Add int search space

This commit is contained in:
D-X-Y
2021-03-18 16:02:55 +08:00
parent ece6ac5f41
commit 63c8bb9bc8
67 changed files with 5150 additions and 1474 deletions

View File

@@ -37,7 +37,13 @@ if str(lib_dir) not in sys.path:
sys.path.insert(0, str(lib_dir))
from config_utils import load_config, dict2config, configure2str
from datasets import get_datasets, get_nas_search_loaders
from procedures import prepare_seed, prepare_logger, save_checkpoint, copy_checkpoint, get_optim_scheduler
from procedures import (
prepare_seed,
prepare_logger,
save_checkpoint,
copy_checkpoint,
get_optim_scheduler,
)
from utils import count_parameters_in_MB, obtain_accuracy
from log_utils import AverageMeter, time_string, convert_secs2time
from models import get_cell_based_tiny_net, get_search_spaces
@@ -49,7 +55,9 @@ def _concat(xs):
return torch.cat([x.view(-1) for x in xs])
def _hessian_vector_product(vector, network, criterion, base_inputs, base_targets, r=1e-2):
def _hessian_vector_product(
vector, network, criterion, base_inputs, base_targets, r=1e-2
):
R = r / _concat(vector).norm()
for p, v in zip(network.weights, vector):
p.data.add_(R, v)
@@ -68,7 +76,15 @@ def _hessian_vector_product(vector, network, criterion, base_inputs, base_target
return [(x - y).div_(2 * R) for x, y in zip(grads_p, grads_n)]
def backward_step_unrolled(network, criterion, base_inputs, base_targets, w_optimizer, arch_inputs, arch_targets):
def backward_step_unrolled(
network,
criterion,
base_inputs,
base_targets,
w_optimizer,
arch_inputs,
arch_targets,
):
# _compute_unrolled_model
_, logits = network(base_inputs)
loss = criterion(logits, base_targets)
@@ -80,7 +96,9 @@ def backward_step_unrolled(network, criterion, base_inputs, base_targets, w_opti
with torch.no_grad():
theta = _concat(network.weights)
try:
moment = _concat(w_optimizer.state[v]["momentum_buffer"] for v in network.weights)
moment = _concat(
w_optimizer.state[v]["momentum_buffer"] for v in network.weights
)
moment = moment.mul_(momentum)
except:
moment = torch.zeros_like(theta)
@@ -105,7 +123,9 @@ def backward_step_unrolled(network, criterion, base_inputs, base_targets, w_opti
dalpha = unrolled_model.arch_parameters.grad
vector = [v.grad.data for v in unrolled_model.weights]
[implicit_grads] = _hessian_vector_product(vector, network, criterion, base_inputs, base_targets)
[implicit_grads] = _hessian_vector_product(
vector, network, criterion, base_inputs, base_targets
)
dalpha.data.sub_(LR, implicit_grads.data)
@@ -116,13 +136,26 @@ def backward_step_unrolled(network, criterion, base_inputs, base_targets, w_opti
return unrolled_loss.detach(), unrolled_logits.detach()
def search_func(xloader, network, criterion, scheduler, w_optimizer, a_optimizer, epoch_str, print_freq, algo, logger):
def search_func(
xloader,
network,
criterion,
scheduler,
w_optimizer,
a_optimizer,
epoch_str,
print_freq,
algo,
logger,
):
data_time, batch_time = AverageMeter(), AverageMeter()
base_losses, base_top1, base_top5 = AverageMeter(), AverageMeter(), AverageMeter()
arch_losses, arch_top1, arch_top5 = AverageMeter(), AverageMeter(), AverageMeter()
end = time.time()
network.train()
for step, (base_inputs, base_targets, arch_inputs, arch_targets) in enumerate(xloader):
for step, (base_inputs, base_targets, arch_inputs, arch_targets) in enumerate(
xloader
):
scheduler.update(None, 1.0 * step / len(xloader))
base_inputs = base_inputs.cuda(non_blocking=True)
arch_inputs = arch_inputs.cuda(non_blocking=True)
