Update NATS-Bench (sss version 1.2)

This commit is contained in:
D-X-Y
2020-08-30 08:04:52 +00:00
parent 469a207945
commit 5f151d1970
15 changed files with 317 additions and 229 deletions

View File

@@ -11,7 +11,6 @@
# python exps/NATS-Bench/sss-collect.py #
##############################################################################
import os, re, sys, time, shutil, argparse, collections
import numpy as np
import torch
from tqdm import tqdm
from pathlib import Path
@@ -22,7 +21,7 @@ if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir))
from log_utils import AverageMeter, time_string, convert_secs2time
from config_utils import dict2config
from models import CellStructure, get_cell_based_tiny_net
from nas_201_api import ArchResults, ResultsCount
from nats_bench import pickle_save, pickle_load, ArchResults, ResultsCount
from procedures import bench_pure_evaluate as pure_evaluate, get_nas_bench_loaders
from utils import get_md5_file
@@ -193,8 +192,8 @@ def simplify(save_dir, save_name, nets, total):
arch_str = nets[index]
hp2info = OrderedDict()
full_save_path = full_save_dir / '{:06d}.npy'.format(index)
simple_save_path = simple_save_dir / '{:06d}.npy'.format(index)
full_save_path = full_save_dir / '{:06d}.pickle'.format(index)
simple_save_path = simple_save_dir / '{:06d}.pickle'.format(index)
for hp in hps:
sub_save_dir = save_dir / 'raw-data-{:}'.format(hp)
@@ -213,13 +212,13 @@ def simplify(save_dir, save_name, nets, total):
to_save_data = OrderedDict({'01': hp2info['01'].state_dict(),
'12': hp2info['12'].state_dict(),
'90': hp2info['90'].state_dict()})
np.save(str(full_save_path), to_save_data)
pickle_save(to_save_data, str(full_save_path))
for hp in hps: hp2info[hp].clear_params()
to_save_data = OrderedDict({'01': hp2info['01'].state_dict(),
'12': hp2info['12'].state_dict(),
'90': hp2info['90'].state_dict()})
np.save(str(simple_save_path), to_save_data)
pickle_save(to_save_data, str(simple_save_path))
arch2infos[index] = to_save_data
# measure elapsed time
arch_time.update(time.time() - end_time)
@@ -231,18 +230,23 @@ def simplify(save_dir, save_name, nets, total):
'total_archs': total,
'arch2infos' : arch2infos,
'evaluated_indexes': evaluated_indexes}
save_file_name = save_dir / '{:}.npy'.format(save_name)
np.save(str(save_file_name), final_infos)
save_file_name = save_dir / '{:}.pickle'.format(save_name)
pickle_save(final_infos, str(save_file_name))
# move the benchmark file to a new path
hd5sum = get_md5_file(save_file_name)
hd5_file_name = save_dir / '{:}-{:}.npy'.format(NATS_TSS_BASE_NAME, hd5sum)
shutil.move(save_file_name, hd5_file_name)
hd5sum = get_md5_file(str(save_file_name) + '.pbz2')
hd5_file_name = save_dir / '{:}-{:}.pickle.pbz2'.format(NATS_TSS_BASE_NAME, hd5sum)
shutil.move(str(save_file_name) + '.pbz2', hd5_file_name)
print('Save {:} / {:} architecture results into {:} -> {:}.'.format(len(evaluated_indexes), total, save_file_name, hd5_file_name))
# move the directory to a new path
hd5_full_save_dir = save_dir / '{:}-{:}-full'.format(NATS_TSS_BASE_NAME, hd5sum)
hd5_simple_save_dir = save_dir / '{:}-{:}-simple'.format(NATS_TSS_BASE_NAME, hd5sum)
shutil.move(full_save_dir, hd5_full_save_dir)
shutil.move(simple_save_dir, hd5_simple_save_dir)
# save the meta information for simple and full
final_infos['arch2infos'] = None
final_infos['evaluated_indexes'] = set()
pickle_save(final_infos, str(hd5_full_save_dir / 'meta.pickle'))
pickle_save(final_infos, str(hd5_simple_save_dir / 'meta.pickle'))
def traverse_net(candidates: List[int], N: int):

