Update LFNA with train/valid

This commit is contained in:
D-X-Y
2021-05-17 07:39:24 +00:00
parent de8cf677d9
commit 5c851ac25a
5 changed files with 123 additions and 26 deletions

View File

@@ -2,7 +2,8 @@
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.04 #
#####################################################
# python exps/LFNA/lfna.py --env_version v1 --workers 0
# python exps/LFNA/lfna.py --env_version v1 --device cuda
# python exps/LFNA/lfna.py --env_version v1 --device cuda --lr 0.001
# python exps/LFNA/lfna.py --env_version v1 --device cuda --lr 0.002
#####################################################
import sys, time, copy, torch, random, argparse
from tqdm import tqdm
@@ -58,9 +59,40 @@ def epoch_train(loader, meta_model, base_model, optimizer, criterion, device, lo
return loss_meter
def epoch_evaluate(loader, meta_model, base_model, criterion, device, logger):
with torch.no_grad():
base_model.eval()
meta_model.eval()
loss_meter = AverageMeter()
for ibatch, batch_data in enumerate(loader):
timestamps, (batch_seq_inputs, batch_seq_targets) = batch_data
timestamps = timestamps.squeeze(dim=-1).to(device)
batch_seq_inputs = batch_seq_inputs.to(device)
batch_seq_targets = batch_seq_targets.to(device)
batch_seq_containers = meta_model(timestamps)
losses = []
for seq_containers, seq_inputs, seq_targets in zip(
batch_seq_containers, batch_seq_inputs, batch_seq_targets
):
for container, inputs, targets in zip(
seq_containers, seq_inputs, seq_targets
):
predictions = base_model.forward_with_container(inputs, container)
loss = criterion(predictions, targets)
losses.append(loss)
final_loss = torch.stack(losses).mean()
loss_meter.update(final_loss.item())
return loss_meter
def main(args):
logger, env_info, model_kwargs = lfna_setup(args)
dynamic_env = get_synthetic_env(mode="train", version=args.env_version)
train_env = get_synthetic_env(mode="train", version=args.env_version)
valid_env = get_synthetic_env(mode="valid", version=args.env_version)
logger.log("training enviornment: {:}".format(train_env))
logger.log("validation enviornment: {:}".format(valid_env))
base_model = get_model(**model_kwargs)
base_model = base_model.to(args.device)
criterion = torch.nn.MSELoss()
@@ -68,26 +100,25 @@ def main(args):
shape_container = base_model.get_w_container().to_shape_container()
# pre-train the hypernetwork
timestamps = dynamic_env.get_timestamp(None)
timestamps = train_env.get_timestamp(None)
meta_model = LFNA_Meta(shape_container, args.layer_dim, args.time_dim, timestamps)
meta_model = meta_model.to(args.device)
logger.log("The base-model has {:} weights.".format(base_model.numel()))
logger.log("The meta-model has {:} weights.".format(meta_model.numel()))
batch_sampler = EnvSampler(dynamic_env, args.meta_batch, args.sampler_enlarge)
dynamic_env.reset_max_seq_length(args.seq_length)
"""
env_loader = torch.utils.data.DataLoader(
dynamic_env,
batch_sampler = EnvSampler(train_env, args.meta_batch, args.sampler_enlarge)
train_env.reset_max_seq_length(args.seq_length)
valid_env.reset_max_seq_length(args.seq_length)
valid_env_loader = torch.utils.data.DataLoader(
valid_env,
batch_size=args.meta_batch,
shuffle=True,
num_workers=args.workers,
pin_memory=True,
)
"""
env_loader = torch.utils.data.DataLoader(
dynamic_env,
train_env_loader = torch.utils.data.DataLoader(
train_env,
batch_sampler=batch_sampler,
num_workers=args.workers,
pin_memory=True,
@@ -95,7 +126,7 @@ def main(args):
optimizer = torch.optim.Adam(
meta_model.parameters(),
lr=args.init_lr,
lr=args.lr,
weight_decay=args.weight_decay,
amsgrad=True,
)
@@ -108,7 +139,7 @@ def main(args):
logger.log("The meta-model is\n{:}".format(meta_model))
logger.log("The optimizer is\n{:}".format(optimizer))
logger.log("The scheduler is\n{:}".format(lr_scheduler))
logger.log("Per epoch iterations = {:}".format(len(env_loader)))
logger.log("Per epoch iterations = {:}".format(len(train_env_loader)))
if logger.path("model").exists():
ckp_data = torch.load(logger.path("model"))
@@ -122,7 +153,7 @@ def main(args):
"epochs",
"env_version",
"hidden_dim",
"init_lr",
"lr",
"layer_dim",
"time_dim",
"seq_length",
@@ -152,7 +183,7 @@ def main(args):
)
loss_meter = epoch_train(
env_loader,
train_env_loader,
meta_model,
base_model,
optimizer,
@@ -160,9 +191,16 @@ def main(args):
args.device,
logger,
)
valid_loss_meter = epoch_evaluate(
valid_env_loader, meta_model, base_model, criterion, args.device, logger
)
logger.log(
head_str
+ " meta-loss: {meter.avg:.4f} ({meter.count:.0f})".format(meter=loss_meter)
+ " meta-train-loss: {meter.avg:.4f} ({meter.count:.0f})".format(
meter=loss_meter
)
+ " meta-valid-loss: {meter.val:.4f}".format(meter=valid_loss_meter)
+ " :: lr={:.5f}".format(min(lr_scheduler.get_last_lr()))
+ " :: last-success={:}".format(last_success_epoch)
)
@@ -231,14 +269,14 @@ def main(args):
#
new_param = meta_model.create_meta_embed()
optimizer = torch.optim.Adam(
[new_param], lr=args.init_lr, weight_decay=1e-5, amsgrad=True
[new_param], lr=args.refine_lr, weight_decay=1e-5, amsgrad=True
)
meta_model.replace_append_learnt(
torch.Tensor([future_time]).to(args.device), new_param
)
meta_model.eval()
base_model.train()
for iepoch in range(args.epochs):
for iepoch in range(args.refine_epochs):
optimizer.zero_grad()
[seq_containers] = meta_model(time_seqs)
future_container = seq_containers[-1]
@@ -297,7 +335,7 @@ if __name__ == "__main__":
)
#####
parser.add_argument(
"--init_lr",
"--lr",
type=float,
default=0.005,
help="The initial learning rate for the optimizer (default is Adam)",
@@ -321,10 +359,19 @@ if __name__ == "__main__":
help="Enlarge the #iterations for an epoch",
)
parser.add_argument("--epochs", type=int, default=10000, help="The total #epochs.")
parser.add_argument(
"--refine_lr",
type=float,
default=0.005,
help="The learning rate for the optimizer, during refine",
)
parser.add_argument(
"--refine_epochs", type=int, default=1000, help="The final refine #epochs."
)
parser.add_argument(
"--early_stop_thresh",
type=int,
default=50,
default=20,
help="The #epochs for early stop.",
)
parser.add_argument(
@@ -350,7 +397,7 @@ if __name__ == "__main__":
args.hidden_dim,
args.layer_dim,
args.time_dim,
args.init_lr,
args.lr,
args.weight_decay,
args.epochs,
args.env_version,