@@ -155,7 +188,9 @@ def search_func(xloader, network, criterion, scheduler, w_optimizer, a_optimizer
base_loss.backward()
w_optimizer.step()
# record
base_prec1, base_prec5 = obtain_accuracy(logits.data, base_targets.data, topk=(1, 5))
base_prec1, base_prec5 = obtain_accuracy(
logits.data, base_targets.data, topk=(1, 5)
)
base_losses.update(base_loss.item(), base_inputs.size(0))
base_top1.update(base_prec1.item(), base_inputs.size(0))
base_top5.update(base_prec5.item(), base_inputs.size(0))
@@ -174,7 +209,13 @@ def search_func(xloader, network, criterion, scheduler, w_optimizer, a_optimizer
network.zero_grad()
if algo == "darts-v2":
arch_loss, logits = backward_step_unrolled(
network, criterion, base_inputs, base_targets, w_optimizer, arch_inputs, arch_targets
network,
criterion,
base_inputs,
base_targets,
w_optimizer,
arch_inputs,
arch_targets,
)
a_optimizer.step()
elif algo == "random" or algo == "enas":
@@ -187,7 +228,9 @@ def search_func(xloader, network, criterion, scheduler, w_optimizer, a_optimizer
arch_loss.backward()
a_optimizer.step()
# record
arch_prec1, arch_prec5 = obtain_accuracy(logits.data, arch_targets.data, topk=(1, 5))
arch_prec1, arch_prec5 = obtain_accuracy(
logits.data, arch_targets.data, topk=(1, 5)
)
arch_losses.update(arch_loss.item(), arch_inputs.size(0))
arch_top1.update(arch_prec1.item(), arch_inputs.size(0))
arch_top5.update(arch_prec5.item(), arch_inputs.size(0))
@@ -197,7 +240,11 @@ def search_func(xloader, network, criterion, scheduler, w_optimizer, a_optimizer
end = time.time()
if step % print_freq == 0 or step + 1 == len(xloader):
Sstr = "*SEARCH* " + time_string() + " [{:}][{:03d}/{:03d}]".format(epoch_str, step, len(xloader))
Sstr = (
"*SEARCH* "
+ time_string()
+ " [{:}][{:03d}/{:03d}]".format(epoch_str, step, len(xloader))
)
Tstr = "Time {batch_time.val:.2f} ({batch_time.avg:.2f}) Data {data_time.val:.2f} ({data_time.avg:.2f})".format(
batch_time=batch_time, data_time=data_time
)
@@ -208,14 +255,31 @@ def search_func(xloader, network, criterion, scheduler, w_optimizer, a_optimizer
loss=arch_losses, top1=arch_top1, top5=arch_top5
)
logger.log(Sstr + " " + Tstr + " " + Wstr + " " + Astr)
return base_losses.avg, base_top1.avg, base_top5.avg, arch_losses.avg, arch_top1.avg, arch_top5.avg
return (
base_losses.avg,
base_top1.avg,
base_top5.avg,
arch_losses.avg,
arch_top1.avg,
arch_top5.avg,
)
def train_controller(xloader, network, criterion, optimizer, prev_baseline, epoch_str, print_freq, logger):
def train_controller(
xloader, network, criterion, optimizer, prev_baseline, epoch_str, print_freq, logger
):
# config. (containing some necessary arg)
# baseline: The baseline score (i.e. average val_acc) from the previous epoch
data_time, batch_time = AverageMeter(), AverageMeter()
GradnormMeter, LossMeter, ValAccMeter, EntropyMeter, BaselineMeter, RewardMeter, xend = (
(
GradnormMeter,
LossMeter,
ValAccMeter,
EntropyMeter,
BaselineMeter,
RewardMeter,
xend,
) = (
AverageMeter(),
AverageMeter(),
AverageMeter(),
@@ -255,7 +319,9 @@ def train_controller(xloader, network, criterion, optimizer, prev_baseline, epoc
if prev_baseline is None:
baseline = val_top1
else:
baseline = prev_baseline - (1 - controller_bl_dec) * (prev_baseline - reward)
baseline = prev_baseline - (1 - controller_bl_dec) * (
prev_baseline - reward
)
loss = -1 * log_prob * (reward - baseline)
@@ -274,7 +340,9 @@ def train_controller(xloader, network, criterion, optimizer, prev_baseline, epoc