View File

@@ -1,12 +1,10 @@
###############################################################
# NAS-Bench-201, ICLR 2020 (https://arxiv.org/abs/2001.00326) #
###############################################################
# NATS-Bench: Benchmarking NAS algorithms for Architecture Topology and Size
###############################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020.06 #
###############################################################
# Usage: python exps/NAS-Bench-201/test-nas-api.py #
###############################################################
##############################################################################
# NATS-Bench: Benchmarking NAS algorithms for Architecture Topology and Size #
##############################################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020.08 #
##############################################################################
# Usage: python exps/NATS-Bench/test-nats-api.py #
##############################################################################
import os, sys, time, torch, argparse
import numpy as np
from typing import List, Text, Dict, Any
@@ -61,10 +59,12 @@ def test_api(api, is_301=True):
print('{:}\n'.format(info))
info = api.get_latency(12, 'cifar10')
print('{:}\n'.format(info))
for index in [13, 15, 19, 200]:
info = api.get_latency(index, 'cifar10')
# Count the number of architectures
info = api.statistics('cifar100', '12')
print('{:}\n'.format(info))
print('{:} statistics results : {:}\n'.format(time_string(), info))
# Show the information of the 123-th architecture
api.show(123)
@@ -80,33 +80,18 @@ def test_api(api, is_301=True):
print('Compute the adjacency matrix of {:}'.format(arch_str))
print(matrix)
info = api.simulate_train_eval(123, 'cifar10')
print('simulate_train_eval : {:}'.format(info))
def test_issue_81_82(api):
results = api.query_by_index(0, 'cifar10-valid', hp='12')
results = api.query_by_index(0, 'cifar10-valid', hp='200')
print(list(results.keys()))
print(results[888].get_eval('valid'))
print(results[888].get_eval('x-valid'))
result_dict = api.get_more_info(index=0, dataset='cifar10-valid', iepoch=11, hp='200', is_random=False)
info = api.query_by_arch('|nor_conv_3x3~0|+|skip_connect~0|nor_conv_3x3~1|+|skip_connect~0|none~1|nor_conv_3x3~2|', '200')
print(info)
structure = CellStructure.str2structure('|nor_conv_3x3~0|+|skip_connect~0|nor_conv_3x3~1|+|skip_connect~0|none~1|nor_conv_3x3~2|')
info = api.query_by_arch(structure, '200')
print(info)
print('simulate_train_eval : {:}\n\n'.format(info))
if __name__ == '__main__':
api201 = create(os.path.join(os.environ['TORCH_HOME'], 'NAS-Bench-201-v1_0-e61699.pth'), 'topology', True)
test_issue_81_82(api201)
print ('Test {:} done'.format(api201))
for fast_mode in [True, False]:
for verbose in [True, False]:
print('{:} create with fast_mode={:} and verbose={:}'.format(time_string(), fast_mode, verbose))
api301 = create(None, 'size', fast_mode=fast_mode, verbose=True)
print('{:} --->>> {:}'.format(time_string(), api301))
test_api(api301, True)
api201 = create(None, 'topology', True) # use the default file path
test_issue_81_82(api201)
test_api(api201, False)
print ('Test {:} done'.format(api201))
api301 = create(None, 'size', True)
test_api(api301, True)
# api201 = create(None, 'topology', True) # use the default file path
# test_api(api201, False)
# print ('Test {:} done'.format(api201))

View File

@@ -5,8 +5,8 @@
# required to install hpbandster ##################################
# pip install hpbandster ##################################
###################################################################
# OMP_NUM_THREADS=4 python exps/algos-v2/bohb.py --search_space tss --dataset cifar10 --num_samples 4 --random_fraction 0.0 --bandwidth_factor 3 --rand_seed 1
# OMP_NUM_THREADS=4 python exps/algos-v2/bohb.py --search_space sss --dataset cifar10 --num_samples 4 --random_fraction 0.0 --bandwidth_factor 3 --rand_seed 1
# OMP_NUM_THREADS=4 python exps/NATS-algos/bohb.py --search_space tss --dataset cifar10 --num_samples 4 --random_fraction 0.0 --bandwidth_factor 3 --rand_seed 1
# OMP_NUM_THREADS=4 python exps/NATS-algos/bohb.py --search_space sss --dataset cifar10 --num_samples 4 --random_fraction 0.0 --bandwidth_factor 3 --rand_seed 1
###################################################################
import os, sys, time, random, argparse, collections
from copy import deepcopy
@@ -167,7 +167,7 @@ if __name__ == '__main__':
parser.add_argument('--rand_seed', type=int, default=-1, help='manual seed')
args = parser.parse_args()
api = create(None, args.search_space, verbose=False)
api = create(None, args.search_space, fast_mode=True, verbose=False)
args.save_dir = os.path.join('{:}-{:}'.format(args.save_dir, args.search_space), args.dataset, 'BOHB')
print('save-dir : {:}'.format(args.save_dir))

