Add int search space

This commit is contained in:
D-X-Y
2021-03-18 16:02:55 +08:00
parent ece6ac5f41
commit 63c8bb9bc8
67 changed files with 5150 additions and 1474 deletions

View File

@@ -15,16 +15,37 @@ if str(lib_dir) not in sys.path:
sys.path.insert(0, str(lib_dir))
from config_utils import load_config, dict2config, configure2str
from datasets import get_datasets, get_nas_search_loaders
from procedures import prepare_seed, prepare_logger, save_checkpoint, copy_checkpoint, get_optim_scheduler
from procedures import (
prepare_seed,
prepare_logger,
save_checkpoint,
copy_checkpoint,
get_optim_scheduler,
)
from utils import get_model_infos, obtain_accuracy
from log_utils import AverageMeter, time_string, convert_secs2time
from models import get_cell_based_tiny_net, get_search_spaces
from nas_201_api import NASBench201API as API
def train_shared_cnn(xloader, shared_cnn, controller, criterion, scheduler, optimizer, epoch_str, print_freq, logger):
def train_shared_cnn(
xloader,
shared_cnn,
controller,
criterion,
scheduler,
optimizer,
epoch_str,
print_freq,
logger,
):
data_time, batch_time = AverageMeter(), AverageMeter()
losses, top1s, top5s, xend = AverageMeter(), AverageMeter(), AverageMeter(), time.time()
losses, top1s, top5s, xend = (
AverageMeter(),
AverageMeter(),
AverageMeter(),
time.time(),
)
shared_cnn.train()
controller.eval()
@@ -56,7 +77,11 @@ def train_shared_cnn(xloader, shared_cnn, controller, criterion, scheduler, opti
xend = time.time()
if step % print_freq == 0 or step + 1 == len(xloader):
Sstr = "*Train-Shared-CNN* " + time_string() + " [{:}][{:03d}/{:03d}]".format(epoch_str, step, len(xloader))
Sstr = (
"*Train-Shared-CNN* "
+ time_string()
+ " [{:}][{:03d}/{:03d}]".format(epoch_str, step, len(xloader))
)
Tstr = "Time {batch_time.val:.2f} ({batch_time.avg:.2f}) Data {data_time.val:.2f} ({data_time.avg:.2f})".format(
batch_time=batch_time, data_time=data_time
)
@@ -67,11 +92,29 @@ def train_shared_cnn(xloader, shared_cnn, controller, criterion, scheduler, opti
return losses.avg, top1s.avg, top5s.avg
def train_controller(xloader, shared_cnn, controller, criterion, optimizer, config, epoch_str, print_freq, logger):
def train_controller(
xloader,
shared_cnn,
controller,
criterion,
optimizer,
config,
epoch_str,
print_freq,
logger,
):
# config. (containing some necessary arg)
# baseline: The baseline score (i.e. average val_acc) from the previous epoch
data_time, batch_time = AverageMeter(), AverageMeter()
GradnormMeter, LossMeter, ValAccMeter, EntropyMeter, BaselineMeter, RewardMeter, xend = (
(
GradnormMeter,
LossMeter,
ValAccMeter,
EntropyMeter,
BaselineMeter,
RewardMeter,
xend,
) = (
AverageMeter(),
AverageMeter(),
AverageMeter(),
@@ -106,7 +149,9 @@ def train_controller(xloader, shared_cnn, controller, criterion, optimizer, conf
if config.baseline is None:
baseline = val_top1
else:
baseline = config.baseline - (1 - config.ctl_bl_dec) * (config.baseline - reward)
baseline = config.baseline - (1 - config.ctl_bl_dec) * (
config.baseline - reward
)
loss = -1 * log_prob * (reward - baseline)
@@ -134,18 +179,29 @@ def train_controller(xloader, shared_cnn, controller, criterion, optimizer, conf
Sstr = (
"*Train-Controller* "
+ time_string()
+ " [{:}][{:03d}/{:03d}]".format(epoch_str, step, config.ctl_train_steps * config.ctl_num_aggre)
+ " [{:}][{:03d}/{:03d}]".format(
epoch_str, step, config.ctl_train_steps * config.ctl_num_aggre
)
)
Tstr = "Time {batch_time.val:.2f} ({batch_time.avg:.2f}) Data {data_time.val:.2f} ({data_time.avg:.2f})".format(
batch_time=batch_time, data_time=data_time
)
Wstr = "[Loss {loss.val:.3f} ({loss.avg:.3f}) Prec@1 {top1.val:.2f} ({top1.avg:.2f}) Reward {reward.val:.2f} ({reward.avg:.2f})] Baseline {basel.val:.2f} ({basel.avg:.2f})".format(
loss=LossMeter, top1=ValAccMeter, reward=RewardMeter, basel=BaselineMeter
loss=LossMeter,
top1=ValAccMeter,
reward=RewardMeter,
basel=BaselineMeter,
)
Estr = "Entropy={:.4f} ({:.4f})".format(EntropyMeter.val, EntropyMeter.avg)
logger.log(Sstr + " " + Tstr + " " + Wstr + " " + Estr)
return LossMeter.avg, ValAccMeter.avg, BaselineMeter.avg, RewardMeter.avg, baseline.item()
return (
LossMeter.avg,
ValAccMeter.avg,
BaselineMeter.avg,
RewardMeter.avg,
baseline.item(),
)
def get_best_arch(controller, shared_cnn, xloader, n_samples=10):
