Add int search space
This commit is contained in:
100
exps/KD-main.py
100
exps/KD-main.py
@@ -30,18 +30,32 @@ def main(args):
|
||||
prepare_seed(args.rand_seed)
|
||||
logger = prepare_logger(args)
|
||||
|
||||
train_data, valid_data, xshape, class_num = get_datasets(args.dataset, args.data_path, args.cutout_length)
|
||||
train_data, valid_data, xshape, class_num = get_datasets(
|
||||
args.dataset, args.data_path, args.cutout_length
|
||||
)
|
||||
train_loader = torch.utils.data.DataLoader(
|
||||
train_data, batch_size=args.batch_size, shuffle=True, num_workers=args.workers, pin_memory=True
|
||||
train_data,
|
||||
batch_size=args.batch_size,
|
||||
shuffle=True,
|
||||
num_workers=args.workers,
|
||||
pin_memory=True,
|
||||
)
|
||||
valid_loader = torch.utils.data.DataLoader(
|
||||
valid_data, batch_size=args.batch_size, shuffle=False, num_workers=args.workers, pin_memory=True
|
||||
valid_data,
|
||||
batch_size=args.batch_size,
|
||||
shuffle=False,
|
||||
num_workers=args.workers,
|
||||
pin_memory=True,
|
||||
)
|
||||
# get configures
|
||||
model_config = load_config(args.model_config, {"class_num": class_num}, logger)
|
||||
optim_config = load_config(
|
||||
args.optim_config,
|
||||
{"class_num": class_num, "KD_alpha": args.KD_alpha, "KD_temperature": args.KD_temperature},
|
||||
{
|
||||
"class_num": class_num,
|
||||
"KD_alpha": args.KD_alpha,
|
||||
"KD_temperature": args.KD_temperature,
|
||||
},
|
||||
logger,
|
||||
)
|
||||
|
||||
@@ -55,20 +69,32 @@ def main(args):
|
||||
logger.log("Teacher ====>>>>:\n{:}".format(teacher_base))
|
||||
logger.log("model information : {:}".format(base_model.get_message()))
|
||||
logger.log("-" * 50)
|
||||
logger.log("Params={:.2f} MB, FLOPs={:.2f} M ... = {:.2f} G".format(param, flop, flop / 1e3))
|
||||
logger.log(
|
||||
"Params={:.2f} MB, FLOPs={:.2f} M ... = {:.2f} G".format(
|
||||
param, flop, flop / 1e3
|
||||
)
|
||||
)
|
||||
logger.log("-" * 50)
|
||||
logger.log("train_data : {:}".format(train_data))
|
||||
logger.log("valid_data : {:}".format(valid_data))
|
||||
optimizer, scheduler, criterion = get_optim_scheduler(base_model.parameters(), optim_config)
|
||||
optimizer, scheduler, criterion = get_optim_scheduler(
|
||||
base_model.parameters(), optim_config
|
||||
)
|
||||
logger.log("optimizer : {:}".format(optimizer))
|
||||
logger.log("scheduler : {:}".format(scheduler))
|
||||
logger.log("criterion : {:}".format(criterion))
|
||||
|
||||
last_info, model_base_path, model_best_path = logger.path("info"), logger.path("model"), logger.path("best")
|
||||
last_info, model_base_path, model_best_path = (
|
||||
logger.path("info"),
|
||||
logger.path("model"),
|
||||
logger.path("best"),
|
||||
)
|
||||
network, criterion = torch.nn.DataParallel(base_model).cuda(), criterion.cuda()
|
||||
|
||||
if last_info.exists(): # automatically resume from previous checkpoint
|
||||
logger.log("=> loading checkpoint of the last-info '{:}' start".format(last_info))
|
||||
logger.log(
|
||||
"=> loading checkpoint of the last-info '{:}' start".format(last_info)
|
||||
)
|
||||
last_info = torch.load(last_info)
|
||||
start_epoch = last_info["epoch"] + 1
|
||||
checkpoint = torch.load(last_info["last_checkpoint"])
|
||||
@@ -78,10 +104,14 @@ def main(args):
|
||||
valid_accuracies = checkpoint["valid_accuracies"]
|
||||
max_bytes = checkpoint["max_bytes"]
|
||||
logger.log(
|
||||
"=> loading checkpoint of the last-info '{:}' start with {:}-th epoch.".format(last_info, start_epoch)
|
||||
"=> loading checkpoint of the last-info '{:}' start with {:}-th epoch.".format(
|
||||
last_info, start_epoch
|
||||
)
|
||||
)
|
||||
elif args.resume is not None:
|
||||
assert Path(args.resume).exists(), "Can not find the resume file : {:}".format(args.resume)
|
||||
assert Path(args.resume).exists(), "Can not find the resume file : {:}".format(
|
||||
args.resume
|
||||
)
|
||||
checkpoint = torch.load(args.resume)
|
||||
start_epoch = checkpoint["epoch"] + 1
