Update TAS abd FBV2 for NAS-Bench

This commit is contained in:
D-X-Y
2020-07-24 12:56:34 +00:00
parent b9fbe5577c
commit 4a2292a863
8 changed files with 491 additions and 12 deletions

View File

@@ -6,3 +6,4 @@ from .SearchCifarResNet_depth import SearchDepthCifarResNet
from .SearchCifarResNet import SearchShapeCifarResNet
from .SearchSimResNet_width import SearchWidthSimResNet
from .SearchImagenetResNet import SearchShapeImagenetResNet
from .generic_size_tiny_cell_model import GenericNAS301Model

View File

@@ -0,0 +1,139 @@
#####################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 #
#####################################################
from typing import List, Text, Any
import random, torch
import torch.nn as nn
from models.cell_operations import ResNetBasicblock
from models.cell_infers.cells import InferCell
from models.shape_searchs.SoftSelect import select2withP, ChannelWiseInter
class GenericNAS301Model(nn.Module):
def __init__(self, candidate_Cs: List[int], max_num_Cs: int, genotype: Any, num_classes: int, affine: bool, track_running_stats: bool):
super(GenericNAS301Model, self).__init__()
self._max_num_Cs = max_num_Cs
self._candidate_Cs = candidate_Cs
if max_num_Cs % 3 != 2:
raise ValueError('invalid number of layers : {:}'.format(max_num_Cs))
self._num_stage = N = max_num_Cs // 3
self._max_C = max(candidate_Cs)
stem = nn.Sequential(
nn.Conv2d(3, self._max_C, kernel_size=3, padding=1, bias=not affine),
nn.BatchNorm2d(self._max_C, affine=affine, track_running_stats=track_running_stats))
layer_reductions = [False] * N + [True] + [False] * N + [True] + [False] * N
c_prev = self._max_C
self._cells = nn.ModuleList()
self._cells.append(stem)
for index, reduction in enumerate(layer_reductions):
if reduction : cell = ResNetBasicblock(c_prev, self._max_C, 2, True)
else : cell = InferCell(genotype, c_prev, self._max_C, 1, affine, track_running_stats)
self._cells.append(cell)
c_prev = cell.out_dim
self._num_layer = len(self._cells)
self.lastact = nn.Sequential(nn.BatchNorm2d(c_prev, affine=affine, track_running_stats=track_running_stats), nn.ReLU(inplace=True))
self.global_pooling = nn.AdaptiveAvgPool2d(1)
self.classifier = nn.Linear(c_prev, num_classes)
# algorithm related
self.register_buffer('_tau', torch.zeros(1))
self._algo = None
def set_algo(self, algo: Text):
# used for searching
assert self._algo is None, 'This functioin can only be called once.'
assert algo in ['fbv2', 'enas', 'tas'], 'invalid algo : {:}'.format(algo)
self._algo = algo
self._arch_parameters = nn.Parameter(1e-3*torch.randn(self._max_num_Cs, len(self._candidate_Cs)))
if algo == 'fbv2' or algo == 'enas':
self.register_buffer('_masks', torch.zeros(len(self._candidate_Cs), max(self._candidate_Cs)))
for i in range(len(self._candidate_Cs)):
self._masks.data[i, :self._candidate_Cs[i]] = 1
@property
def tau(self):
return self._tau
def set_tau(self, tau):
self._tau.data[:] = tau
@property
def weights(self):
xlist = list(self._cells.parameters())
xlist+= list(self.lastact.parameters())
xlist+= list(self.global_pooling.parameters())
xlist+= list(self.classifier.parameters())
return xlist
@property
def alphas(self):
return [self._arch_parameters]
def show_alphas(self):
with torch.no_grad():
return 'arch-parameters :\n{:}'.format(nn.functional.softmax(self._arch_parameters, dim=-1).cpu())
@property
def random(self):
cs = []
for i in range(self._max_num_Cs):
index = random.randint(0, len(self._candidate_Cs)-1)
cs.append(str(self._candidate_Cs[index]))
return ':'.join(cs)
@property
def genotype(self):
cs = []
for i in range(self._max_num_Cs):
with torch.no_grad():
index = self._arch_parameters[i].argmax().item()
cs.append(str(self._candidate_Cs[index]))
return ':'.join(cs)
def get_message(self) -> Text:
string = self.extra_repr()
for i, cell in enumerate(self._cells):
string += '\n {:02d}/{:02d} :: {:}'.format(i, len(self._cells), cell.extra_repr())
return string
def extra_repr(self):
return ('{name}(candidates={_candidate_Cs}, num={_max_num_Cs}, N={_num_stage}, L={_num_layer})'.format(name=self.__class__.__name__, **self.__dict__))
def forward(self, inputs):
feature = inputs
for i, cell in enumerate(self._cells):
feature = cell(feature)
if self._algo == 'fbv2':
idx = max(0, i-1)
weights = nn.functional.gumbel_softmax(self._arch_parameters[idx:idx+1], tau=self.tau, dim=-1)
mask = torch.matmul(weights, self._masks).view(1, -1, 1, 1)
feature = feature * mask
elif self._algo == 'tas':
idx = max(0, i-1)
selected_cs, selected_probs = select2withP(self._arch_parameters[idx:idx+1], self.tau, num=2)
with torch.no_grad():
i1, i2 = selected_cs.cpu().view(-1).tolist()
c1, c2 = self._candidate_Cs[i1], self._candidate_Cs[i2]
out_channel = max(c1, c2)
out1 = ChannelWiseInter(feature[:, :c1], out_channel)
out2 = ChannelWiseInter(feature[:, :c2], out_channel)
out = out1 * selected_probs[0, 0] + out2 * selected_probs[0, 1]
if feature.shape[1] == out.shape[1]:
feature = out
else:
miss = torch.zeros(feature.shape[0], feature.shape[1]-out.shape[1], feature.shape[2], feature.shape[3], device=feature.device)
feature = torch.cat((out, miss), dim=1)
else:
raise ValueError('invalid algorithm : {:}'.format(self._algo))
out = self.lastact(feature)
out = self.global_pooling(out)
out = out.view(out.size(0), -1)
logits = self.classifier(out)
return out, logits