Add int search space
This commit is contained in:
@@ -32,7 +32,9 @@ from utils import get_md5_file
|
||||
from nas_201_api import NASBench201API
|
||||
|
||||
|
||||
api = NASBench201API("{:}/.torch/NAS-Bench-201-v1_0-e61699.pth".format(os.environ["HOME"]))
|
||||
api = NASBench201API(
|
||||
"{:}/.torch/NAS-Bench-201-v1_0-e61699.pth".format(os.environ["HOME"])
|
||||
)
|
||||
|
||||
NATS_TSS_BASE_NAME = "NATS-tss-v1_0" # 2020.08.28
|
||||
|
||||
@@ -68,35 +70,58 @@ def create_result_count(
|
||||
)
|
||||
if "train_times" in results: # new version
|
||||
xresult.update_train_info(
|
||||
results["train_acc1es"], results["train_acc5es"], results["train_losses"], results["train_times"]
|
||||
results["train_acc1es"],
|
||||
results["train_acc5es"],
|
||||
results["train_losses"],
|
||||
results["train_times"],
|
||||
)
|
||||
xresult.update_eval(
|
||||
results["valid_acc1es"], results["valid_losses"], results["valid_times"]
|
||||
)
|
||||
xresult.update_eval(results["valid_acc1es"], results["valid_losses"], results["valid_times"])
|
||||
else:
|
||||
network = get_cell_based_tiny_net(net_config)
|
||||
network.load_state_dict(xresult.get_net_param())
|
||||
if dataset == "cifar10-valid":
|
||||
xresult.update_OLD_eval("x-valid", results["valid_acc1es"], results["valid_losses"])
|
||||
xresult.update_OLD_eval(
|
||||
"x-valid", results["valid_acc1es"], results["valid_losses"]
|
||||
)
|
||||
loss, top1, top5, latencies = pure_evaluate(
|
||||
dataloader_dict["{:}@{:}".format("cifar10", "test")], network.cuda()
|
||||
)
|
||||
xresult.update_OLD_eval("ori-test", {results["total_epoch"] - 1: top1}, {results["total_epoch"] - 1: loss})
|
||||
xresult.update_OLD_eval(
|
||||
"ori-test",
|
||||
{results["total_epoch"] - 1: top1},
|
||||
{results["total_epoch"] - 1: loss},
|
||||
)
|
||||
xresult.update_latency(latencies)
|
||||
elif dataset == "cifar10":
|
||||
xresult.update_OLD_eval("ori-test", results["valid_acc1es"], results["valid_losses"])
|
||||
xresult.update_OLD_eval(
|
||||
"ori-test", results["valid_acc1es"], results["valid_losses"]
|
||||
)
|
||||
loss, top1, top5, latencies = pure_evaluate(
|
||||
dataloader_dict["{:}@{:}".format(dataset, "test")], network.cuda()
|
||||
)
|
||||
xresult.update_latency(latencies)
|
||||
elif dataset == "cifar100" or dataset == "ImageNet16-120":
|
||||
xresult.update_OLD_eval("ori-test", results["valid_acc1es"], results["valid_losses"])
|
||||
xresult.update_OLD_eval(
|
||||
"ori-test", results["valid_acc1es"], results["valid_losses"]
|
||||
)
|
||||
loss, top1, top5, latencies = pure_evaluate(
|
||||
dataloader_dict["{:}@{:}".format(dataset, "valid")], network.cuda()
|
||||
)
|
||||
xresult.update_OLD_eval("x-valid", {results["total_epoch"] - 1: top1}, {results["total_epoch"] - 1: loss})
|
||||
xresult.update_OLD_eval(
|
||||
"x-valid",
|
||||
{results["total_epoch"] - 1: top1},
|
||||
{results["total_epoch"] - 1: loss},
|
||||
)
|
||||
loss, top1, top5, latencies = pure_evaluate(
|
||||
dataloader_dict["{:}@{:}".format(dataset, "test")], network.cuda()
|
||||
)
|
||||
xresult.update_OLD_eval("x-test", {results["total_epoch"] - 1: top1}, {results["total_epoch"] - 1: loss})
|
||||
xresult.update_OLD_eval(
|
||||
"x-test",
|
||||
{results["total_epoch"] - 1: top1},
|
||||
{results["total_epoch"] - 1: loss},
|
||||
)
|
||||
xresult.update_latency(latencies)
|
||||
else:
|
||||
raise ValueError("invalid dataset name : {:}".format(dataset))
|
||||
@@ -112,12 +137,18 @@ def account_one_arch(arch_index, arch_str, checkpoints, datasets, dataloader_dic
