Update TAS abd FBV2 for NAS-Bench
This commit is contained in:
@@ -12,8 +12,8 @@ __all__ = ['change_key', 'get_cell_based_tiny_net', 'get_search_spaces', 'get_ci
|
||||
|
||||
# useful modules
|
||||
from config_utils import dict2config
|
||||
from .SharedUtils import change_key
|
||||
from .cell_searchs import CellStructure, CellArchitectures
|
||||
from models.SharedUtils import change_key
|
||||
from models.cell_searchs import CellStructure, CellArchitectures
|
||||
|
||||
|
||||
# Cell-based NAS Models
|
||||
@@ -27,6 +27,10 @@ def get_cell_based_tiny_net(config):
|
||||
return nas_super_nets[config.name](config.C, config.N, config.max_nodes, config.num_classes, config.space, config.affine, config.track_running_stats)
|
||||
except:
|
||||
return nas_super_nets[config.name](config.C, config.N, config.max_nodes, config.num_classes, config.space)
|
||||
elif super_type == 'search-shape':
|
||||
from .shape_searchs import GenericNAS301Model
|
||||
genotype = CellStructure.str2structure(config.genotype)
|
||||
return GenericNAS301Model(config.candidate_Cs, config.max_num_Cs, genotype, config.num_classes, config.affine, config.track_running_stats)
|
||||
elif super_type == 'nasnet-super':
|
||||
from .cell_searchs import nasnet_super_nets as nas_super_nets
|
||||
return nas_super_nets[config.name](config.C, config.N, config.steps, config.multiplier, \
|
||||
|
@@ -5,13 +5,14 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from copy import deepcopy
|
||||
from ..cell_operations import OPS
|
||||
|
||||
from models.cell_operations import OPS
|
||||
|
||||
|
||||
# Cell for NAS-Bench-201
|
||||
class InferCell(nn.Module):
|
||||
|
||||
def __init__(self, genotype, C_in, C_out, stride):
|
||||
def __init__(self, genotype, C_in, C_out, stride, affine=True, track_running_stats=True):
|
||||
super(InferCell, self).__init__()
|
||||
|
||||
self.layers = nn.ModuleList()
|
||||
@@ -24,9 +25,9 @@ class InferCell(nn.Module):
|
||||
cur_innod = []
|
||||
for (op_name, op_in) in node_info:
|
||||
if op_in == 0:
|
||||
layer = OPS[op_name](C_in , C_out, stride, True, True)
|
||||
layer = OPS[op_name](C_in , C_out, stride, affine, track_running_stats)
|
||||
else:
|
||||
layer = OPS[op_name](C_out, C_out, 1, True, True)
|
||||
layer = OPS[op_name](C_out, C_out, 1, affine, track_running_stats)
|
||||
cur_index.append( len(self.layers) )
|
||||
cur_innod.append( op_in )
|
||||
self.layers.append( layer )
|
||||
|
@@ -74,17 +74,17 @@ class DualSepConv(nn.Module):
|
||||
|
||||
class ResNetBasicblock(nn.Module):
|
||||
|
||||
def __init__(self, inplanes, planes, stride, affine=True):
|
||||
def __init__(self, inplanes, planes, stride, affine=True, track_running_stats=True):
|
||||
super(ResNetBasicblock, self).__init__()
|
||||
assert stride == 1 or stride == 2, 'invalid stride {:}'.format(stride)
|
||||
self.conv_a = ReLUConvBN(inplanes, planes, 3, stride, 1, 1, affine)
|
||||
self.conv_b = ReLUConvBN( planes, planes, 3, 1, 1, 1, affine)
|
||||
self.conv_a = ReLUConvBN(inplanes, planes, 3, stride, 1, 1, affine, track_running_stats)
|
||||
self.conv_b = ReLUConvBN( planes, planes, 3, 1, 1, 1, affine, track_running_stats)
|
||||
if stride == 2:
