update ENAS
This commit is contained in:
@@ -16,18 +16,10 @@ from .cell_searchs import CellStructure, CellArchitectures
|
||||
|
||||
# Cell-based NAS Models
|
||||
def get_cell_based_tiny_net(config):
|
||||
if config.name == 'DARTS-V1':
|
||||
from .cell_searchs import TinyNetworkDartsV1
|
||||
return TinyNetworkDartsV1(config.C, config.N, config.max_nodes, config.num_classes, config.space)
|
||||
elif config.name == 'DARTS-V2':
|
||||
from .cell_searchs import TinyNetworkDartsV2
|
||||
return TinyNetworkDartsV2(config.C, config.N, config.max_nodes, config.num_classes, config.space)
|
||||
elif config.name == 'GDAS':
|
||||
from .cell_searchs import TinyNetworkGDAS
|
||||
return TinyNetworkGDAS(config.C, config.N, config.max_nodes, config.num_classes, config.space)
|
||||
elif config.name == 'SETN':
|
||||
from .cell_searchs import TinyNetworkSETN
|
||||
return TinyNetworkSETN(config.C, config.N, config.max_nodes, config.num_classes, config.space)
|
||||
group_names = ['DARTS-V1', 'DARTS-V2', 'GDAS', 'SETN', 'ENAS']
|
||||
from .cell_searchs import nas_super_nets
|
||||
if config.name in group_names:
|
||||
return nas_super_nets[config.name](config.C, config.N, config.max_nodes, config.num_classes, config.space)
|
||||
elif config.name == 'infer.tiny':
|
||||
from .cell_infers import TinyNetwork
|
||||
return TinyNetwork(config.C, config.N, config.genotype, config.num_classes)
|
||||
|
@@ -2,4 +2,11 @@ from .search_model_darts_v1 import TinyNetworkDartsV1
|
||||
from .search_model_darts_v2 import TinyNetworkDartsV2
|
||||
from .search_model_gdas import TinyNetworkGDAS
|
||||
from .search_model_setn import TinyNetworkSETN
|
||||
from .search_model_enas import TinyNetworkENAS
|
||||
from .genotypes import Structure as CellStructure, architectures as CellArchitectures
|
||||
|
||||
nas_super_nets = {'DARTS-V1': TinyNetworkDartsV1,
|
||||
'DARTS-V2': TinyNetworkDartsV2,
|
||||
'GDAS' : TinyNetworkGDAS,
|
||||
'SETN' : TinyNetworkSETN,
|
||||
'ENAS' : TinyNetworkENAS}
|
||||
|
9
lib/models/cell_searchs/_test_module.py
Normal file
9
lib/models/cell_searchs/_test_module.py
Normal file
@@ -0,0 +1,9 @@
|
||||
import torch
|
||||
from search_model_enas_utils import Controller
|
||||
|
||||
def main():
|
||||
controller = Controller(6, 4)
|
||||
predictions = controller()
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
94
lib/models/cell_searchs/search_model_enas.py
Normal file
94
lib/models/cell_searchs/search_model_enas.py
Normal file
@@ -0,0 +1,94 @@
|
||||
##################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
|
||||
##########################################################################
|
||||
# Efficient Neural Architecture Search via Parameters Sharing, ICML 2018 #
|
||||
##########################################################################
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from copy import deepcopy
|
||||
from ..cell_operations import ResNetBasicblock
|
||||
from .search_cells import SearchCell
|
||||
from .genotypes import Structure
|
||||
from .search_model_enas_utils import Controller
|
||||
|
||||
|
||||
class TinyNetworkENAS(nn.Module):
|
||||
|
||||
def __init__(self, C, N, max_nodes, num_classes, search_space):
|
||||
super(TinyNetworkENAS, self).__init__()
|
||||
self._C = C
|
||||
self._layerN = N
|
||||
self.max_nodes = max_nodes
|
||||
self.stem = nn.Sequential(
|
||||
nn.Conv2d(3, C, kernel_size=3, padding=1, bias=False),
|
||||
nn.BatchNorm2d(C))
|
||||
|
||||
layer_channels = [C ] * N + [C*2 ] + [C*2 ] * N + [C*4 ] + [C*4 ] * N
|
||||
layer_reductions = [False] * N + [True] + [False] * N + [True] + [False] * N
|
||||
|
||||
C_prev, num_edge, edge2index = C, None, None
|
||||
self.cells = nn.ModuleList()
|
||||
for index, (C_curr, reduction) in enumerate(zip(layer_channels, layer_reductions)):
|
||||
if reduction:
|
||||
cell = ResNetBasicblock(C_prev, C_curr, 2)
|
||||
else:
|
||||
cell = SearchCell(C_prev, C_curr, 1, max_nodes, search_space)
|
||||
if num_edge is None: num_edge, edge2index = cell.num_edges, cell.edge2index
|
||||
else: assert num_edge == cell.num_edges and edge2index == cell.edge2index, 'invalid {:} vs. {:}.'.format(num_edge, cell.num_edges)
|
||||
self.cells.append( cell )
|
||||
C_prev = cell.out_dim
|
||||
self.op_names = deepcopy( search_space )
|
||||
self._Layer = len(self.cells)
|
||||
self.edge2index = edge2index
|
||||
self.lastact = nn.Sequential(nn.BatchNorm2d(C_prev), nn.ReLU(inplace=True))
|
||||
self.global_pooling = nn.AdaptiveAvgPool2d(1)
|
||||