View File

@@ -3,9 +3,9 @@
##############################################################################
# Random Search for Hyper-Parameter Optimization, JMLR 2012 ##################
##############################################################################
# python ./exps/algos-v2/random_wo_share.py --dataset cifar10 --search_space tss
# python ./exps/algos-v2/random_wo_share.py --dataset cifar100 --search_space tss
# python ./exps/algos-v2/random_wo_share.py --dataset ImageNet16-120 --search_space tss
# python ./exps/NATS-algos/random_wo_share.py --dataset cifar10 --search_space tss
# python ./exps/NATS-algos/random_wo_share.py --dataset cifar100 --search_space tss
# python ./exps/NATS-algos/random_wo_share.py --dataset ImageNet16-120 --search_space tss
##############################################################################
import os, sys, time, glob, random, argparse
import numpy as np, collections
@@ -71,7 +71,7 @@ if __name__ == '__main__':
parser.add_argument('--rand_seed', type=int, default=-1, help='manual seed')
args = parser.parse_args()
api = create(None, args.search_space, verbose=False)
api = create(None, args.search_space, fast_mode=True, verbose=False)
args.save_dir = os.path.join('{:}-{:}'.format(args.save_dir, args.search_space), args.dataset, 'RANDOM')
print('save-dir : {:}'.format(args.save_dir))

View File

@@ -3,12 +3,12 @@
##################################################################
# Regularized Evolution for Image Classifier Architecture Search #
##################################################################
# python ./exps/algos-v2/regularized_ea.py --dataset cifar10 --search_space tss --ea_cycles 200 --ea_population 10 --ea_sample_size 3 --rand_seed 1
# python ./exps/algos-v2/regularized_ea.py --dataset cifar100 --search_space tss --ea_cycles 200 --ea_population 10 --ea_sample_size 3 --rand_seed 1
# python ./exps/algos-v2/regularized_ea.py --dataset ImageNet16-120 --search_space tss --ea_cycles 200 --ea_population 10 --ea_sample_size 3 --rand_seed 1
# python ./exps/algos-v2/regularized_ea.py --dataset cifar10 --search_space sss --ea_cycles 200 --ea_population 10 --ea_sample_size 3 --rand_seed 1
# python ./exps/algos-v2/regularized_ea.py --dataset cifar100 --search_space sss --ea_cycles 200 --ea_population 10 --ea_sample_size 3 --rand_seed 1
# python ./exps/algos-v2/regularized_ea.py --dataset ImageNet16-120 --search_space sss --ea_cycles 200 --ea_population 10 --ea_sample_size 3 --rand_seed 1
# python ./exps/NATS-algos/regularized_ea.py --dataset cifar10 --search_space tss --ea_cycles 200 --ea_population 10 --ea_sample_size 3 --rand_seed 1
# python ./exps/NATS-algos/regularized_ea.py --dataset cifar100 --search_space tss --ea_cycles 200 --ea_population 10 --ea_sample_size 3 --rand_seed 1
# python ./exps/NATS-algos/regularized_ea.py --dataset ImageNet16-120 --search_space tss --ea_cycles 200 --ea_population 10 --ea_sample_size 3 --rand_seed 1
# python ./exps/NATS-algos/regularized_ea.py --dataset cifar10 --search_space sss --ea_cycles 200 --ea_population 10 --ea_sample_size 3 --rand_seed 1
# python ./exps/NATS-algos/regularized_ea.py --dataset cifar100 --search_space sss --ea_cycles 200 --ea_population 10 --ea_sample_size 3 --rand_seed 1
# python ./exps/NATS-algos/regularized_ea.py --dataset ImageNet16-120 --search_space sss --ea_cycles 200 --ea_population 10 --ea_sample_size 3 --rand_seed 1
##################################################################
import os, sys, time, glob, random, argparse
import numpy as np, collections
@@ -198,7 +198,7 @@ if __name__ == '__main__':
parser.add_argument('--rand_seed', type=int, default=-1, help='manual seed')
args = parser.parse_args()
api = create(None, args.search_space, verbose=False)
api = create(None, args.search_space, fast_mode=True, verbose=False)
args.save_dir = os.path.join('{:}-{:}'.format(args.save_dir, args.search_space), args.dataset, 'R-EA-SS{:}'.format(args.ea_sample_size))
print('save-dir : {:}'.format(args.save_dir))