batch_time.update(time.time() - xend)
xend = time.time()
if (step + 1) % controller_num_aggregate == 0:
grad_norm = torch.nn.utils.clip_grad_norm_(network.controller.parameters(), 5.0)
grad_norm = torch.nn.utils.clip_grad_norm_(
network.controller.parameters(), 5.0
)
GradnormMeter.update(grad_norm)
optimizer.step()
network.controller.zero_grad()
@@ -283,13 +351,18 @@ def train_controller(xloader, network, criterion, optimizer, prev_baseline, epoc
Sstr = (
"*Train-Controller* "
+ time_string()
+ " [{:}][{:03d}/{:03d}]".format(epoch_str, step, controller_train_steps * controller_num_aggregate)
+ " [{:}][{:03d}/{:03d}]".format(
epoch_str, step, controller_train_steps * controller_num_aggregate
)
)
Tstr = "Time {batch_time.val:.2f} ({batch_time.avg:.2f}) Data {data_time.val:.2f} ({data_time.avg:.2f})".format(
batch_time=batch_time, data_time=data_time
)
Wstr = "[Loss {loss.val:.3f} ({loss.avg:.3f}) Prec@1 {top1.val:.2f} ({top1.avg:.2f}) Reward {reward.val:.2f} ({reward.avg:.2f})] Baseline {basel.val:.2f} ({basel.avg:.2f})".format(
loss=LossMeter, top1=ValAccMeter, reward=RewardMeter, basel=BaselineMeter
loss=LossMeter,
top1=ValAccMeter,
reward=RewardMeter,
basel=BaselineMeter,
)
Estr = "Entropy={:.4f} ({:.4f})".format(EntropyMeter.val, EntropyMeter.avg)
logger.log(Sstr + " " + Tstr + " " + Wstr + " " + Estr)
@@ -323,7 +396,9 @@ def get_best_arch(xloader, network, n_samples, algo):
loader_iter = iter(xloader)
inputs, targets = next(loader_iter)
_, logits = network(inputs.cuda(non_blocking=True))
val_top1, val_top5 = obtain_accuracy(logits.cpu().data, targets.data, topk=(1, 5))
val_top1, val_top5 = obtain_accuracy(
logits.cpu().data, targets.data, topk=(1, 5)
)
valid_accs.append(val_top1.item())
best_idx = np.argmax(valid_accs)
best_arch, best_valid_acc = archs[best_idx], valid_accs[best_idx]
@@ -344,7 +419,9 @@ def valid_func(xloader, network, criterion, algo, logger):
_, logits = network(arch_inputs.cuda(non_blocking=True))
arch_loss = criterion(logits, arch_targets)
# record
arch_prec1, arch_prec5 = obtain_accuracy(logits.data, arch_targets.data, topk=(1, 5))
arch_prec1, arch_prec5 = obtain_accuracy(
logits.data, arch_targets.data, topk=(1, 5)
)
arch_losses.update(arch_loss.item(), arch_inputs.size(0))
arch_top1.update(arch_prec1.item(), arch_inputs.size(0))
arch_top5.update(arch_prec5.item(), arch_inputs.size(0))
@@ -363,11 +440,17 @@ def main(xargs):
prepare_seed(xargs.rand_seed)
logger = prepare_logger(args)
train_data, valid_data, xshape, class_num = get_datasets(xargs.dataset, xargs.data_path, -1)
train_data, valid_data, xshape, class_num = get_datasets(
xargs.dataset, xargs.data_path, -1
)
if xargs.overwite_epochs is None:
extra_info = {"class_num": class_num, "xshape": xshape}
else:
extra_info = {"class_num": class_num, "xshape": xshape, "epochs": xargs.overwite_epochs}
extra_info = {
"class_num": class_num,
"xshape": xshape,
"epochs": xargs.overwite_epochs,
}
config = load_config(xargs.config_path, extra_info, logger)
search_loader, train_loader, valid_loader = get_nas_search_loaders(
train_data,
@@ -405,7 +488,9 @@ def main(xargs):
search_model.set_algo(xargs.algo)
logger.log("{:}".format(search_model))
w_optimizer, w_scheduler, criterion = get_optim_scheduler(search_model.weights, config)
w_optimizer, w_scheduler, criterion = get_optim_scheduler(
search_model.weights, config
)
a_optimizer = torch.optim.Adam(
search_model.alphas,
lr=xargs.arch_learning_rate,
@@ -426,13 +511,23 @@ def main(xargs):
api = None