|
||||
self.downsample = nn.Sequential(
|
||||
nn.AvgPool2d(kernel_size=2, stride=2, padding=0),
|
||||
nn.Conv2d(inplanes, planes, kernel_size=1, stride=1, padding=0, bias=False))
|
||||
elif inplanes != planes:
|
||||
self.downsample = ReLUConvBN(inplanes, planes, 1, 1, 0, 1, affine)
|
||||
self.downsample = ReLUConvBN(inplanes, planes, 1, 1, 0, 1, affine, track_running_stats)
|
||||
else:
|
||||
self.downsample = None
|
||||
self.in_dim = inplanes
|
||||
|
@@ -6,3 +6,4 @@ from .SearchCifarResNet_depth import SearchDepthCifarResNet
|
||||
from .SearchCifarResNet import SearchShapeCifarResNet
|
||||
from .SearchSimResNet_width import SearchWidthSimResNet
|
||||
from .SearchImagenetResNet import SearchShapeImagenetResNet
|
||||
from .generic_size_tiny_cell_model import GenericNAS301Model
|
||||
|
139
lib/models/shape_searchs/generic_size_tiny_cell_model.py
Normal file
139
lib/models/shape_searchs/generic_size_tiny_cell_model.py
Normal file
@@ -0,0 +1,139 @@
|
||||
#####################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 #
|
||||
#####################################################
|
||||
from typing import List, Text, Any
|
||||
import random, torch
|
||||
import torch.nn as nn
|
||||
|
||||
from models.cell_operations import ResNetBasicblock
|
||||
from models.cell_infers.cells import InferCell
|
||||
from models.shape_searchs.SoftSelect import select2withP, ChannelWiseInter
|
||||
|
||||
|
||||
class GenericNAS301Model(nn.Module):
|
||||
|
||||
def __init__(self, candidate_Cs: List[int], max_num_Cs: int, genotype: Any, num_classes: int, affine: bool, track_running_stats: bool):
|
||||
super(GenericNAS301Model, self).__init__()
|
||||
self._max_num_Cs = max_num_Cs
|
||||
self._candidate_Cs = candidate_Cs
|
||||
if max_num_Cs % 3 != 2:
|
||||
raise ValueError('invalid number of layers : {:}'.format(max_num_Cs))
|
||||
self._num_stage = N = max_num_Cs // 3
|
||||
self._max_C = max(candidate_Cs)
|
||||
|
||||
stem = nn.Sequential(
|
||||
nn.Conv2d(3, self._max_C, kernel_size=3, padding=1, bias=not affine),
|
||||
nn.BatchNorm2d(self._max_C, affine=affine, track_running_stats=track_running_stats))
|
||||
|
||||
layer_reductions = [False] * N + [True] + [False] * N + [True] + [False] * N
|
||||
|
||||
c_prev = self._max_C
|
||||
self._cells = nn.ModuleList()
|
||||
self._cells.append(stem)
|
||||
for index, reduction in enumerate(layer_reductions):
|
||||
if reduction : cell = ResNetBasicblock(c_prev, self._max_C, 2, True)
|
||||
else : cell = InferCell(genotype, c_prev, self._max_C, 1, affine, track_running_stats)
|
||||
self._cells.append(cell)
|
||||
c_prev = cell.out_dim
|
||||
self._num_layer = len(self._cells)
|
||||
|
||||
self.lastact = nn.Sequential(nn.BatchNorm2d(c_prev, affine=affine, track_running_stats=track_running_stats), nn.ReLU(inplace=True))
|
||||
self.global_pooling = nn.AdaptiveAvgPool2d(1)
|
||||
self.classifier = nn.Linear(c_prev, num_classes)
|
||||
# algorithm related
|
||||
self.register_buffer('_tau', torch.zeros(1))
|
||||
self._algo = None
|
||||
|
||||
def set_algo(self, algo: Text):
|
||||
# used for searching
|
||||
assert self._algo is None, 'This functioin can only be called once.'
