Update models
This commit is contained in:
@@ -6,7 +6,7 @@ import inspect
|
||||
import os
|
||||
import pprint
|
||||
import logging
|
||||
|
||||
from copy import deepcopy
|
||||
import qlib
|
||||
from qlib.utils import init_instance_by_config
|
||||
from qlib.workflow import R
|
||||
@@ -33,11 +33,14 @@ def set_log_basic_config(filename=None, format=None, level=None):
|
||||
if format is None:
|
||||
format = C.logging_config["formatters"]["logger_format"]["format"]
|
||||
|
||||
# Remove all handlers associated with the root logger object.
|
||||
for handler in logging.root.handlers[:]:
|
||||
logging.root.removeHandler(handler)
|
||||
logging.basicConfig(filename=filename, format=format, level=level)
|
||||
|
||||
|
||||
def update_gpu(config, gpu):
|
||||
config = config.copy()
|
||||
config = deepcopy(config)
|
||||
if "task" in config and "model" in config["task"]:
|
||||
if "GPU" in config["task"]["model"]:
|
||||
config["task"]["model"]["GPU"] = gpu
|
||||
@@ -59,13 +62,20 @@ def update_gpu(config, gpu):
|
||||
|
||||
|
||||
def update_market(config, market):
|
||||
config = config.copy()
|
||||
config = deepcopy(config.copy())
|
||||
config["market"] = market
|
||||
config["data_handler_config"]["instruments"] = market
|
||||
return config
|
||||
|
||||
|
||||
def run_exp(task_config, dataset, experiment_name, recorder_name, uri):
|
||||
def run_exp(
|
||||
task_config,
|
||||
dataset,
|
||||
experiment_name,
|
||||
recorder_name,
|
||||
uri,
|
||||
model_obj_name="model.pkl",
|
||||
):
|
||||
|
||||
model = init_instance_by_config(task_config["model"])
|
||||
model_fit_kwargs = dict(dataset=dataset)
|
||||
@@ -80,6 +90,7 @@ def run_exp(task_config, dataset, experiment_name, recorder_name, uri):
|
||||
# Setup log
|
||||
recorder_root_dir = R.get_recorder().get_local_dir()
|
||||
log_file = os.path.join(recorder_root_dir, "{:}.log".format(experiment_name))
|
||||
|
||||
set_log_basic_config(log_file)
|
||||
logger = get_module_logger("q.run_exp")
|
||||
logger.info("task_config::\n{:}".format(pprint.pformat(task_config, indent=2)))
|
||||
@@ -87,20 +98,29 @@ def run_exp(task_config, dataset, experiment_name, recorder_name, uri):
|
||||
logger.info("dataset={:}".format(dataset))
|
||||
|
||||
# Train model
|
||||
R.log_params(**flatten_dict(task_config))
|
||||
if "save_path" in inspect.getfullargspec(model.fit).args:
|
||||
model_fit_kwargs["save_path"] = os.path.join(recorder_root_dir, "model.ckp")
|
||||
elif "save_dir" in inspect.getfullargspec(model.fit).args:
|
||||
model_fit_kwargs["save_dir"] = os.path.join(recorder_root_dir, "model-ckps")
|
||||
model.fit(**model_fit_kwargs)
|
||||
try:
|
||||
model = R.load_object(model_obj_name)
|
||||
logger.info("[Find existing object from {:}]".format(model_obj_name))
|
||||
except OSError:
|
||||
R.log_params(**flatten_dict(task_config))
|
||||
if "save_path" in inspect.getfullargspec(model.fit).args:
|
||||
model_fit_kwargs["save_path"] = os.path.join(
|
||||
recorder_root_dir, "model.ckp"
|
||||
)
|
||||
elif "save_dir" in inspect.getfullargspec(model.fit).args:
|
||||
model_fit_kwargs["save_dir"] = os.path.join(
|
||||
recorder_root_dir, "model-ckps"
|
||||
)
|
||||
model.fit(**model_fit_kwargs)
|
||||
R.save_objects(**{model_obj_name: model})
|
||||
except:
|
||||
raise ValueError("Something wrong.")
|
||||
# Get the recorder
|
||||
recorder = R.get_recorder()
|
||||
R.save_objects(**{"model.pkl": model})
|
||||
|
||||
# Generate records: prediction, backtest, and analysis
|
||||
import pdb; pdb.set_trace()
|
||||
for record in task_config["record"]:
|
||||
record = record.copy()
|
||||
record = deepcopy(record)
|
||||
if record["class"] == "SignalRecord":
|
||||
srconf = {"model": model, "dataset": dataset, "recorder": recorder}
|
||||
record["kwargs"].update(srconf)
|
||||
|
@@ -193,19 +193,15 @@ def get_transformer(config):
|
||||
raise ValueError("Invalid Configuration: {:}".format(config))
|
||||
name = config.get("name", "basic")
|
||||
if name == "basic":
|
||||
model = TransformerModel(
|
||||
model = SuperTransformer(
|
||||
d_feat=config.get("d_feat"),
|
||||
embed_dim=config.get("embed_dim"),
|
||||
depth=config.get("depth"),
|
||||
stem_dim=config.get("stem_dim"),
|
||||
embed_dims=config.get("embed_dims"),
|
||||
num_heads=config.get("num_heads"),
|
||||
mlp_ratio=config.get("mlp_ratio"),
|
||||
mlp_hidden_multipliers=config.get("mlp_hidden_multipliers"),
|
||||
qkv_bias=config.get("qkv_bias"),
|
||||
qk_scale=config.get("qkv_scale"),
|
||||
pos_drop=config.get("pos_drop"),
|
||||
mlp_drop_rate=config.get("mlp_drop_rate"),
|
||||
attn_drop_rate=config.get("attn_drop_rate"),
|
||||
drop_path_rate=config.get("drop_path_rate"),
|
||||
norm_layer=config.get("norm_layer", None),
|
||||
other_drop=config.get("other_drop"),
|
||||
)
|
||||
else:
|
||||
raise ValueError("Unknown model name: {:}".format(name))
|
||||
|
@@ -14,6 +14,13 @@ IntSpaceType = Union[int, spaces.Integer, spaces.Categorical]
|
||||
BoolSpaceType = Union[bool, spaces.Categorical]
|
||||
|
||||
|
||||
class LayerOrder(Enum):
|
||||
"""This class defines the enumerations for order of operation in a residual or normalization-based layer."""