|
||||
ok_dataset = 0
|
||||
for dataset in datasets:
|
||||
if dataset not in checkpoint:
|
||||
print("Can not find {:} in arch-{:} from {:}".format(dataset, arch_index, checkpoint_path))
|
||||
print(
|
||||
"Can not find {:} in arch-{:} from {:}".format(
|
||||
dataset, arch_index, checkpoint_path
|
||||
)
|
||||
)
|
||||
continue
|
||||
else:
|
||||
ok_dataset += 1
|
||||
results = checkpoint[dataset]
|
||||
assert results["finish-train"], "This {:} arch seed={:} does not finish train on {:} ::: {:}".format(
|
||||
assert results[
|
||||
"finish-train"
|
||||
], "This {:} arch seed={:} does not finish train on {:} ::: {:}".format(
|
||||
arch_index, used_seed, dataset, checkpoint_path
|
||||
)
|
||||
arch_config = {
|
||||
@@ -127,7 +158,9 @@ def account_one_arch(arch_index, arch_str, checkpoints, datasets, dataloader_dic
|
||||
"class_num": results["config"]["class_num"],
|
||||
}
|
||||
|
||||
xresult = create_result_count(used_seed, dataset, arch_config, results, dataloader_dict)
|
||||
xresult = create_result_count(
|
||||
used_seed, dataset, arch_config, results, dataloader_dict
|
||||
)
|
||||
information.update(dataset, int(used_seed), xresult)
|
||||
if ok_dataset == 0:
|
||||
raise ValueError("{:} does not find any data".format(checkpoint_path))
|
||||
@@ -137,7 +170,8 @@ def account_one_arch(arch_index, arch_str, checkpoints, datasets, dataloader_dic
|
||||
def correct_time_related_info(arch_index: int, arch_infos: Dict[Text, ArchResults]):
|
||||
# calibrate the latency based on NAS-Bench-201-v1_0-e61699.pth
|
||||
cifar010_latency = (
|
||||
api.get_latency(arch_index, "cifar10-valid", hp="200") + api.get_latency(arch_index, "cifar10", hp="200")
|
||||
api.get_latency(arch_index, "cifar10-valid", hp="200")
|
||||
+ api.get_latency(arch_index, "cifar10", hp="200")
|
||||
) / 2
|
||||
cifar100_latency = api.get_latency(arch_index, "cifar100", hp="200")
|
||||
image_latency = api.get_latency(arch_index, "ImageNet16-120", hp="200")
|
||||
@@ -147,7 +181,9 @@ def correct_time_related_info(arch_index: int, arch_infos: Dict[Text, ArchResult
|
||||
arch_info.reset_latency("cifar100", None, cifar100_latency)
|
||||
arch_info.reset_latency("ImageNet16-120", None, image_latency)
|
||||
|
||||
train_per_epoch_time = list(arch_infos["12"].query("cifar10-valid", 777).train_times.values())
|
||||
train_per_epoch_time = list(
|
||||
arch_infos["12"].query("cifar10-valid", 777).train_times.values()
|
||||
)
|
||||
train_per_epoch_time = sum(train_per_epoch_time) / len(train_per_epoch_time)
|
||||
eval_ori_test_time, eval_x_valid_time = [], []
|
||||
for key, value in arch_infos["12"].query("cifar10-valid", 777).eval_times.items():
|
||||
@@ -157,7 +193,9 @@ def correct_time_related_info(arch_index: int, arch_infos: Dict[Text, ArchResult
|
||||
eval_x_valid_time.append(value)
|
||||
else:
|
||||
raise ValueError("-- {:} --".format(key))
|
||||
eval_ori_test_time, eval_x_valid_time = float(np.mean(eval_ori_test_time)), float(np.mean(eval_x_valid_time))
|
||||
eval_ori_test_time, eval_x_valid_time = float(np.mean(eval_ori_test_time)), float(
|
||||
np.mean(eval_x_valid_time)
|
||||
)
|
||||
nums = {
|
||||
"ImageNet16-120-train": 151700,
|
||||
"ImageNet16-120-valid": 3000,
|
||||
@@ -170,36 +208,72 @@ def correct_time_related_info(arch_index: int, arch_infos: Dict[Text, ArchResult
|
||||
"cifar100-test": 10000,
|
||||
"cifar100-valid": 5000,
|
||||
}
|
||||
eval_per_sample = (eval_ori_test_time + eval_x_valid_time) / (nums["cifar10-valid-valid"] + nums["cifar10-test"])