|
||||
base_model.load_state_dict(checkpoint["base-model"])
|
||||
@@ -89,9 +119,15 @@ def main(args):
|
||||
optimizer.load_state_dict(checkpoint["optimizer"])
|
||||
valid_accuracies = checkpoint["valid_accuracies"]
|
||||
max_bytes = checkpoint["max_bytes"]
|
||||
logger.log("=> loading checkpoint from '{:}' start with {:}-th epoch.".format(args.resume, start_epoch))
|
||||
logger.log(
|
||||
"=> loading checkpoint from '{:}' start with {:}-th epoch.".format(
|
||||
args.resume, start_epoch
|
||||
)
|
||||
)
|
||||
elif args.init_model is not None:
|
||||
assert Path(args.init_model).exists(), "Can not find the initialization file : {:}".format(args.init_model)
|
||||
assert Path(
|
||||
args.init_model
|
||||
).exists(), "Can not find the initialization file : {:}".format(args.init_model)
|
||||
checkpoint = torch.load(args.init_model)
|
||||
base_model.load_state_dict(checkpoint["base-model"])
|
||||
start_epoch, valid_accuracies, max_bytes = 0, {"best": -1}, {}
|
||||
@@ -108,7 +144,9 @@ def main(args):
|
||||
epoch_time = AverageMeter()
|
||||
for epoch in range(start_epoch, total_epoch):
|
||||
scheduler.update(epoch, 0.0)
|
||||
need_time = "Time Left: {:}".format(convert_secs2time(epoch_time.avg * (total_epoch - epoch), True))
|
||||
need_time = "Time Left: {:}".format(
|
||||
convert_secs2time(epoch_time.avg * (total_epoch - epoch), True)
|
||||
)
|
||||
epoch_str = "epoch={:03d}/{:03d}".format(epoch, total_epoch)
|
||||
LRs = scheduler.get_lr()
|
||||
find_best = False
|
||||
@@ -143,7 +181,14 @@ def main(args):
|
||||
if (epoch % args.eval_frequency == 0) or (epoch + 1 == total_epoch):
|
||||
logger.log("-" * 150)
|
||||
valid_loss, valid_acc1, valid_acc5 = valid_func(
|
||||
valid_loader, teacher, network, criterion, optim_config, epoch_str, args.print_freq_eval, logger
|
||||
valid_loader,
|
||||
teacher,
|
||||
network,
|
||||
criterion,
|
||||
optim_config,
|
||||
epoch_str,
|
||||
args.print_freq_eval,
|
||||
logger,
|
||||
)
|
||||
valid_accuracies[epoch] = valid_acc1
|
||||
logger.log(
|
||||
@@ -162,13 +207,24 @@ def main(args):
|
||||
find_best = True
|
||||
logger.log(
|
||||
"Currently, the best validation accuracy found at {:03d}-epoch :: acc@1={:.2f}, acc@5={:.2f}, error@1={:.2f}, error@5={:.2f}, save into {:}.".format(
|
||||
epoch, valid_acc1, valid_acc5, 100 - valid_acc1, 100 - valid_acc5, model_best_path
|
||||
epoch,
|
||||
valid_acc1,
|
||||
valid_acc5,
|
||||
100 - valid_acc1,
|
||||
100 - valid_acc5,
|
||||
model_best_path,
|
||||
)
|
||||
)
|
||||
num_bytes = torch.cuda.max_memory_cached(next(network.parameters()).device) * 1.0
|
||||
num_bytes = (
|
||||
torch.cuda.max_memory_cached(next(network.parameters()).device) * 1.0
|
||||
)
|
||||
logger.log(
|
||||
"[GPU-Memory-Usage on {:} is {:} bytes, {:.2f} KB, {:.2f} MB, {:.2f} GB.]".format(
|
||||
next(network.parameters()).device, int(num_bytes), num_bytes / 1e3, num_bytes / 1e6, num_bytes / 1e9
|
||||
next(network.parameters()).device,
|
||||
int(num_bytes),
|
||||
num_bytes / 1e3,
|
||||
num_bytes / 1e6,
|
||||
num_bytes / 1e9,
|
||||
)
|
||||
)
|
||||
max_bytes[epoch] = num_bytes
|
||||
@@ -210,10 +266,16 @@ def main(args):
|
||||
start_time = time.time()
|
||||
|
||||
logger.log("\n" + "-" * 200)
|
||||
logger.log("||| Params={:.2f} MB, FLOPs={:.2f} M ... = {:.2f} G".format(param, flop, flop / 1e3))
|
||||
logger.log(
|
||||
"||| Params={:.2f} MB, FLOPs={:.2f} M ... = {:.2f} G".format(
|
||||
param, flop, flop / 1e3
|
||||
)
|
||||
)
|
||||
logger.log(
|
||||
"Finish training/validation in {:} with Max-GPU-Memory of {:.2f} MB, and save final checkpoint into {:}".format(
|
||||
convert_secs2time(epoch_time.sum, True), max(v for k, v in max_bytes.items()) / 1e6, logger.path("info")
|
||||
convert_secs2time(epoch_time.sum, True),
|
||||
max(v for k, v in max_bytes.items()) / 1e6,
|
||||
logger.path("info"),
|
||||
)
|
||||
)
|
||||
logger.log("-" * 200 + "\n")
|
||||
|
Reference in New Issue
Block a user