self.classifier = nn.Linear(C_prev, num_classes)
|
||||
# to maintain the sampled architecture
|
||||
self.sampled_arch = None
|
||||
|
||||
def update_arch(self, _arch):
|
||||
if _arch is None:
|
||||
self.sampled_arch = None
|
||||
elif isinstance(_arch, Structure):
|
||||
self.sampled_arch = _arch
|
||||
elif isinstance(_arch, (list, tuple)):
|
||||
genotypes = []
|
||||
for i in range(1, self.max_nodes):
|
||||
xlist = []
|
||||
for j in range(i):
|
||||
node_str = '{:}<-{:}'.format(i, j)
|
||||
op_index = _arch[ self.edge2index[node_str] ]
|
||||
op_name = self.op_names[ op_index ]
|
||||
xlist.append((op_name, j))
|
||||
genotypes.append( tuple(xlist) )
|
||||
self.sampled_arch = Structure(genotypes)
|
||||
else:
|
||||
raise ValueError('invalid type of input architecture : {:}'.format(_arch))
|
||||
return self.sampled_arch
|
||||
|
||||
def create_controller(self):
|
||||
return Controller(len(self.edge2index), len(self.op_names))
|
||||
|
||||
def get_message(self):
|
||||
string = self.extra_repr()
|
||||
for i, cell in enumerate(self.cells):
|
||||
string += '\n {:02d}/{:02d} :: {:}'.format(i, len(self.cells), cell.extra_repr())
|
||||
return string
|
||||
|
||||
def extra_repr(self):
|
||||
return ('{name}(C={_C}, Max-Nodes={max_nodes}, N={_layerN}, L={_Layer})'.format(name=self.__class__.__name__, **self.__dict__))
|
||||
|
||||
def forward(self, inputs):
|
||||
|
||||
feature = self.stem(inputs)
|
||||
for i, cell in enumerate(self.cells):
|
||||
if isinstance(cell, SearchCell):
|
||||
feature = cell.forward_dynamic(feature, self.sampled_arch)
|
||||
else: feature = cell(feature)
|
||||
|
||||
out = self.lastact(feature)
|
||||
out = self.global_pooling( out )
|
||||
out = out.view(out.size(0), -1)
|
||||
logits = self.classifier(out)
|
||||
|
||||
return out, logits
|
55
lib/models/cell_searchs/search_model_enas_utils.py
Normal file
55
lib/models/cell_searchs/search_model_enas_utils.py
Normal file
@@ -0,0 +1,55 @@
|
||||
##################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
|
||||
##########################################################################
|
||||
# Efficient Neural Architecture Search via Parameters Sharing, ICML 2018 #
|
||||
##########################################################################
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from torch.distributions.categorical import Categorical
|
||||
|
||||
class Controller(nn.Module):
|
||||
# we refer to https://github.com/TDeVries/enas_pytorch/blob/master/models/controller.py
|
||||
def __init__(self, num_edge, num_ops, lstm_size=32, lstm_num_layers=2, tanh_constant=2.5, temperature=5.0):
|
||||
super(Controller, self).__init__()
|
||||
# assign the attributes
|
||||
self.num_edge = num_edge
|
||||
self.num_ops = num_ops
|
||||
self.lstm_size = lstm_size
|
||||
self.lstm_N = lstm_num_layers
|
||||
self.tanh_constant = tanh_constant
|
||||
self.temperature = temperature
|
||||
# create parameters
|
||||
self.register_parameter('input_vars', nn.Parameter(torch.Tensor(1, 1, lstm_size)))
|
||||
self.w_lstm = nn.LSTM(input_size=self.lstm_size, hidden_size=self.lstm_size, num_layers=self.lstm_N)
|
||||
self.w_embd = nn.Embedding(self.num_ops, self.lstm_size)
|
||||
self.w_pred = nn.Linear(self.lstm_size, self.num_ops)
|
||||
|
||||
nn.init.uniform_(self.input_vars , -0.1, 0.1)
|
||||
nn.init.uniform_(self.w_lstm.weight_hh_l0, -0.1, 0.1)
|
||||
nn.init.uniform_(self.w_lstm.weight_ih_l0, -0.1, 0.1)
|
||||
nn.init.uniform_(self.w_embd.weight , -0.1, 0.1)
|
||||
nn.init.uniform_(self.w_pred.weight , -0.1, 0.1)
|
||||
|
||||
def forward(self):
|
||||
|
||||
inputs, h0 = self.input_vars, None
|
||||
log_probs, entropys, sampled_arch = [], [], []
|
||||
for iedge in range(self.num_edge):
|
||||
outputs, h0 = self.w_lstm(inputs, h0)
|
||||
|
||||
logits = self.w_pred(outputs)
|
||||
logits = logits / self.temperature
|
||||
logits = self.tanh_constant * torch.tanh(logits)
|
||||
# distribution
|
||||
op_distribution = Categorical(logits=logits)
|
||||
op_index = op_distribution.sample()
|
||||
sampled_arch.append( op_index.item() )
|
||||
|
||||
op_log_prob = op_distribution.log_prob(op_index)
|
||||
log_probs.append( op_log_prob.view(-1) )
|
||||
op_entropy = op_distribution.entropy()
|
||||
entropys.append( op_entropy.view(-1) )
|
||||
|
||||
# obtain the input embedding for the next step
|
||||
inputs = self.w_embd(op_index)
|
||||
return torch.sum(torch.cat(log_probs)), torch.sum(torch.cat(entropys)), sampled_arch
|
Reference in New Issue
Block a user