update TF
This commit is contained in:
@@ -2,5 +2,7 @@
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
|
||||
##################################################
|
||||
from .search_model_gdas import TinyNetworkGDAS
|
||||
from .search_model_darts import TinyNetworkDARTS
|
||||
|
||||
nas_super_nets = {'GDAS': TinyNetworkGDAS}
|
||||
nas_super_nets = {'GDAS' : TinyNetworkGDAS,
|
||||
'DARTS': TinyNetworkDARTS}
|
||||
|
83
lib/tf_models/cell_searchs/search_model_darts.py
Normal file
83
lib/tf_models/cell_searchs/search_model_darts.py
Normal file
@@ -0,0 +1,83 @@
|
||||
import tensorflow as tf
|
||||
import numpy as np
|
||||
from copy import deepcopy
|
||||
from ..cell_operations import ResNetBasicblock
|
||||
from .search_cells import NAS201SearchCell as SearchCell
|
||||
|
||||
|
||||
class TinyNetworkDARTS(tf.keras.Model):
|
||||
|
||||
def __init__(self, C, N, max_nodes, num_classes, search_space, affine):
|
||||
super(TinyNetworkDARTS, self).__init__()
|
||||
self._C = C
|
||||
self._layerN = N
|
||||
self.max_nodes = max_nodes
|
||||
self.stem = tf.keras.Sequential([
|
||||
tf.keras.layers.Conv2D(16, 3, 1, padding='same', use_bias=False),
|
||||
tf.keras.layers.BatchNormalization()], name='stem')
|
||||
|
||||
layer_channels = [C ] * N + [C*2 ] + [C*2 ] * N + [C*4 ] + [C*4 ] * N
|
||||
layer_reductions = [False] * N + [True] + [False] * N + [True] + [False] * N
|
||||
|
||||
C_prev, num_edge, edge2index = C, None, None
|
||||
for index, (C_curr, reduction) in enumerate(zip(layer_channels, layer_reductions)):
|
||||
cell_prefix = 'cell-{:03d}'.format(index)
|
||||
#with tf.name_scope(cell_prefix) as scope:
|
||||
if reduction:
|
||||
cell = ResNetBasicblock(C_prev, C_curr, 2)
|
||||
else:
|
||||
cell = SearchCell(C_prev, C_curr, 1, max_nodes, search_space, affine)
|
||||
if num_edge is None: num_edge, edge2index = cell.num_edges, cell.edge2index
|
||||
else: assert num_edge == cell.num_edges and edge2index == cell.edge2index, 'invalid {:} vs. {:}.'.format(num_edge, cell.num_edges)
|
||||
C_prev = cell.out_dim
|
||||
setattr(self, cell_prefix, cell)
|
||||
self.num_layers = len(layer_reductions)
|
||||
self.op_names = deepcopy( search_space )
|
||||
self.edge2index = edge2index
|
||||
self.num_edge = num_edge
|
||||
self.lastact = tf.keras.Sequential([
|
||||
tf.keras.layers.BatchNormalization(),
|
||||
tf.keras.layers.ReLU(),
|
||||
tf.keras.layers.GlobalAvgPool2D(),
|
||||
tf.keras.layers.Flatten(),
|
||||
tf.keras.layers.Dense(num_classes, activation='softmax')], name='lastact')
|
||||
#self.arch_parameters = nn.Parameter( 1e-3*torch.randn(num_edge, len(search_space)) )
|
||||
arch_init = tf.random_normal_initializer(mean=0, stddev=0.001)
|
||||
self.arch_parameters = tf.Variable(initial_value=arch_init(shape=(num_edge, len(search_space)), dtype='float32'), trainable=True, name='arch-encoding')
|
||||
|
||||
def get_alphas(self):
|
||||
xlist = self.trainable_variables
|
||||
return [x for x in xlist if 'arch-encoding' in x.name]
|
||||
|
||||
def get_weights(self):
|
||||
xlist = self.trainable_variables
|
||||
return [x for x in xlist if 'arch-encoding' not in x.name]
|
||||
|
||||
def get_np_alphas(self):
|
||||
arch_nps = self.arch_parameters.numpy()
|
||||
arch_ops = np.exp(arch_nps) / np.sum(np.exp(arch_nps), axis=-1, keepdims=True)
|
||||
return arch_ops
|
||||
|
||||
def genotype(self):
|
||||
genotypes, arch_nps = [], self.arch_parameters.numpy()
|
||||
for i in range(1, self.max_nodes):
|
||||
xlist = []
|
||||
for j in range(i):
|
||||
node_str = '{:}<-{:}'.format(i, j)
|
||||
weights = arch_nps[ self.edge2index[node_str] ]
|
||||
op_name = self.op_names[ weights.argmax().item() ]
|
||||
xlist.append((op_name, j))
|
||||
genotypes.append( tuple(xlist) )
|
||||
return genotypes
|
||||
|
||||
def call(self, inputs, training):
|
||||
weightss = tf.nn.softmax(self.arch_parameters, axis=1)
|
||||
feature = self.stem(inputs, training)
|
||||
for idx in range(self.num_layers):
|
||||
cell = getattr(self, 'cell-{:03d}'.format(idx))
|
||||
if isinstance(cell, SearchCell):
|
||||
feature = cell.call(feature, weightss, training)
|
||||
else:
|
||||
feature = cell(feature, training)
|
||||
logits = self.lastact(feature, training)
|
||||
return logits
|
Reference in New Issue
Block a user