|
||||
eval_per_sample = (eval_ori_test_time + eval_x_valid_time) / (
|
||||
nums["cifar10-valid-valid"] + nums["cifar10-test"]
|
||||
)
|
||||
for hp, arch_info in arch_infos.items():
|
||||
arch_info.reset_pseudo_train_times(
|
||||
"cifar10-valid", None, train_per_epoch_time / nums["cifar10-valid-train"] * nums["cifar10-valid-train"]
|
||||
"cifar10-valid",
|
||||
None,
|
||||
train_per_epoch_time
|
||||
/ nums["cifar10-valid-train"]
|
||||
* nums["cifar10-valid-train"],
|
||||
)
|
||||
arch_info.reset_pseudo_train_times(
|
||||
"cifar10", None, train_per_epoch_time / nums["cifar10-valid-train"] * nums["cifar10-train"]
|
||||
"cifar10",
|
||||
None,
|
||||
train_per_epoch_time / nums["cifar10-valid-train"] * nums["cifar10-train"],
|
||||
)
|
||||
arch_info.reset_pseudo_train_times(
|
||||
"cifar100", None, train_per_epoch_time / nums["cifar10-valid-train"] * nums["cifar100-train"]
|
||||
"cifar100",
|
||||
None,
|
||||
train_per_epoch_time / nums["cifar10-valid-train"] * nums["cifar100-train"],
|
||||
)
|
||||
arch_info.reset_pseudo_train_times(
|
||||
"ImageNet16-120", None, train_per_epoch_time / nums["cifar10-valid-train"] * nums["ImageNet16-120-train"]
|
||||
"ImageNet16-120",
|
||||
None,
|
||||
train_per_epoch_time
|
||||
/ nums["cifar10-valid-train"]
|
||||
* nums["ImageNet16-120-train"],
|
||||
)
|
||||
arch_info.reset_pseudo_eval_times(
|
||||
"cifar10-valid", None, "x-valid", eval_per_sample * nums["cifar10-valid-valid"]
|
||||
)
|
||||
arch_info.reset_pseudo_eval_times("cifar10-valid", None, "ori-test", eval_per_sample * nums["cifar10-test"])
|
||||
arch_info.reset_pseudo_eval_times("cifar10", None, "ori-test", eval_per_sample * nums["cifar10-test"])
|
||||
arch_info.reset_pseudo_eval_times("cifar100", None, "x-valid", eval_per_sample * nums["cifar100-valid"])
|
||||
arch_info.reset_pseudo_eval_times("cifar100", None, "x-test", eval_per_sample * nums["cifar100-valid"])
|
||||
arch_info.reset_pseudo_eval_times("cifar100", None, "ori-test", eval_per_sample * nums["cifar100-test"])
|
||||
arch_info.reset_pseudo_eval_times(
|
||||
"ImageNet16-120", None, "x-valid", eval_per_sample * nums["ImageNet16-120-valid"]
|
||||
"cifar10-valid",
|
||||
None,
|
||||
"x-valid",
|
||||
eval_per_sample * nums["cifar10-valid-valid"],
|
||||
)
|
||||
arch_info.reset_pseudo_eval_times(
|
||||
"ImageNet16-120", None, "x-test", eval_per_sample * nums["ImageNet16-120-valid"]
|
||||
"cifar10-valid", None, "ori-test", eval_per_sample * nums["cifar10-test"]
|
||||
)
|
||||
arch_info.reset_pseudo_eval_times(
|
||||
"ImageNet16-120", None, "ori-test", eval_per_sample * nums["ImageNet16-120-test"]
|
||||
"cifar10", None, "ori-test", eval_per_sample * nums["cifar10-test"]
|
||||
)
|
||||
arch_info.reset_pseudo_eval_times(
|
||||
"cifar100", None, "x-valid", eval_per_sample * nums["cifar100-valid"]
|
||||
)
|
||||
arch_info.reset_pseudo_eval_times(
|
||||
"cifar100", None, "x-test", eval_per_sample * nums["cifar100-valid"]
|
||||
)
|
||||
arch_info.reset_pseudo_eval_times(
|
||||
"cifar100", None, "ori-test", eval_per_sample * nums["cifar100-test"]
|
||||
)
|
||||
arch_info.reset_pseudo_eval_times(
|
||||
"ImageNet16-120",
|
||||
None,
|
||||
"x-valid",
|
||||
eval_per_sample * nums["ImageNet16-120-valid"],
|
||||
)
|
||||
arch_info.reset_pseudo_eval_times(
|
||||
"ImageNet16-120",
|
||||
None,
|
||||
"x-test",
|
||||
eval_per_sample * nums["ImageNet16-120-valid"],
|
||||
)
|
||||
arch_info.reset_pseudo_eval_times(
|
||||
"ImageNet16-120",
|
||||