View File

@@ -3,12 +3,12 @@
#####################################################################################################
# modified from https://github.com/pytorch/examples/blob/master/reinforcement_learning/reinforce.py #
#####################################################################################################
# python ./exps/algos-v2/reinforce.py --dataset cifar10 --search_space tss --learning_rate 0.01
# python ./exps/algos-v2/reinforce.py --dataset cifar100 --search_space tss --learning_rate 0.01
# python ./exps/algos-v2/reinforce.py --dataset ImageNet16-120 --search_space tss --learning_rate 0.01
# python ./exps/algos-v2/reinforce.py --dataset cifar10 --search_space sss --learning_rate 0.01
# python ./exps/algos-v2/reinforce.py --dataset cifar100 --search_space sss --learning_rate 0.01
# python ./exps/algos-v2/reinforce.py --dataset ImageNet16-120 --search_space sss --learning_rate 0.01
# python ./exps/NATS-algos/reinforce.py --dataset cifar10 --search_space tss --learning_rate 0.01
# python ./exps/NATS-algos/reinforce.py --dataset cifar100 --search_space tss --learning_rate 0.01
# python ./exps/NATS-algos/reinforce.py --dataset ImageNet16-120 --search_space tss --learning_rate 0.01
# python ./exps/NATS-algos/reinforce.py --dataset cifar10 --search_space sss --learning_rate 0.01
# python ./exps/NATS-algos/reinforce.py --dataset cifar100 --search_space sss --learning_rate 0.01
# python ./exps/NATS-algos/reinforce.py --dataset ImageNet16-120 --search_space sss --learning_rate 0.01
#####################################################################################################
import os, sys, time, glob, random, argparse
import numpy as np, collections

View File

@@ -0,0 +1,47 @@
#!/bin/bash
# bash ./exps/NATS-algos/run-all.sh mul
# bash ./exps/NATS-algos/run-all.sh ws
set -e
echo script name: $0
echo $# arguments
if [ "$#" -ne 1 ] ;then
echo "Input illegal number of parameters " $#
echo "Need 1 parameters for type of algorithms."
exit 1
fi
datasets="cifar10 cifar100 ImageNet16-120"
alg_type=$1
if [ "$alg_type" == "mul" ]; then
search_spaces="tss sss"
for dataset in ${datasets}
do
for search_space in ${search_spaces}
do
python ./exps/NATS-algos/reinforce.py --dataset ${dataset} --search_space ${search_space} --learning_rate 0.01
python ./exps/NATS-algos/regularized_ea.py --dataset ${dataset} --search_space ${search_space} --ea_cycles 200 --ea_population 10 --ea_sample_size 3
python ./exps/NATS-algos/random_wo_share.py --dataset ${dataset} --search_space ${search_space}
python ./exps/NATS-algos/bohb.py --dataset ${dataset} --search_space ${search_space} --num_samples 4 --random_fraction 0.0 --bandwidth_factor 3
done
done
python exps/experimental/vis-bench-algos.py --search_space tss
python exps/experimental/vis-bench-algos.py --search_space sss
else
seeds="777 888 999"
algos="darts-v1 darts-v2 gdas setn random enas"
epoch=200
for seed in ${seeds}
do
for alg in ${algos}
do
python ./exps/NATS-algos/search-cell.py --dataset cifar10 --data_path $TORCH_HOME/cifar.python --algo ${alg} --rand_seed ${seed} --overwite_epochs ${epoch}
python ./exps/NATS-algos/search-cell.py --dataset cifar100 --data_path $TORCH_HOME/cifar.python --algo ${alg} --rand_seed ${seed} --overwite_epochs ${epoch}
python ./exps/NATS-algos/search-cell.py --dataset ImageNet16-120 --data_path $TORCH_HOME/cifar.python/ImageNet16 --algo ${alg} --rand_seed ${seed} --overwite_epochs ${epoch}
done
done
fi

