Add int search space
This commit is contained in:
@@ -13,7 +13,13 @@ if str(lib_dir) not in sys.path:
|
||||
sys.path.insert(0, str(lib_dir))
|
||||
from config_utils import load_config, dict2config, configure2str
|
||||
from datasets import get_datasets, get_nas_search_loaders
|
||||
from procedures import prepare_seed, prepare_logger, save_checkpoint, copy_checkpoint, get_optim_scheduler
|
||||
from procedures import (
|
||||
prepare_seed,
|
||||
prepare_logger,
|
||||
save_checkpoint,
|
||||
copy_checkpoint,
|
||||
get_optim_scheduler,
|
||||
)
|
||||
from utils import get_model_infos, obtain_accuracy
|
||||
from log_utils import AverageMeter, time_string, convert_secs2time
|
||||
from models import get_cell_based_tiny_net, get_search_spaces
|
||||
@@ -21,14 +27,25 @@ from nas_201_api import NASBench201API as API
|
||||
|
||||
|
||||
def search_func(
|
||||
xloader, network, criterion, scheduler, w_optimizer, a_optimizer, epoch_str, print_freq, logger, gradient_clip
|
||||
xloader,
|
||||
network,
|
||||
criterion,
|
||||
scheduler,
|
||||
w_optimizer,
|
||||
a_optimizer,
|
||||
epoch_str,
|
||||
print_freq,
|
||||
logger,
|
||||
gradient_clip,
|
||||
):
|
||||
data_time, batch_time = AverageMeter(), AverageMeter()
|
||||
base_losses, base_top1, base_top5 = AverageMeter(), AverageMeter(), AverageMeter()
|
||||
arch_losses, arch_top1, arch_top5 = AverageMeter(), AverageMeter(), AverageMeter()
|
||||
network.train()
|
||||
end = time.time()
|
||||
for step, (base_inputs, base_targets, arch_inputs, arch_targets) in enumerate(xloader):
|
||||
for step, (base_inputs, base_targets, arch_inputs, arch_targets) in enumerate(
|
||||
xloader
|
||||
):
|
||||
scheduler.update(None, 1.0 * step / len(xloader))
|
||||
base_targets = base_targets.cuda(non_blocking=True)
|
||||
arch_targets = arch_targets.cuda(non_blocking=True)
|
||||
@@ -44,7 +61,9 @@ def search_func(
|
||||
torch.nn.utils.clip_grad_norm_(network.parameters(), gradient_clip)
|
||||
w_optimizer.step()
|
||||
# record
|
||||
base_prec1, base_prec5 = obtain_accuracy(logits.data, base_targets.data, topk=(1, 5))
|
||||
base_prec1, base_prec5 = obtain_accuracy(
|
||||
logits.data, base_targets.data, topk=(1, 5)
|
||||
)
|
||||
base_losses.update(base_loss.item(), base_inputs.size(0))
|
||||
base_top1.update(base_prec1.item(), base_inputs.size(0))
|
||||
base_top5.update(base_prec5.item(), base_inputs.size(0))
|
||||
@@ -56,7 +75,9 @@ def search_func(
|
||||
arch_loss.backward()
|
||||
a_optimizer.step()
|
||||
# record
|
||||
arch_prec1, arch_prec5 = obtain_accuracy(logits.data, arch_targets.data, topk=(1, 5))
|
||||
arch_prec1, arch_prec5 = obtain_accuracy(
|
||||
logits.data, arch_targets.data, topk=(1, 5)
|
||||
)
|
||||
arch_losses.update(arch_loss.item(), arch_inputs.size(0))
|
||||
arch_top1.update(arch_prec1.item(), arch_inputs.size(0))
|
||||
arch_top5.update(arch_prec5.item(), arch_inputs.size(0))
|
||||
@@ -66,7 +87,11 @@ def search_func(
|
||||
end = time.time()
|
||||
|
||||
if step % print_freq == 0 or step + 1 == len(xloader):
|
||||
Sstr = "*SEARCH* " + time_string() + " [{:}][{:03d}/{:03d}]".format(epoch_str, step, len(xloader))
|
||||
Sstr = (
|
||||
"*SEARCH* "
|
||||
+ time_string()
|
||||
+ " [{:}][{:03d}/{:03d}]".format(epoch_str, step, len(xloader))
|
||||
)
|
||||
Tstr = "Time {batch_time.val:.2f} ({batch_time.avg:.2f}) Data {data_time.val:.2f} ({data_time.avg:.2f})".format(
|
||||
batch_time=batch_time, data_time=data_time
|
||||
)
|
||||
@@ -94,7 +119,9 @@ def valid_func(xloader, network, criterion):
|
||||
_, logits = network(arch_inputs)
|
||||
arch_loss = criterion(logits, arch_targets)
|
||||
# record
|
||||
arch_prec1, arch_prec5 = obtain_accuracy(logits.data, arch_targets.data, topk=(1, 5))
|
||||
arch_prec1, arch_prec5 = obtain_accuracy(
|
||||
logits.data, arch_targets.data, topk=(1, 5)
|
||||
)
|
||||
arch_losses.update(arch_loss.item(), arch_inputs.size(0))