None,
|
||||
"ori-test",
|
||||
eval_per_sample * nums["ImageNet16-120-test"],
|
||||
)
|
||||
return arch_infos
|
||||
|
||||
@@ -220,7 +294,9 @@ def simplify(save_dir, save_name, nets, total, sup_config):
|
||||
seeds.add(seed)
|
||||
nums.append(len(xlist))
|
||||
print(" [seed={:}] there are {:} checkpoints.".format(seed, len(xlist)))
|
||||
assert len(nets) == total == max(nums), "there are some missed files : {:} vs {:}".format(max(nums), total)
|
||||
assert (
|
||||
len(nets) == total == max(nums)
|
||||
), "there are some missed files : {:} vs {:}".format(max(nums), total)
|
||||
print("{:} start simplify the checkpoint.".format(time_string()))
|
||||
|
||||
datasets = ("cifar10-valid", "cifar10", "cifar100", "ImageNet16-120")
|
||||
@@ -236,7 +312,12 @@ def simplify(save_dir, save_name, nets, total, sup_config):
|
||||
arch2infos, evaluated_indexes = dict(), set()
|
||||
end_time, arch_time = time.time(), AverageMeter()
|
||||
# save the meta information
|
||||
temp_final_infos = {"meta_archs": nets, "total_archs": total, "arch2infos": None, "evaluated_indexes": set()}
|
||||
temp_final_infos = {
|
||||
"meta_archs": nets,
|
||||
"total_archs": total,
|
||||
"arch2infos": None,
|
||||
"evaluated_indexes": set(),
|
||||
}
|
||||
pickle_save(temp_final_infos, str(full_save_dir / "meta.pickle"))
|
||||
pickle_save(temp_final_infos, str(simple_save_dir / "meta.pickle"))
|
||||
|
||||
@@ -248,29 +329,40 @@ def simplify(save_dir, save_name, nets, total, sup_config):
|
||||
simple_save_path = simple_save_dir / "{:06d}.pickle".format(index)
|
||||
for hp in hps:
|
||||
sub_save_dir = save_dir / "raw-data-{:}".format(hp)
|
||||
ckps = [sub_save_dir / "arch-{:06d}-seed-{:}.pth".format(index, seed) for seed in seeds]
|
||||
ckps = [
|
||||
sub_save_dir / "arch-{:06d}-seed-{:}.pth".format(index, seed)
|
||||
for seed in seeds
|
||||
]
|
||||
ckps = [x for x in ckps if x.exists()]
|
||||
if len(ckps) == 0:
|
||||
raise ValueError("Invalid data : index={:}, hp={:}".format(index, hp))
|
||||
|
||||
arch_info = account_one_arch(index, arch_str, ckps, datasets, dataloader_dict)
|
||||
arch_info = account_one_arch(
|
||||
index, arch_str, ckps, datasets, dataloader_dict
|
||||
)
|
||||
hp2info[hp] = arch_info
|
||||
|
||||
hp2info = correct_time_related_info(index, hp2info)
|
||||
evaluated_indexes.add(index)
|
||||
|
||||
to_save_data = OrderedDict({"12": hp2info["12"].state_dict(), "200": hp2info["200"].state_dict()})
|
||||
to_save_data = OrderedDict(
|
||||
{"12": hp2info["12"].state_dict(), "200": hp2info["200"].state_dict()}
|
||||
)
|
||||
pickle_save(to_save_data, str(full_save_path))
|
||||
|
||||
for hp in hps:
|
||||
hp2info[hp].clear_params()
|
||||
to_save_data = OrderedDict({"12": hp2info["12"].state_dict(), "200": hp2info["200"].state_dict()})
|
||||
to_save_data = OrderedDict(
|
||||
{"12": hp2info["12"].state_dict(), "200": hp2info["200"].state_dict()}
|
||||
)
|
||||
pickle_save(to_save_data, str(simple_save_path))
|
||||
arch2infos[index] = to_save_data
|
||||
# measure elapsed time
|
||||
arch_time.update(time.time() - end_time)
|
||||
end_time = time.time()
|
||||
need_time = "{:}".format(convert_secs2time(arch_time.avg * (total - index - 1), True))
|
||||
need_time = "{:}".format(
|
||||
convert_secs2time(arch_time.avg * (total - index - 1), True)
|
||||
)
|
||||
# print('{:} {:06d}/{:06d} : still need {:}'.format(time_string(), index, total, need_time))
|
||||
print("{:} {:} done.".format(time_string(), save_name))
|
||||
final_infos = {
|
||||