View File

@@ -1,29 +1,29 @@
##################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020 #
######################################################################################
# python ./exps/algos-v2/search-cell.py --dataset cifar10 --data_path $TORCH_HOME/cifar.python --algo darts-v1 --rand_seed 777
# python ./exps/algos-v2/search-cell.py --dataset cifar100 --data_path $TORCH_HOME/cifar.python --algo darts-v1 --drop_path_rate 0.3
# python ./exps/algos-v2/search-cell.py --dataset ImageNet16-120 --data_path $TORCH_HOME/cifar.python/ImageNet16 --algo darts-v1
# python ./exps/NATS-algos/search-cell.py --dataset cifar10 --data_path $TORCH_HOME/cifar.python --algo darts-v1 --rand_seed 777
# python ./exps/NATS-algos/search-cell.py --dataset cifar100 --data_path $TORCH_HOME/cifar.python --algo darts-v1 --drop_path_rate 0.3
# python ./exps/NATS-algos/search-cell.py --dataset ImageNet16-120 --data_path $TORCH_HOME/cifar.python/ImageNet16 --algo darts-v1
####
# python ./exps/algos-v2/search-cell.py --dataset cifar10 --data_path $TORCH_HOME/cifar.python --algo darts-v2 --rand_seed 777
# python ./exps/algos-v2/search-cell.py --dataset cifar100 --data_path $TORCH_HOME/cifar.python --algo darts-v2
# python ./exps/algos-v2/search-cell.py --dataset ImageNet16-120 --data_path $TORCH_HOME/cifar.python/ImageNet16 --algo darts-v2
# python ./exps/NATS-algos/search-cell.py --dataset cifar10 --data_path $TORCH_HOME/cifar.python --algo darts-v2 --rand_seed 777
# python ./exps/NATS-algos/search-cell.py --dataset cifar100 --data_path $TORCH_HOME/cifar.python --algo darts-v2
# python ./exps/NATS-algos/search-cell.py --dataset ImageNet16-120 --data_path $TORCH_HOME/cifar.python/ImageNet16 --algo darts-v2
####
# python ./exps/algos-v2/search-cell.py --dataset cifar10 --data_path $TORCH_HOME/cifar.python --algo gdas --rand_seed 777
# python ./exps/algos-v2/search-cell.py --dataset cifar100 --data_path $TORCH_HOME/cifar.python --algo gdas
# python ./exps/algos-v2/search-cell.py --dataset ImageNet16-120 --data_path $TORCH_HOME/cifar.python/ImageNet16 --algo gdas
# python ./exps/NATS-algos/search-cell.py --dataset cifar10 --data_path $TORCH_HOME/cifar.python --algo gdas --rand_seed 777
# python ./exps/NATS-algos/search-cell.py --dataset cifar100 --data_path $TORCH_HOME/cifar.python --algo gdas
# python ./exps/NATS-algos/search-cell.py --dataset ImageNet16-120 --data_path $TORCH_HOME/cifar.python/ImageNet16 --algo gdas
####
# python ./exps/algos-v2/search-cell.py --dataset cifar10 --data_path $TORCH_HOME/cifar.python --algo setn --rand_seed 777
# python ./exps/algos-v2/search-cell.py --dataset cifar100 --data_path $TORCH_HOME/cifar.python --algo setn
# python ./exps/algos-v2/search-cell.py --dataset ImageNet16-120 --data_path $TORCH_HOME/cifar.python/ImageNet16 --algo setn