|
||||
assert algo in ['fbv2', 'enas', 'tas'], 'invalid algo : {:}'.format(algo)
|
||||
self._algo = algo
|
||||
self._arch_parameters = nn.Parameter(1e-3*torch.randn(self._max_num_Cs, len(self._candidate_Cs)))
|
||||
if algo == 'fbv2' or algo == 'enas':
|
||||
self.register_buffer('_masks', torch.zeros(len(self._candidate_Cs), max(self._candidate_Cs)))
|
||||
for i in range(len(self._candidate_Cs)):
|
||||
self._masks.data[i, :self._candidate_Cs[i]] = 1
|
||||
|
||||
@property
|
||||
def tau(self):
|
||||
return self._tau
|
||||
|
||||
def set_tau(self, tau):
|
||||
self._tau.data[:] = tau
|
||||
|
||||
@property
|
||||
def weights(self):
|
||||
xlist = list(self._cells.parameters())
|
||||
xlist+= list(self.lastact.parameters())
|
||||
xlist+= list(self.global_pooling.parameters())
|
||||
xlist+= list(self.classifier.parameters())
|
||||
return xlist
|
||||
|
||||
@property
|
||||
def alphas(self):
|
||||
return [self._arch_parameters]
|
||||
|
||||
def show_alphas(self):
|
||||
with torch.no_grad():
|
||||
return 'arch-parameters :\n{:}'.format(nn.functional.softmax(self._arch_parameters, dim=-1).cpu())
|
||||
|
||||
@property
|
||||
def random(self):
|
||||
cs = []
|
||||
for i in range(self._max_num_Cs):
|
||||
index = random.randint(0, len(self._candidate_Cs)-1)
|
||||
cs.append(str(self._candidate_Cs[index]))
|
||||
return ':'.join(cs)
|
||||
|
||||
@property
|
||||
def genotype(self):
|
||||
cs = []
|
||||
for i in range(self._max_num_Cs):
|
||||
with torch.no_grad():
|
||||
index = self._arch_parameters[i].argmax().item()
|
||||
cs.append(str(self._candidate_Cs[index]))
|
||||
return ':'.join(cs)
|
||||
|
||||
def get_message(self) -> Text:
|
||||
string = self.extra_repr()
|
||||
for i, cell in enumerate(self._cells):
|
||||
string += '\n {:02d}/{:02d} :: {:}'.format(i, len(self._cells), cell.extra_repr())
|
||||
return string
|
||||
|
||||
def extra_repr(self):
|
||||
return ('{name}(candidates={_candidate_Cs}, num={_max_num_Cs}, N={_num_stage}, L={_num_layer})'.format(name=self.__class__.__name__, **self.__dict__))
|
||||
|
||||
def forward(self, inputs):
|
||||
feature = inputs
|
||||
for i, cell in enumerate(self._cells):
|
||||
feature = cell(feature)
|
||||
if self._algo == 'fbv2':
|
||||
idx = max(0, i-1)
|
||||
weights = nn.functional.gumbel_softmax(self._arch_parameters[idx:idx+1], tau=self.tau, dim=-1)
|
||||
mask = torch.matmul(weights, self._masks).view(1, -1, 1, 1)
|
||||
feature = feature * mask
|
||||
elif self._algo == 'tas':
|
||||
idx = max(0, i-1)
|
||||
selected_cs, selected_probs = select2withP(self._arch_parameters[idx:idx+1], self.tau, num=2)
|
||||
with torch.no_grad():
|
||||
i1, i2 = selected_cs.cpu().view(-1).tolist()
|
||||
c1, c2 = self._candidate_Cs[i1], self._candidate_Cs[i2]
|
||||
out_channel = max(c1, c2)
|
||||
out1 = ChannelWiseInter(feature[:, :c1], out_channel)
|
||||
out2 = ChannelWiseInter(feature[:, :c2], out_channel)
|
||||
out = out1 * selected_probs[0, 0] + out2 * selected_probs[0, 1]
|
||||
if feature.shape[1] == out.shape[1]:
|
||||
feature = out
|
||||
else:
|
||||
miss = torch.zeros(feature.shape[0], feature.shape[1]-out.shape[1], feature.shape[2], feature.shape[3], device=feature.device)
|
||||
feature = torch.cat((out, miss), dim=1)
|
||||
else:
|
||||
raise ValueError('invalid algorithm : {:}'.format(self._algo))
|
||||
|
||||
out = self.lastact(feature)
|
||||
out = self.global_pooling(out)
|
||||
out = out.view(out.size(0), -1)
|
||||
logits = self.classifier(out)
|
||||
|
||||
return out, logits
|
Reference in New Issue
Block a user