|
||||
arch_top1.update(arch_prec1.item(), arch_inputs.size(0))
|
||||
arch_top5.update(arch_prec5.item(), arch_inputs.size(0))
|
||||
@@ -113,11 +140,20 @@ def main(xargs):
|
||||
prepare_seed(xargs.rand_seed)
|
||||
logger = prepare_logger(args)
|
||||
|
||||
train_data, valid_data, xshape, class_num = get_datasets(xargs.dataset, xargs.data_path, -1)
|
||||
train_data, valid_data, xshape, class_num = get_datasets(
|
||||
xargs.dataset, xargs.data_path, -1
|
||||
)
|
||||
# config_path = 'configs/nas-benchmark/algos/DARTS.config'
|
||||
config = load_config(xargs.config_path, {"class_num": class_num, "xshape": xshape}, logger)
|
||||
config = load_config(
|
||||
xargs.config_path, {"class_num": class_num, "xshape": xshape}, logger
|
||||
)
|
||||
search_loader, _, valid_loader = get_nas_search_loaders(
|
||||
train_data, valid_data, xargs.dataset, "configs/nas-benchmark/", config.batch_size, xargs.workers
|
||||
train_data,
|
||||
valid_data,
|
||||
xargs.dataset,
|
||||
"configs/nas-benchmark/",
|
||||
config.batch_size,
|
||||
xargs.workers,
|
||||
)
|
||||
logger.log(
|
||||
"||||||| {:10s} ||||||| Search-Loader-Num={:}, Valid-Loader-Num={:}, batch size={:}".format(
|
||||
@@ -155,9 +191,14 @@ def main(xargs):
|
||||
search_model = get_cell_based_tiny_net(model_config)
|
||||
logger.log("search-model :\n{:}".format(search_model))
|
||||
|
||||
w_optimizer, w_scheduler, criterion = get_optim_scheduler(search_model.get_weights(), config)
|
||||
w_optimizer, w_scheduler, criterion = get_optim_scheduler(
|
||||
search_model.get_weights(), config
|
||||
)
|
||||
a_optimizer = torch.optim.Adam(
|
||||
search_model.get_alphas(), lr=xargs.arch_learning_rate, betas=(0.5, 0.999), weight_decay=xargs.arch_weight_decay
|
||||
search_model.get_alphas(),
|
||||
lr=xargs.arch_learning_rate,
|
||||
betas=(0.5, 0.999),
|
||||
weight_decay=xargs.arch_weight_decay,
|
||||
)
|
||||
logger.log("w-optimizer : {:}".format(w_optimizer))
|
||||
logger.log("a-optimizer : {:}".format(a_optimizer))
|
||||
@@ -172,11 +213,17 @@ def main(xargs):
|
||||
api = API(xargs.arch_nas_dataset)
|
||||
logger.log("{:} create API = {:} done".format(time_string(), api))
|
||||
|
||||
last_info, model_base_path, model_best_path = logger.path("info"), logger.path("model"), logger.path("best")
|
||||
last_info, model_base_path, model_best_path = (
|
||||
logger.path("info"),
|
||||
logger.path("model"),
|
||||
logger.path("best"),
|
||||
)
|
||||
network, criterion = torch.nn.DataParallel(search_model).cuda(), criterion.cuda()
|
||||
|
||||
if last_info.exists(): # automatically resume from previous checkpoint
|
||||
logger.log("=> loading checkpoint of the last-info '{:}' start".format(last_info))
|
||||
logger.log(
|
||||
"=> loading checkpoint of the last-info '{:}' start".format(last_info)
|
||||
)
|
||||
last_info = torch.load(last_info)
|
||||
start_epoch = last_info["epoch"]
|
||||
checkpoint = torch.load(last_info["last_checkpoint"])
|
||||
@@ -187,11 +234,17 @@ def main(xargs):
|
||||
w_optimizer.load_state_dict(checkpoint["w_optimizer"])
|
||||
a_optimizer.load_state_dict(checkpoint["a_optimizer"])
|
||||
logger.log(
|
||||
"=> loading checkpoint of the last-info '{:}' start with {:}-th epoch.".format(last_info, start_epoch)
|
||||
"=> loading checkpoint of the last-info '{:}' start with {:}-th epoch.".format(
|
||||
last_info, start_epoch
|
||||
)
|
||||
)
|
||||
else:
|
||||
logger.log("=> do not find the last-info file : {:}".format(last_info))
|
||||
start_epoch, valid_accuracies, genotypes = 0, {"best": -1}, {-1: search_model.genotype()}
|
||||
start_epoch, valid_accuracies, genotypes = (
|
||||
0,
|
||||
{"best": -1},
|
||||
{-1: search_model.genotype()},
|
||||
)
|
||||
|
||||
# start training
|
||||
start_time, search_time, epoch_time, total_epoch = (
|
||||
@@ -202,9 +255,15 @@ def main(xargs):
|
||||
)
|
||||
for epoch in range(start_epoch, total_epoch):