# python ./exps/NATS-algos/search-cell.py --dataset cifar10 --data_path $TORCH_HOME/cifar.python --algo setn --rand_seed 777
# python ./exps/NATS-algos/search-cell.py --dataset cifar100 --data_path $TORCH_HOME/cifar.python --algo setn
# python ./exps/NATS-algos/search-cell.py --dataset ImageNet16-120 --data_path $TORCH_HOME/cifar.python/ImageNet16 --algo setn
####
# python ./exps/algos-v2/search-cell.py --dataset cifar10 --data_path $TORCH_HOME/cifar.python --algo random --rand_seed 777
# python ./exps/algos-v2/search-cell.py --dataset cifar100 --data_path $TORCH_HOME/cifar.python --algo random
# python ./exps/algos-v2/search-cell.py --dataset ImageNet16-120 --data_path $TORCH_HOME/cifar.python/ImageNet16 --algo random
# python ./exps/NATS-algos/search-cell.py --dataset cifar10 --data_path $TORCH_HOME/cifar.python --algo random --rand_seed 777
# python ./exps/NATS-algos/search-cell.py --dataset cifar100 --data_path $TORCH_HOME/cifar.python --algo random
# python ./exps/NATS-algos/search-cell.py --dataset ImageNet16-120 --data_path $TORCH_HOME/cifar.python/ImageNet16 --algo random
####
# python ./exps/algos-v2/search-cell.py --dataset cifar10 --data_path $TORCH_HOME/cifar.python --algo enas --arch_weight_decay 0 --arch_learning_rate 0.001 --arch_eps 0.001 --rand_seed 777
# python ./exps/algos-v2/search-cell.py --dataset cifar100 --data_path $TORCH_HOME/cifar.python --algo enas --arch_weight_decay 0 --arch_learning_rate 0.001 --arch_eps 0.001 --rand_seed 777
# python ./exps/algos-v2/search-cell.py --dataset ImageNet16-120 --data_path $TORCH_HOME/cifar.python/ImageNet16 --algo enas --arch_weight_decay 0 --arch_learning_rate 0.001 --arch_eps 0.001 --rand_seed 777
# python ./exps/NATS-algos/search-cell.py --dataset cifar10 --data_path $TORCH_HOME/cifar.python --algo enas --arch_weight_decay 0 --arch_learning_rate 0.001 --arch_eps 0.001 --rand_seed 777
# python ./exps/NATS-algos/search-cell.py --dataset cifar100 --data_path $TORCH_HOME/cifar.python --algo enas --arch_weight_decay 0 --arch_learning_rate 0.001 --arch_eps 0.001 --rand_seed 777
# python ./exps/NATS-algos/search-cell.py --dataset ImageNet16-120 --data_path $TORCH_HOME/cifar.python/ImageNet16 --algo enas --arch_weight_decay 0 --arch_learning_rate 0.001 --arch_eps 0.001 --rand_seed 777
######################################################################################
import os, sys, time, random, argparse
import numpy as np
@@ -364,7 +364,7 @@ def main(xargs):
logger.log('The parameters of the search model = {:.2f} MB'.format(params))
logger.log('search-space : {:}'.format(search_space))
if bool(xargs.use_api):
api = create(None, 'topology', verbose=False)
api = create(None, 'topology', fast_mode=True, verbose=False)
else:
api = None
logger.log('{:} create API = {:} done'.format(time_string(), api))