@@ -164,7 +220,9 @@ def get_best_arch(controller, shared_cnn, xloader, n_samples=10):
_, _, sampled_arch = controller()
arch = shared_cnn.module.update_arch(sampled_arch)
_, logits = shared_cnn(inputs)
val_top1, val_top5 = obtain_accuracy(logits.cpu().data, targets.data, topk=(1, 5))
val_top1, val_top5 = obtain_accuracy(
logits.cpu().data, targets.data, topk=(1, 5)
)
archs.append(arch)
valid_accs.append(val_top1.item())
@@ -188,7 +246,9 @@ def valid_func(xloader, network, criterion):
_, logits = network(arch_inputs)
arch_loss = criterion(logits, arch_targets)
# record
arch_prec1, arch_prec5 = obtain_accuracy(logits.data, arch_targets.data, topk=(1, 5))
arch_prec1, arch_prec5 = obtain_accuracy(
logits.data, arch_targets.data, topk=(1, 5)
)
arch_losses.update(arch_loss.item(), arch_inputs.size(0))
arch_top1.update(arch_prec1.item(), arch_inputs.size(0))
arch_top5.update(arch_prec5.item(), arch_inputs.size(0))
@@ -207,11 +267,20 @@ def main(xargs):
prepare_seed(xargs.rand_seed)
logger = prepare_logger(args)
train_data, test_data, xshape, class_num = get_datasets(xargs.dataset, xargs.data_path, -1)
train_data, test_data, xshape, class_num = get_datasets(
xargs.dataset, xargs.data_path, -1
)
logger.log("use config from : {:}".format(xargs.config_path))
config = load_config(xargs.config_path, {"class_num": class_num, "xshape": xshape}, logger)
config = load_config(
xargs.config_path, {"class_num": class_num, "xshape": xshape}, logger
)
_, train_loader, valid_loader = get_nas_search_loaders(
train_data, test_data, xargs.dataset, "configs/nas-benchmark/", config.batch_size, xargs.workers
train_data,
test_data,
xargs.dataset,
"configs/nas-benchmark/",
config.batch_size,
xargs.workers,
)
# since ENAS will train the controller on valid-loader, we need to use train transformation for valid-loader
valid_loader.dataset.transform = deepcopy(train_loader.dataset.transform)
@@ -242,9 +311,14 @@ def main(xargs):
shared_cnn = get_cell_based_tiny_net(model_config)
controller = shared_cnn.create_controller()
w_optimizer, w_scheduler, criterion = get_optim_scheduler(shared_cnn.parameters(), config)
w_optimizer, w_scheduler, criterion = get_optim_scheduler(
shared_cnn.parameters(), config
)
a_optimizer = torch.optim.Adam(
controller.parameters(), lr=config.controller_lr, betas=config.controller_betas, eps=config.controller_eps
controller.parameters(),
lr=config.controller_lr,
betas=config.controller_betas,
eps=config.controller_eps,
)
logger.log("w-optimizer : {:}".format(w_optimizer))
logger.log("a-optimizer : {:}".format(a_optimizer))
@@ -259,12 +333,22 @@ def main(xargs):
else:
api = API(xargs.arch_nas_dataset)
logger.log("{:} create API = {:} done".format(time_string(), api))
shared_cnn, controller, criterion = torch.nn.DataParallel(shared_cnn).cuda(), controller.cuda(), criterion.cuda()
shared_cnn, controller, criterion = (
torch.nn.DataParallel(shared_cnn).cuda(),
controller.cuda(),
criterion.cuda(),
)
last_info, model_base_path, model_best_path = logger.path("info"), logger.path("model"), logger.path("best")
last_info, model_base_path, model_best_path = (
logger.path("info"),
logger.path("model"),
logger.path("best"),
)
if last_info.exists(): # automatically resume from previous checkpoint
logger.log("=> loading checkpoint of the last-info '{:}' start".format(last_info))
logger.log(
"=> loading checkpoint of the last-info '{:}' start".format(last_info)
)
last_info = torch.load(last_info)
start_epoch = last_info["epoch"]
checkpoint = torch.load(last_info["last_checkpoint"])
@@ -277,7 +361,9 @@ def main(xargs):
w_optimizer.load_state_dict(checkpoint["w_optimizer"])
a_optimizer.load_state_dict(checkpoint["a_optimizer"])
logger.log(
"=> loading checkpoint of the last-info '{:}' start with {:}-th epoch.".format(last_info, start_epoch)
"=> loading checkpoint of the last-info '{:}' start with {:}-th epoch.".format(
last_info, start_epoch
)
)
else:
logger.log("=> do not find the last-info file : {:}".format(last_info))
@@ -292,7 +378,9 @@ def main(xargs):
)
for epoch in range(start_epoch, total_epoch):
w_scheduler.update(epoch, 0.0)
need_time = "Time Left: {:}".format(convert_secs2time(epoch_time.val * (total_epoch - epoch), True))
need_time = "Time Left: {:}".format(
convert_secs2time(epoch_time.val * (total_epoch - epoch), True)
)
epoch_str = "{:03d}-{:03d}".format(epoch, total_epoch)