|
||||
w_scheduler.update(epoch, 0.0)
|
||||
need_time = "Time Left: {:}".format(convert_secs2time(epoch_time.val * (total_epoch - epoch), True))
|
||||
need_time = "Time Left: {:}".format(
|
||||
convert_secs2time(epoch_time.val * (total_epoch - epoch), True)
|
||||
)
|
||||
epoch_str = "{:03d}-{:03d}".format(epoch, total_epoch)
|
||||
logger.log("\n[Search the {:}-th epoch] {:}, LR={:}".format(epoch_str, need_time, min(w_scheduler.get_lr())))
|
||||
logger.log(
|
||||
"\n[Search the {:}-th epoch] {:}, LR={:}".format(
|
||||
epoch_str, need_time, min(w_scheduler.get_lr())
|
||||
)
|
||||
)
|
||||
|
||||
search_w_loss, search_w_top1, search_w_top5 = search_func(
|
||||
search_loader,
|
||||
@@ -224,7 +283,9 @@ def main(xargs):
|
||||
epoch_str, search_w_loss, search_w_top1, search_w_top5, search_time.sum
|
||||
)
|
||||
)
|
||||
valid_a_loss, valid_a_top1, valid_a_top5 = valid_func(valid_loader, network, criterion)
|
||||
valid_a_loss, valid_a_top1, valid_a_top5 = valid_func(
|
||||
valid_loader, network, criterion
|
||||
)
|
||||
logger.log(
|
||||
"[{:}] evaluate : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%".format(
|
||||
epoch_str, valid_a_loss, valid_a_top1, valid_a_top5
|
||||
@@ -240,7 +301,9 @@ def main(xargs):
|
||||
find_best = False
|
||||
|
||||
genotypes[epoch] = search_model.genotype()
|
||||
logger.log("<<<--->>> The {:}-th epoch : {:}".format(epoch_str, genotypes[epoch]))
|
||||
logger.log(
|
||||
"<<<--->>> The {:}-th epoch : {:}".format(epoch_str, genotypes[epoch])
|
||||
)
|
||||
# save checkpoint
|
||||
save_path = save_checkpoint(
|
||||
{
|
||||
@@ -305,7 +368,9 @@ if __name__ == "__main__":
|
||||
parser.add_argument("--search_space_name", type=str, help="The search space name.")
|
||||
parser.add_argument("--max_nodes", type=int, help="The maximum number of nodes.")
|
||||
parser.add_argument("--channel", type=int, help="The number of channels.")
|
||||
parser.add_argument("--num_cells", type=int, help="The number of cells in one stage.")
|
||||
parser.add_argument(
|
||||
"--num_cells", type=int, help="The number of cells in one stage."
|
||||
)
|
||||
parser.add_argument(
|
||||
"--track_running_stats",
|
||||
type=int,
|
||||
@@ -320,13 +385,32 @@ if __name__ == "__main__":
|
||||
)
|
||||
parser.add_argument("--gradient_clip", type=float, default=5, help="")
|
||||
# architecture leraning rate
|
||||
parser.add_argument("--arch_learning_rate", type=float, default=3e-4, help="learning rate for arch encoding")
|
||||
parser.add_argument("--arch_weight_decay", type=float, default=1e-3, help="weight decay for arch encoding")
|
||||
# log
|
||||
parser.add_argument("--workers", type=int, default=2, help="number of data loading workers (default: 2)")
|
||||
parser.add_argument("--save_dir", type=str, help="Folder to save checkpoints and log.")
|
||||
parser.add_argument(
|
||||
"--arch_nas_dataset", type=str, help="The path to load the architecture dataset (nas-benchmark)."
|
||||
"--arch_learning_rate",
|
||||
type=float,
|
||||
default=3e-4,
|
||||
help="learning rate for arch encoding",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--arch_weight_decay",
|
||||
type=float,
|
||||
default=1e-3,
|
||||
help="weight decay for arch encoding",
|
||||
)
|
||||
# log
|
||||
parser.add_argument(
|
||||
"--workers",
|
||||
type=int,
|
||||
default=2,
|
||||
help="number of data loading workers (default: 2)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--save_dir", type=str, help="Folder to save checkpoints and log."
|
||||
)
|
||||
parser.add_argument(
|
||||
"--arch_nas_dataset",
|
||||
type=str,
|
||||
help="The path to load the architecture dataset (nas-benchmark).",
|
||||
)
|
||||
parser.add_argument("--print_freq", type=int, help="print frequency (default: 200)")
|
||||
parser.add_argument("--rand_seed", type=int, help="manual seed")
|
||||
|
Reference in New Issue
Block a user