View File

@@ -1,17 +1,17 @@
##################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020 #
######################################################################################
# python ./exps/algos-v2/search-size.py --dataset cifar10 --data_path $TORCH_HOME/cifar.python --algo tas --rand_seed 777
# python ./exps/algos-v2/search-size.py --dataset cifar100 --data_path $TORCH_HOME/cifar.python --algo tas --rand_seed 777
# python ./exps/algos-v2/search-size.py --dataset ImageNet16-120 --data_path $TORCH_HOME/cifar.python/ImageNet16 --algo tas --rand_seed 777
# python ./exps/NATS-algos/search-size.py --dataset cifar10 --data_path $TORCH_HOME/cifar.python --algo tas --rand_seed 777
# python ./exps/NATS-algos/search-size.py --dataset cifar100 --data_path $TORCH_HOME/cifar.python --algo tas --rand_seed 777
# python ./exps/NATS-algos/search-size.py --dataset ImageNet16-120 --data_path $TORCH_HOME/cifar.python/ImageNet16 --algo tas --rand_seed 777
####
# python ./exps/algos-v2/search-size.py --dataset cifar10 --data_path $TORCH_HOME/cifar.python --algo fbv2 --rand_seed 777
# python ./exps/algos-v2/search-size.py --dataset cifar100 --data_path $TORCH_HOME/cifar.python --algo fbv2 --rand_seed 777
# python ./exps/algos-v2/search-size.py --dataset ImageNet16-120 --data_path $TORCH_HOME/cifar.python/ImageNet16 --algo fbv2 --rand_seed 777
# python ./exps/NATS-algos/search-size.py --dataset cifar10 --data_path $TORCH_HOME/cifar.python --algo fbv2 --rand_seed 777
# python ./exps/NATS-algos/search-size.py --dataset cifar100 --data_path $TORCH_HOME/cifar.python --algo fbv2 --rand_seed 777
# python ./exps/NATS-algos/search-size.py --dataset ImageNet16-120 --data_path $TORCH_HOME/cifar.python/ImageNet16 --algo fbv2 --rand_seed 777
####
# python ./exps/algos-v2/search-size.py --dataset cifar10 --data_path $TORCH_HOME/cifar.python --algo tunas --arch_weight_decay 0 --rand_seed 777 --use_api 0
# python ./exps/algos-v2/search-size.py --dataset cifar100 --data_path $TORCH_HOME/cifar.python --algo tunas --arch_weight_decay 0 --rand_seed 777
# python ./exps/algos-v2/search-size.py --dataset ImageNet16-120 --data_path $TORCH_HOME/cifar.python/ImageNet16 --algo tunas --arch_weight_decay 0 --rand_seed 777
# python ./exps/NATS-algos/search-size.py --dataset cifar10 --data_path $TORCH_HOME/cifar.python --algo tunas --arch_weight_decay 0 --rand_seed 777 --use_api 0
# python ./exps/NATS-algos/search-size.py --dataset cifar100 --data_path $TORCH_HOME/cifar.python --algo tunas --arch_weight_decay 0 --rand_seed 777
# python ./exps/NATS-algos/search-size.py --dataset ImageNet16-120 --data_path $TORCH_HOME/cifar.python/ImageNet16 --algo tunas --arch_weight_decay 0 --rand_seed 777
######################################################################################
import os, sys, time, random, argparse
import numpy as np
@@ -176,7 +176,7 @@ def main(xargs):
logger.log('The parameters of the search model = {:.2f} MB'.format(params))
logger.log('search-space : {:}'.format(search_space))
if bool(xargs.use_api):
api = create(None, 'size', verbose=False)
api = create(None, 'size', fast_mode=True, verbose=False)
else:
api = None
logger.log('{:} create API = {:} done'.format(time_string(), api))

View File

@@ -1,47 +0,0 @@
#!/bin/bash
# bash ./exps/algos-v2/run-all.sh mul
# bash ./exps/algos-v2/run-all.sh ws
set -e
echo script name: $0
echo $# arguments
if [ "$#" -ne 1 ] ;then
echo "Input illegal number of parameters " $#
echo "Need 1 parameters for type of algorithms."
exit 1
fi
datasets="cifar10 cifar100 ImageNet16-120"
alg_type=$1
if [ "$alg_type" == "mul" ]; then
search_spaces="tss sss"
for dataset in ${datasets}
do
for search_space in ${search_spaces}
do
python ./exps/algos-v2/reinforce.py --dataset ${dataset} --search_space ${search_space} --learning_rate 0.01
python ./exps/algos-v2/regularized_ea.py --dataset ${dataset} --search_space ${search_space} --ea_cycles 200 --ea_population 10 --ea_sample_size 3
python ./exps/algos-v2/random_wo_share.py --dataset ${dataset} --search_space ${search_space}
python ./exps/algos-v2/bohb.py --dataset ${dataset} --search_space ${search_space} --num_samples 4 --random_fraction 0.0 --bandwidth_factor 3
done
done
python exps/experimental/vis-bench-algos.py --search_space tss
python exps/experimental/vis-bench-algos.py --search_space sss
else
seeds="777 888 999"
algos="darts-v1 darts-v2 gdas setn random enas"
epoch=200
for seed in ${seeds}
do
for alg in ${algos}
do
python ./exps/algos-v2/search-cell.py --dataset cifar10 --data_path $TORCH_HOME/cifar.python --algo ${alg} --rand_seed ${seed} --overwite_epochs ${epoch}
python ./exps/algos-v2/search-cell.py --dataset cifar100 --data_path $TORCH_HOME/cifar.python --algo ${alg} --rand_seed ${seed} --overwite_epochs ${epoch}
python ./exps/algos-v2/search-cell.py --dataset ImageNet16-120 --data_path $TORCH_HOME/cifar.python/ImageNet16 --algo ${alg} --rand_seed ${seed} --overwite_epochs ${epoch}
done
done
fi