_aggregate", type=int, help=".")
|
||||
parser.add_argument("--controller_entropy_weight", type=float, help="The weight for the entropy of the controller.")
|
||||
parser.add_argument(
|
||||
"--controller_entropy_weight",
|
||||
type=float,
|
||||
help="The weight for the entropy of the controller.",
|
||||
)
|
||||
parser.add_argument("--controller_bl_dec", type=float, help=".")
|
||||
parser.add_argument("--controller_num_samples", type=int, help=".")
|
||||
# log
|
||||
parser.add_argument("--workers", type=int, default=2, help="number of data loading workers (default: 2)")
|
||||
parser.add_argument("--save_dir", type=str, help="Folder to save checkpoints and log.")
|
||||
parser.add_argument(
|
||||
"--arch_nas_dataset", type=str, help="The path to load the architecture dataset (nas-benchmark)."
|
||||
"--workers",
|
||||
type=int,
|
||||
default=2,
|
||||
help="number of data loading workers (default: 2)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--save_dir", type=str, help="Folder to save checkpoints and log."
|
||||
)
|
||||
parser.add_argument(
|
||||
"--arch_nas_dataset",
|
||||
type=str,
|
||||
help="The path to load the architecture dataset (nas-benchmark).",
|
||||
)
|
||||
parser.add_argument("--print_freq", type=int, help="print frequency (default: 200)")
|
||||
parser.add_argument("--rand_seed", type=int, help="manual seed")
|
||||
|
Reference in New Issue
Block a user