logger.log("{:} create API = {:} done".format(time_string(), api))
last_info, model_base_path, model_best_path = logger.path("info"), logger.path("model"), logger.path("best")
last_info, model_base_path, model_best_path = (
logger.path("info"),
logger.path("model"),
logger.path("best"),
)
network, criterion = search_model.cuda(), criterion.cuda() # use a single GPU
last_info, model_base_path, model_best_path = logger.path("info"), logger.path("model"), logger.path("best")
last_info, model_base_path, model_best_path = (
logger.path("info"),
logger.path("model"),
logger.path("best"),
)
if last_info.exists(): # automatically resume from previous checkpoint
logger.log("=> loading checkpoint of the last-info '{:}' start".format(last_info))
logger.log(
"=> loading checkpoint of the last-info '{:}' start".format(last_info)
)
last_info = torch.load(last_info)
start_epoch = last_info["epoch"]
checkpoint = torch.load(last_info["last_checkpoint"])
@@ -444,11 +539,17 @@ def main(xargs):
w_optimizer.load_state_dict(checkpoint["w_optimizer"])
a_optimizer.load_state_dict(checkpoint["a_optimizer"])
logger.log(
"=> loading checkpoint of the last-info '{:}' start with {:}-th epoch.".format(last_info, start_epoch)
"=> loading checkpoint of the last-info '{:}' start with {:}-th epoch.".format(
last_info, start_epoch
)
)
else:
logger.log("=> do not find the last-info file : {:}".format(last_info))
start_epoch, valid_accuracies, genotypes = 0, {"best": -1}, {-1: network.return_topK(1, True)[0]}
start_epoch, valid_accuracies, genotypes = (
0,
{"best": -1},
{-1: network.return_topK(1, True)[0]},
)
baseline = None
# start training
@@ -460,15 +561,35 @@ def main(xargs):
)
for epoch in range(start_epoch, total_epoch):
w_scheduler.update(epoch, 0.0)
need_time = "Time Left: {:}".format(convert_secs2time(epoch_time.val * (total_epoch - epoch), True))
need_time = "Time Left: {:}".format(
convert_secs2time(epoch_time.val * (total_epoch - epoch), True)
)
epoch_str = "{:03d}-{:03d}".format(epoch, total_epoch)
logger.log("\n[Search the {:}-th epoch] {:}, LR={:}".format(epoch_str, need_time, min(w_scheduler.get_lr())))
logger.log(
"\n[Search the {:}-th epoch] {:}, LR={:}".format(
epoch_str, need_time, min(w_scheduler.get_lr())
)
)
network.set_drop_path(float(epoch + 1) / total_epoch, xargs.drop_path_rate)
if xargs.algo == "gdas":
network.set_tau(xargs.tau_max - (xargs.tau_max - xargs.tau_min) * epoch / (total_epoch - 1))
logger.log("[RESET tau as : {:} and drop_path as {:}]".format(network.tau, network.drop_path))
search_w_loss, search_w_top1, search_w_top5, search_a_loss, search_a_top1, search_a_top5 = search_func(
network.set_tau(
xargs.tau_max
- (xargs.tau_max - xargs.tau_min) * epoch / (total_epoch - 1)
)
logger.log(
"[RESET tau as : {:} and drop_path as {:}]".format(
network.tau, network.drop_path
)
)
(
search_w_loss,
search_w_top1,
search_w_top5,
search_a_loss,
search_a_top1,
search_a_top5,
) = search_func(
search_loader,
network,
criterion,
@@ -493,7 +614,14 @@ def main(xargs):
)
if xargs.algo == "enas":
ctl_loss, ctl_acc, baseline, ctl_reward = train_controller(
valid_loader, network, criterion, a_optimizer, baseline, epoch_str, xargs.print_freq, logger
valid_loader,
network,
criterion,
a_optimizer,
baseline,
epoch_str,
xargs.print_freq,
logger,
)
logger.log(
"[{:}] controller : loss={:}, acc={:}, baseline={:}, reward={:}".format(
@@ -501,7 +629,9 @@ def main(xargs):
)
)
genotype, temp_accuracy = get_best_arch(valid_loader, network, xargs.eval_candidate_num, xargs.algo)
