Add int search space
This commit is contained in:
@@ -23,7 +23,13 @@ if str(lib_dir) not in sys.path:
|
||||
sys.path.insert(0, str(lib_dir))
|
||||
from config_utils import load_config, dict2config, configure2str
|
||||
from datasets import get_datasets, SearchDataset
|
||||
from procedures import prepare_seed, prepare_logger, save_checkpoint, copy_checkpoint, get_optim_scheduler
|
||||
from procedures import (
|
||||
prepare_seed,
|
||||
prepare_logger,
|
||||
save_checkpoint,
|
||||
copy_checkpoint,
|
||||
get_optim_scheduler,
|
||||
)
|
||||
from utils import get_model_infos, obtain_accuracy
|
||||
from log_utils import AverageMeter, time_string, convert_secs2time
|
||||
from models import CellStructure, get_search_spaces
|
||||
@@ -40,7 +46,9 @@ class PolicyTopology(nn.Module):
|
||||
for j in range(i):
|
||||
node_str = "{:}<-{:}".format(i, j)
|
||||
self.edge2index[node_str] = len(self.edge2index)
|
||||
self.arch_parameters = nn.Parameter(1e-3 * torch.randn(len(self.edge2index), len(search_space)))
|
||||
self.arch_parameters = nn.Parameter(
|
||||
1e-3 * torch.randn(len(self.edge2index), len(search_space))
|
||||
)
|
||||
|
||||
def generate_arch(self, actions):
|
||||
genotypes = []
|
||||
@@ -76,7 +84,9 @@ class PolicySize(nn.Module):
|
||||
super(PolicySize, self).__init__()
|
||||
self.candidates = search_space["candidates"]
|
||||
self.numbers = search_space["numbers"]
|
||||
self.arch_parameters = nn.Parameter(1e-3 * torch.randn(self.numbers, len(self.candidates)))
|
||||
self.arch_parameters = nn.Parameter(
|
||||
1e-3 * torch.randn(self.numbers, len(self.candidates))
|
||||
)
|
||||
|
||||
def generate_arch(self, actions):
|
||||
channels = [str(self.candidates[i]) for i in actions]
|
||||
@@ -103,7 +113,9 @@ class ExponentialMovingAverage(object):
|
||||
self._momentum = momentum
|
||||
|
||||
def update(self, value):
|
||||
self._numerator = self._momentum * self._numerator + (1 - self._momentum) * value
|
||||
self._numerator = (
|
||||
self._momentum * self._numerator + (1 - self._momentum) * value
|
||||
)
|
||||
self._denominator = self._momentum * self._denominator + (1 - self._momentum)
|
||||
|
||||
def value(self):
|
||||
@@ -143,14 +155,18 @@ def main(xargs, api):
|
||||
|
||||
# REINFORCE
|
||||
x_start_time = time.time()
|
||||
logger.log("Will start searching with time budget of {:} s.".format(xargs.time_budget))
|
||||
logger.log(
|
||||
"Will start searching with time budget of {:} s.".format(xargs.time_budget)
|
||||
)
|
||||
total_steps, total_costs, trace = 0, [], []
|
||||
current_best_index = []
|
||||
while len(total_costs) == 0 or total_costs[-1] < xargs.time_budget:
|
||||
start_time = time.time()
|
||||
log_prob, action = select_action(policy)
|
||||
arch = policy.generate_arch(action)
|
||||
reward, _, _, current_total_cost = api.simulate_train_eval(arch, xargs.dataset, hp="12")
|
||||
reward, _, _, current_total_cost = api.simulate_train_eval(
|
||||
arch, xargs.dataset, hp="12"
|
||||
)
|
||||
trace.append((reward, arch))
|
||||
total_costs.append(current_total_cost)
|
||||
|
||||
@@ -168,7 +184,9 @@ def main(xargs, api):
|
||||
)
|
||||
)
|
||||
# to analyze
|
||||
current_best_index.append(api.query_index_by_arch(max(trace, key=lambda x: x[0])[1]))
|
||||
current_best_index.append(
|
||||
api.query_index_by_arch(max(trace, key=lambda x: x[0])[1])
|
||||
)
|
||||
# best_arch = policy.genotype() # first version
|
||||
best_arch = max(trace, key=lambda x: x[0])[1]
|
||||
logger.log(
|
||||
@@ -176,7 +194,9 @@ def main(xargs, api):
|
||||
total_steps, total_costs[-1], time.time() - x_start_time
|
||||
)
|
||||
)
|
||||
info = api.query_info_str_by_arch(best_arch, "200" if xargs.search_space == "tss" else "90")
|
||||
info = api.query_info_str_by_arch(
|
||||
best_arch, "200" if xargs.search_space == "tss" else "90"
|
||||
)
|
||||
logger.log("{:}".format(info))
|
||||
logger.log("-" * 100)
|
||||
logger.close()
|
||||
@@ -193,17 +213,38 @@ if __name__ == "__main__":
|
||||
choices=["cifar10", "cifar100", "ImageNet16-120"],
|
||||
help="Choose between Cifar10/100 and ImageNet-16.",
|
||||
)
|
||||
parser.add_argument("--search_space", type=str, choices=["tss", "sss"], help="Choose the search space.")
|
||||
parser.add_argument("--learning_rate", type=float, help="The learning rate for REINFORCE.")
|
||||
parser.add_argument("--EMA_momentum", type=float, default=0.9, help="The momentum value for EMA.")
|
||||
parser.add_argument(
|
||||
"--time_budget", type=int, default=20000, help="The total time cost budge for searching (in seconds)."
|
||||
"--search_space",
|
||||
type=str,
|
||||
choices=["tss", "sss"],
|
||||
help="Choose the search space.",
|
||||
)
|
||||
parser.add_argument("--loops_if_rand", type=int, default=500, help="The total runs for evaluation.")
|
||||
# log
|
||||
parser.add_argument("--save_dir", type=str, default="./output/search", help="Folder to save checkpoints and log.")
|
||||
parser.add_argument(
|
||||
"--arch_nas_dataset", type=str, help="The path to load the architecture dataset (tiny-nas-benchmark)."
|
||||
"--learning_rate", type=float, help="The learning rate for REINFORCE."
|
||||
)
|
||||
parser.add_argument(
|
||||
"--EMA_momentum", type=float, default=0.9, help="The momentum value for EMA."
|
||||
)
|
||||
parser.add_argument(
|
||||
"--time_budget",
|
||||
type=int,
|
||||
default=20000,
|
||||
help="The total time cost budge for searching (in seconds).",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--loops_if_rand", type=int, default=500, help="The total runs for evaluation."
|
||||
)
|
||||
# log
|
||||
parser.add_argument(
|
||||
"--save_dir",
|
||||
type=str,
|
||||
default="./output/search",
|
||||
help="Folder to save checkpoints and log.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--arch_nas_dataset",
|
||||
type=str,
|
||||
help="The path to load the architecture dataset (tiny-nas-benchmark).",
|
||||
)
|
||||
parser.add_argument("--print_freq", type=int, help="print frequency (default: 200)")
|
||||
parser.add_argument("--rand_seed", type=int, default=-1, help="manual seed")
|
||||
|
Reference in New Issue
Block a user