@@ -303,7 +395,11 @@ def simplify(save_dir, save_name, nets, total, sup_config):
|
||||
def traverse_net(max_node):
|
||||
aa_nas_bench_ss = get_search_spaces("cell", "nats-bench")
|
||||
archs = CellStructure.gen_all(aa_nas_bench_ss, max_node, False)
|
||||
print("There are {:} archs vs {:}.".format(len(archs), len(aa_nas_bench_ss) ** ((max_node - 1) * max_node / 2)))
|
||||
print(
|
||||
"There are {:} archs vs {:}.".format(
|
||||
len(archs), len(aa_nas_bench_ss) ** ((max_node - 1) * max_node / 2)
|
||||
)
|
||||
)
|
||||
|
||||
random.seed(88) # please do not change this line for reproducibility
|
||||
random.shuffle(archs)
|
||||
@@ -312,10 +408,12 @@ def traverse_net(max_node):
|
||||
== "|avg_pool_3x3~0|+|nor_conv_1x1~0|skip_connect~1|+|nor_conv_1x1~0|skip_connect~1|skip_connect~2|"
|
||||
), "please check the 0-th architecture : {:}".format(archs[0])
|
||||
assert (
|
||||
archs[9].tostr() == "|avg_pool_3x3~0|+|none~0|none~1|+|skip_connect~0|none~1|nor_conv_3x3~2|"
|
||||
archs[9].tostr()
|
||||
== "|avg_pool_3x3~0|+|none~0|none~1|+|skip_connect~0|none~1|nor_conv_3x3~2|"
|
||||
), "please check the 9-th architecture : {:}".format(archs[9])
|
||||
assert (
|
||||
archs[123].tostr() == "|avg_pool_3x3~0|+|avg_pool_3x3~0|nor_conv_1x1~1|+|none~0|avg_pool_3x3~1|nor_conv_3x3~2|"
|
||||
archs[123].tostr()
|
||||
== "|avg_pool_3x3~0|+|avg_pool_3x3~0|nor_conv_1x1~1|+|none~0|avg_pool_3x3~1|nor_conv_3x3~2|"
|
||||
), "please check the 123-th architecture : {:}".format(archs[123])
|
||||
return [x.tostr() for x in archs]
|
||||
|
||||
@@ -323,7 +421,8 @@ def traverse_net(max_node):
|
||||
if __name__ == "__main__":
|
||||
|
||||
parser = argparse.ArgumentParser(
|
||||
description="NATS-Bench (topology search space)", formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||
description="NATS-Bench (topology search space)",
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
|
||||
)
|
||||
parser.add_argument(
|
||||
"--base_save_dir",
|
||||
@@ -331,16 +430,26 @@ if __name__ == "__main__":
|
||||
default="./output/NATS-Bench-topology",
|
||||
help="The base-name of folder to save checkpoints and log.",
|
||||
)
|
||||
parser.add_argument("--max_node", type=int, default=4, help="The maximum node in a cell.")
|
||||
parser.add_argument("--channel", type=int, default=16, help="The number of channels.")
|
||||
parser.add_argument("--num_cells", type=int, default=5, help="The number of cells in one stage.")
|
||||
parser.add_argument(
|
||||
"--max_node", type=int, default=4, help="The maximum node in a cell."
|
||||
)
|
||||
parser.add_argument(
|
||||
"--channel", type=int, default=16, help="The number of channels."
|
||||
)
|
||||
parser.add_argument(
|
||||
"--num_cells", type=int, default=5, help="The number of cells in one stage."
|
||||
)
|
||||
parser.add_argument("--check_N", type=int, default=15625, help="For safety.")
|
||||
parser.add_argument("--save_name", type=str, default="process", help="The save directory.")
|
||||
parser.add_argument(
|
||||
"--save_name", type=str, default="process", help="The save directory."
|
||||
)
|
||||
args = parser.parse_args()
|
||||
|
||||
nets = traverse_net(args.max_node)
|
||||
if len(nets) != args.check_N:
|
||||
raise ValueError("Pre-num-check failed : {:} vs {:}".format(len(nets), args.check_N))
|
||||
raise ValueError(
|
||||
"Pre-num-check failed : {:} vs {:}".format(len(nets), args.check_N)
|
||||
)
|
||||
|
||||
save_dir = Path(args.base_save_dir)
|
||||
simplify(
|
||||
|
Reference in New Issue
Block a user