genotype, temp_accuracy = get_best_arch(
valid_loader, network, xargs.eval_candidate_num, xargs.algo
)
if xargs.algo == "setn" or xargs.algo == "enas":
network.set_cal_mode("dynamic", genotype)
elif xargs.algo == "gdas":
@@ -512,8 +642,14 @@ def main(xargs):
network.set_cal_mode("urs", None)
else:
raise ValueError("Invalid algorithm name : {:}".format(xargs.algo))
logger.log("[{:}] - [get_best_arch] : {:} -> {:}".format(epoch_str, genotype, temp_accuracy))
valid_a_loss, valid_a_top1, valid_a_top5 = valid_func(valid_loader, network, criterion, xargs.algo, logger)
logger.log(
"[{:}] - [get_best_arch] : {:} -> {:}".format(
epoch_str, genotype, temp_accuracy
)
)
valid_a_loss, valid_a_top1, valid_a_top5 = valid_func(
valid_loader, network, criterion, xargs.algo, logger
)
logger.log(
"[{:}] evaluate : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}% | {:}".format(
epoch_str, valid_a_loss, valid_a_top1, valid_a_top5, genotype
@@ -522,7 +658,9 @@ def main(xargs):
valid_accuracies[epoch] = valid_a_top1
genotypes[epoch] = genotype
logger.log("<<<--->>> The {:}-th epoch : {:}".format(epoch_str, genotypes[epoch]))
logger.log(
"<<<--->>> The {:}-th epoch : {:}".format(epoch_str, genotypes[epoch])
)
# save checkpoint
save_path = save_checkpoint(
{
@@ -558,7 +696,9 @@ def main(xargs):
# the final post procedure : count the time
start_time = time.time()
genotype, temp_accuracy = get_best_arch(valid_loader, network, xargs.eval_candidate_num, xargs.algo)
genotype, temp_accuracy = get_best_arch(
valid_loader, network, xargs.eval_candidate_num, xargs.algo
)
if xargs.algo == "setn" or xargs.algo == "enas":
network.set_cal_mode("dynamic", genotype)
elif xargs.algo == "gdas":
@@ -571,8 +711,14 @@ def main(xargs):
raise ValueError("Invalid algorithm name : {:}".format(xargs.algo))
search_time.update(time.time() - start_time)
valid_a_loss, valid_a_top1, valid_a_top5 = valid_func(valid_loader, network, criterion, xargs.algo, logger)
logger.log("Last : the gentotype is : {:}, with the validation accuracy of {:.3f}%.".format(genotype, valid_a_top1))
valid_a_loss, valid_a_top1, valid_a_top5 = valid_func(
valid_loader, network, criterion, xargs.algo, logger
)
logger.log(
"Last : the gentotype is : {:}, with the validation accuracy of {:.3f}%.".format(
genotype, valid_a_top1
)
)
logger.log("\n" + "-" * 100)
# check the performance from the architecture dataset
@@ -595,7 +741,13 @@ if __name__ == "__main__":
choices=["cifar10", "cifar100", "ImageNet16-120"],
help="Choose between Cifar10/100 and ImageNet-16.",
)
parser.add_argument("--search_space", type=str, default="tss", choices=["tss"], help="The search space name.")
parser.add_argument(
"--search_space",
type=str,
default="tss",
choices=["tss"],
help="The search space name.",
)
parser.add_argument(
"--algo",
type=str,
@@ -603,18 +755,35 @@ if __name__ == "__main__":
help="The search space name.",
)
parser.add_argument(
"--use_api", type=int, default=1, choices=[0, 1], help="Whether use API or not (which will cost much memory)."
"--use_api",
type=int,
default=1,
choices=[0, 1],
help="Whether use API or not (which will cost much memory).",
)
# FOR GDAS
parser.add_argument("--tau_min", type=float, default=0.1, help="The minimum tau for Gumbel Softmax.")
parser.add_argument("--tau_max", type=float, default=10, help="The maximum tau for Gumbel Softmax.")
parser.add_argument(
"--tau_min", type=float, default=0.1, help="The minimum tau for Gumbel Softmax."