|
||||
|
||||
PreNorm = "pre-norm"
|
||||
PostNorm = "post-norm"
|
||||
|
||||
|
||||
class SuperRunMode(Enum):
|
||||
"""This class defines the enumerations for Super Model Running Mode."""
|
||||
|
||||
|
@@ -15,6 +15,7 @@ import torch.nn.functional as F
|
||||
import spaces
|
||||
from .super_module import IntSpaceType
|
||||
from .super_module import BoolSpaceType
|
||||
from .super_module import LayerOrder
|
||||
from .super_module import SuperModule
|
||||
from .super_linear import SuperMLPv2
|
||||
from .super_norm import SuperLayerNorm1D
|
||||
@@ -30,7 +31,8 @@ class SuperTransformerEncoderLayer(SuperModule):
|
||||
- PyTorch Implementation: https://pytorch.org/docs/stable/_modules/torch/nn/modules/transformer.html#TransformerEncoderLayer
|
||||
|
||||
Details:
|
||||
MHA -> residual -> norm -> MLP -> residual -> norm
|
||||
the original post-norm version: MHA -> residual -> norm -> MLP -> residual -> norm
|
||||
the pre-norm version: norm -> MHA -> residual -> norm -> MLP -> residual
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
@@ -42,9 +44,10 @@ class SuperTransformerEncoderLayer(SuperModule):
|
||||
mlp_hidden_multiplier: IntSpaceType = 4,
|
||||
drop: Optional[float] = None,
|
||||
act_layer: Callable[[], nn.Module] = nn.GELU,
|
||||
order: LayerOrder = LayerOrder.PreNorm,
|
||||
):
|
||||
super(SuperTransformerEncoderLayer, self).__init__()
|
||||
self.mha = SuperAttention(
|
||||
mha = SuperAttention(
|
||||
input_dim,
|
||||
input_dim,
|
||||
num_heads=num_heads,
|
||||
@@ -52,17 +55,33 @@ class SuperTransformerEncoderLayer(SuperModule):
|
||||
attn_drop=drop,
|
||||
proj_drop=drop,
|
||||
)
|
||||
self.drop1 = nn.Dropout(drop or 0.0)
|
||||
self.norm1 = SuperLayerNorm1D(input_dim)
|
||||
self.mlp = SuperMLPv2(
|
||||
drop1 = nn.Dropout(drop or 0.0)
|
||||
norm1 = SuperLayerNorm1D(input_dim)
|
||||
mlp = SuperMLPv2(
|
||||
input_dim,
|
||||
hidden_multiplier=mlp_hidden_multiplier,
|
||||
out_features=output_dim,
|
||||
act_layer=act_layer,
|
||||
drop=drop,
|
||||
)
|
||||
self.drop2 = nn.Dropout(drop or 0.0)
|
||||
self.norm2 = SuperLayerNorm1D(output_dim)
|
||||
drop2 = nn.Dropout(drop or 0.0)
|
||||
norm2 = SuperLayerNorm1D(output_dim)
|
||||
if order is LayerOrder.PreNorm:
|
||||
self.norm1 = norm1
|
||||
self.mha = mha
|
||||
self.drop1 = drop1
|
||||
self.norm2 = norm2
|
||||
self.mlp = mlp
|
||||
self.drop2 = drop2
|
||||
elif order is LayerOrder.PostNoem:
|
||||
self.mha = mha
|
||||
self.drop1 = drop1
|
||||
self.norm1 = norm1
|
||||
self.mlp = mlp
|
||||
self.drop2 = drop2
|
||||
self.norm2 = norm2
|
||||
else:
|
||||
raise ValueError("Unknown order: {:}".format(order))
|
||||
|
||||
@property
|
||||
def abstract_search_space(self):
|
||||
@@ -89,12 +108,18 @@ class SuperTransformerEncoderLayer(SuperModule):
|
||||
return self.forward_raw(input)
|
||||
|
||||
def forward_raw(self, input: torch.Tensor) -> torch.Tensor:
|
||||
# multi-head attention
|
||||
x = self.mha(input)
|
||||
x = x + self.drop1(x)
|
||||
x = self.norm1(x)
|
||||
# feed-forward layer
|
||||
x = self.mlp(x)
|
||||
x = x + self.drop2(x)
|
||||
x = self.norm2(x)
|
||||
if order is LayerOrder.PreNorm:
|
||||
x = self.norm1(input)
|
||||
x = x + self.drop1(self.mha(x))
|
||||
x = self.norm2(x)
|
||||
x = x + self.drop2(self.mlp(x))
|
||||
elif order is LayerOrder.PostNoem:
|
||||
# multi-head attention
|
||||
x = x + self.drop1(self.mha(input))
|
||||
x = self.norm1(x)
|
||||
# feed-forward layer
|
||||
x = x + self.drop2(self.mlp(x))
|
||||
x = self.norm2(x)
|
||||
else:
|
||||
raise ValueError("Unknown order: {:}".format(order))
|
||||
return x
|
||||
|
Reference in New Issue
Block a user