update scripts-cluster
This commit is contained in:
26
README.md
26
README.md
@@ -1,17 +1,16 @@
|
||||
# GDAS
|
||||
By Xuanyi Dong and Yi Yang
|
||||
# Searching for A Robust Neural Architecture in Four GPU Hours
|
||||
|
||||
University of Technology Sydney
|
||||
We propose A Gradient-based neural architecture search approach using Differentiable Architecture Sampler (GDAS).
|
||||
|
||||
Requirements
|
||||
- PyTorch 1.0
|
||||
## Requirements
|
||||
- PyTorch 1.0.1
|
||||
- Python 3.6
|
||||
- opencv
|
||||
```
|
||||
conda install pytorch torchvision cuda100 -c pytorch
|
||||
```
|
||||
|
||||
## Algorithm
|
||||
## Usages
|
||||
|
||||
Train the searched CNN on CIFAR
|
||||
```
|
||||
@@ -26,6 +25,11 @@ CUDA_VISIBLE_DEVICES=0 bash ./scripts-cnn/train-imagenet.sh GDAS_F1 52 14
|
||||
CUDA_VISIBLE_DEVICES=0 bash ./scripts-cnn/train-imagenet.sh GDAS_V1 50 14
|
||||
```
|
||||
|
||||
Evaluate a trained CNN model
|
||||
```
|
||||
CUDA_VISIBLE_DEVICES=0 python ./exps-cnn/evaluate.py --data_path $TORCH_HOME/cifar.python --checkpoint ${checkpoint-path}
|
||||
CUDA_VISIBLE_DEVICES=0 python ./exps-cnn/evaluate.py --data_path $TORCH_HOME/ILSVRC2012 --checkpoint ${checkpoint-path}
|
||||
```
|
||||
|
||||
Train the searched RNN
|
||||
```
|
||||
@@ -36,3 +40,13 @@ CUDA_VISIBLE_DEVICES=0 bash ./scripts-rnn/train-WT2.sh DARTS_V1
|
||||
CUDA_VISIBLE_DEVICES=0 bash ./scripts-rnn/train-WT2.sh DARTS_V2
|
||||
CUDA_VISIBLE_DEVICES=0 bash ./scripts-rnn/train-WT2.sh GDAS
|
||||
```
|
||||
|
||||
## Citation
|
||||
```
|
||||
@inproceedings{dong2019search,
|
||||
title={Searching for A Robust Neural Architecture in Four GPU Hours},
|
||||
author={Dong, Xuanyi and Yang, Yi},
|
||||
booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
|
||||
year={2019}
|
||||
}
|
||||
```
|
||||
|
Reference in New Issue
Block a user