)
parser.add_argument(
"--tau_max", type=float, default=10, help="The maximum tau for Gumbel Softmax."
)
# channels and number-of-cells
parser.add_argument("--max_nodes", type=int, default=4, help="The maximum number of nodes.")
parser.add_argument("--channel", type=int, default=16, help="The number of channels.")
parser.add_argument("--num_cells", type=int, default=5, help="The number of cells in one stage.")
parser.add_argument(
"--max_nodes", type=int, default=4, help="The maximum number of nodes."
)
parser.add_argument(
"--channel", type=int, default=16, help="The number of channels."
)
parser.add_argument(
"--num_cells", type=int, default=5, help="The number of cells in one stage."
)
#
parser.add_argument(
"--eval_candidate_num", type=int, default=100, help="The number of selected architectures to evaluate."
"--eval_candidate_num",
type=int,
default=100,
help="The number of selected architectures to evaluate.",
)
#
parser.add_argument(
@@ -625,7 +794,11 @@ if __name__ == "__main__":
help="Whether use track_running_stats or not in the BN layer.",
)
parser.add_argument(
"--affine", type=int, default=0, choices=[0, 1], help="Whether use affine=True or False in the BN layer."
"--affine",
type=int,
default=0,
choices=[0, 1],
help="Whether use affine=True or False in the BN layer.",
)
parser.add_argument(
"--config_path",
@@ -634,17 +807,43 @@ if __name__ == "__main__":
help="The path of configuration.",
)
parser.add_argument(
"--overwite_epochs", type=int, help="The number of epochs to overwrite that value in config files."
"--overwite_epochs",
type=int,
help="The number of epochs to overwrite that value in config files.",
)
# architecture leraning rate
parser.add_argument("--arch_learning_rate", type=float, default=3e-4, help="learning rate for arch encoding")
parser.add_argument("--arch_weight_decay", type=float, default=1e-3, help="weight decay for arch encoding")
parser.add_argument("--arch_eps", type=float, default=1e-8, help="weight decay for arch encoding")
parser.add_argument(
"--arch_learning_rate",
type=float,
default=3e-4,
help="learning rate for arch encoding",
)
parser.add_argument(
"--arch_weight_decay",
type=float,
default=1e-3,
help="weight decay for arch encoding",
)
parser.add_argument(
"--arch_eps", type=float, default=1e-8, help="weight decay for arch encoding"
)
parser.add_argument("--drop_path_rate", type=float, help="The drop path rate.")
# log
parser.add_argument("--workers", type=int, default=2, help="number of data loading workers (default: 2)")
parser.add_argument("--save_dir", type=str, default="./output/search", help="Folder to save checkpoints and log.")
parser.add_argument("--print_freq", type=int, default=200, help="print frequency (default: 200)")
parser.add_argument(
"--workers",
type=int,
default=2,
help="number of data loading workers (default: 2)",
)
parser.add_argument(
"--save_dir",
type=str,
default="./output/search",
help="Folder to save checkpoints and log.",
)
parser.add_argument(
"--print_freq", type=int, default=200, help="print frequency (default: 200)"
)
parser.add_argument("--rand_seed", type=int, help="manual seed")
args = parser.parse_args()
if args.rand_seed is None or args.rand_seed < 0:
@@ -653,14 +852,20 @@ if __name__ == "__main__":
args.save_dir = os.path.join(
"{:}-{:}".format(args.save_dir, args.search_space),
args.dataset,
"{:}-affine{:}_BN{:}-{:}".format(args.algo, args.affine, args.track_running_stats, args.drop_path_rate),
"{:}-affine{:}_BN{:}-{:}".format(
args.algo, args.affine, args.track_running_stats, args.drop_path_rate
),
)
else:
args.save_dir = os.path.join(
"{:}-{:}".format(args.save_dir, args.search_space),
args.dataset,
"{:}-affine{:}_BN{:}-E{:}-{:}".format(
args.algo, args.affine, args.track_running_stats, args.overwite_epochs, args.drop_path_rate
args.algo,
args.affine,
args.track_running_stats,
args.overwite_epochs,
args.drop_path_rate,
),
)