logger.log(
"\n[Search the {:}-th epoch] {:}, LR={:}, baseline={:}".format(
@@ -339,7 +427,13 @@ def main(xargs):
search_time.update(time.time() - start_time)
logger.log(
"[{:}] controller : loss={:.2f}, accuracy={:.2f}%, baseline={:.2f}, reward={:.2f}, current-baseline={:.4f}, time-cost={:.1f} s".format(
epoch_str, ctl_loss, ctl_acc, ctl_baseline, ctl_reward, baseline, search_time.sum
epoch_str,
ctl_loss,
ctl_acc,
ctl_baseline,
ctl_reward,
baseline,
search_time.sum,
)
)
best_arch, _ = get_best_arch(controller, shared_cnn, valid_loader)
@@ -356,7 +450,9 @@ def main(xargs):
else:
find_best = False
logger.log("<<<--->>> The {:}-th epoch : {:}".format(epoch_str, genotypes[epoch]))
logger.log(
"<<<--->>> The {:}-th epoch : {:}".format(epoch_str, genotypes[epoch])
)
# save checkpoint
save_path = save_checkpoint(
{
@@ -397,18 +493,32 @@ def main(xargs):
start_time = time.time()
logger.log("\n" + "-" * 100)
logger.log("During searching, the best architecture is {:}".format(genotypes["best"]))
logger.log(
"During searching, the best architecture is {:}".format(genotypes["best"])
)
logger.log("Its accuracy is {:.2f}%".format(valid_accuracies["best"]))
logger.log("Randomly select {:} architectures and select the best.".format(xargs.controller_num_samples))
logger.log(
"Randomly select {:} architectures and select the best.".format(
xargs.controller_num_samples
)
)
start_time = time.time()
final_arch, _ = get_best_arch(controller, shared_cnn, valid_loader, xargs.controller_num_samples)
final_arch, _ = get_best_arch(
controller, shared_cnn, valid_loader, xargs.controller_num_samples
)
search_time.update(time.time() - start_time)
shared_cnn.module.update_arch(final_arch)
final_loss, final_top1, final_top5 = valid_func(valid_loader, shared_cnn, criterion)
logger.log("The Selected Final Architecture : {:}".format(final_arch))
logger.log("Loss={:.3f}, Accuracy@1={:.2f}%, Accuracy@5={:.2f}%".format(final_loss, final_top1, final_top5))
logger.log(
"ENAS : run {:} epochs, cost {:.1f} s, last-geno is {:}.".format(total_epoch, search_time.sum, final_arch)
"Loss={:.3f}, Accuracy@1={:.2f}%, Accuracy@5={:.2f}%".format(
final_loss, final_top1, final_top5
)
)
logger.log(
"ENAS : run {:} epochs, cost {:.1f} s, last-geno is {:}.".format(
total_epoch, search_time.sum, final_arch
)
)
if api is not None:
logger.log("{:}".format(api.query_by_arch(final_arch)))
@@ -434,18 +544,35 @@ if __name__ == "__main__":
parser.add_argument("--search_space_name", type=str, help="The search space name.")
parser.add_argument("--max_nodes", type=int, help="The maximum number of nodes.")
parser.add_argument("--channel", type=int, help="The number of channels.")
parser.add_argument("--num_cells", type=int, help="The number of cells in one stage.")
parser.add_argument("--config_path", type=str, help="The config file to train ENAS.")
parser.add_argument(
"--num_cells", type=int, help="The number of cells in one stage."
)
parser.add_argument(
"--config_path", type=str, help="The config file to train ENAS."
)
parser.add_argument("--controller_train_steps", type=int, help=".")
parser.add_argument("--controller_num_aggregate", type=int, help=".")
parser.add_argument("--controller_entropy_weight", type=float, help="The weight for the entropy of the controller.")
parser.add_argument(
"--controller_entropy_weight",
type=float,
help="The weight for the entropy of the controller.",
)
parser.add_argument("--controller_bl_dec", type=float, help=".")
parser.add_argument("--controller_num_samples", type=int, help=".")
# log
parser.add_argument("--workers", type=int, default=2, help="number of data loading workers (default: 2)")
parser.add_argument("--save_dir", type=str, help="Folder to save checkpoints and log.")
parser.add_argument(
"--arch_nas_dataset", type=str, help="The path to load the architecture dataset (nas-benchmark)."
"--workers",
type=int,
default=2,
help="number of data loading workers (default: 2)",
)
parser.add_argument(
"--save_dir", type=str, help="Folder to save checkpoints and log."
)
parser.add_argument(
"--arch_nas_dataset",
type=str,
help="The path to load the architecture dataset (nas-benchmark).",
)
parser.add_argument("--print_freq", type=int, help="print frequency (default: 200)")
parser.add_argument("--rand_seed", type=int, help="manual seed")