Update LFNA version 1.0

This commit is contained in:
D-X-Y
2021-05-07 14:27:15 +08:00
parent 80aaac4dfa
commit 34560ad8d1
5 changed files with 120 additions and 40 deletions

View File

@@ -39,9 +39,11 @@ class LFNAmlp:
self.delta_net.parameters(), lr=0.01, amsgrad=True
)
def adapt(self, model, criterion, w_container, xs, ys):
def adapt(self, model, criterion, w_container, seq_datasets):
w_container.requires_grad_(True)
containers = [w_container]
for idx, (x, y) in enumerate(zip(xs, ys)):
for idx, dataset in enumerate(seq_datasets):
x, y = dataset.x, dataset.y
y_hat = model.forward_with_container(x, containers[-1])
loss = criterion(y_hat, y)
gradients = torch.autograd.grad(loss, containers[-1].tensors)
@@ -52,21 +54,30 @@ class LFNAmlp:
input_statistics = input_statistics.expand(flatten_w.numel(), -1)
delta_inputs = torch.cat((flatten_w, flatten_g, input_statistics), dim=-1)
delta = self.delta_net(delta_inputs).view(-1)
# delta = torch.clamp(delta, -0.5, 0.5)
delta = torch.clamp(delta, -0.5, 0.5)
unflatten_delta = containers[-1].unflatten(delta)
future_container = containers[-1].additive(unflatten_delta)
future_container = containers[-1].no_grad_clone().additive(unflatten_delta)
# future_container = containers[-1].additive(unflatten_delta)
containers.append(future_container)
# containers = containers[1:]
meta_loss = []
for idx, (x, y) in enumerate(zip(xs, ys)):
temp_containers = []
for idx, dataset in enumerate(seq_datasets):
if idx == 0:
continue
current_container = containers[idx]
y_hat = model.forward_with_container(x, current_container)
loss = criterion(y_hat, y)
y_hat = model.forward_with_container(dataset.x, current_container)
loss = criterion(y_hat, dataset.y)
meta_loss.append(loss)
temp_containers.append((dataset.timestamp, current_container, -loss.item()))
meta_loss = sum(meta_loss)
meta_loss.backward()
w_container.requires_grad_(False)
# meta_loss.backward()
# self.meta_optimizer.step()
return meta_loss, temp_containers
def step(self):
torch.nn.utils.clip_grad_norm_(self.delta_net.parameters(), 1.0)
self.meta_optimizer.step()
def zero_grad(self):
@@ -74,6 +85,25 @@ class LFNAmlp:
self.delta_net.zero_grad()
class TimeData:
def __init__(self, timestamp, xs, ys):
self._timestamp = timestamp
self._xs = xs
self._ys = ys
@property
def x(self):
return self._xs
@property
def y(self):
return self._ys
@property
def timestamp(self):
return self._timestamp
class Population:
"""A population used to maintain models at different timestamps."""
@@ -83,20 +113,29 @@ class Population:
def append(self, timestamp, model, score):
if timestamp in self._time2model:
raise ValueError("This timestamp has been added.")
self._time2model[timestamp] = model
if self._time2score[timestamp] > score:
return
self._time2model[timestamp] = model.no_grad_clone()
self._time2score[timestamp] = score
def query(self, timestamp):
closet_timestamp = None
for xtime, model in self._time2model.items():
if (
closet_timestamp is None
or timestamp - closet_timestamp >= timestamp - xtime
if closet_timestamp is None or (
xtime < timestamp and timestamp - closet_timestamp >= timestamp - xtime
):
closet_timestamp = xtime
return self._time2model[closet_timestamp], closet_timestamp
def debug_info(self, timestamps):
xstrs = []
for timestamp in timestamps:
if timestamp in self._time2score:
xstrs.append(
"{:04d}: {:.4f}".format(timestamp, self._time2score[timestamp])
)
return ", ".join(xstrs)
def main(args):
prepare_seed(args.rand_seed)
@@ -125,21 +164,19 @@ def main(args):
base_model = get_model(
dict(model_type="simple_mlp"),
act_cls="leaky_relu",
norm_cls="simple_learn_norm",
mean=0,
std=1,
norm_cls="identity",
input_dim=1,
output_dim=1,
)
w_container = base_model.named_parameters_buffers()
w_container = base_model.get_w_container()
criterion = torch.nn.MSELoss()
print("There are {:} weights.".format(w_container.numel()))
adaptor = LFNAmlp(4, (50, 20), "leaky_relu")
pool = Population()
pool.append(0, w_container)
pool.append(0, w_container, -100)
# LFNA meta-training
per_epoch_time, start_time = AverageMeter(), time.time()
@@ -153,22 +190,35 @@ def main(args):
+ need_time
)
adaptor.zero_grad()
debug_timestamp = set()
all_meta_losses = []
for ibatch in range(args.meta_batch):
sampled_timestamp = random.randint(0, train_time_bar)
query_w_container, query_timestamp = pool.query(sampled_timestamp)
# def adapt(self, model, w_container, xs, ys):
xs, ys = [], []
seq_datasets = []
# xs, ys = [], []
for it in range(sampled_timestamp, sampled_timestamp + args.max_seq):
xs.append(env_info["{:}-x".format(it)])
ys.append(env_info["{:}-y".format(it)])
adaptor.adapt(base_model, criterion, query_w_container, xs, ys)
import pdb
xs = env_info["{:}-x".format(it)]
ys = env_info["{:}-y".format(it)]
seq_datasets.append(TimeData(it, xs, ys))
temp_meta_loss, temp_containers = adaptor.adapt(
base_model, criterion, query_w_container, seq_datasets
)
all_meta_losses.append(temp_meta_loss)
for temp_time, temp_container, temp_score in temp_containers:
pool.append(temp_time, temp_container, temp_score)
debug_timestamp.add(temp_time)
meta_loss = torch.stack(all_meta_losses).mean()
meta_loss.backward()
adaptor.step()
pdb.set_trace()
print("-")
logger.log("")
debug_str = pool.debug_info(debug_timestamp)
logger.log("meta-loss: {:.4f}".format(meta_loss.item()))
per_timestamp_time.update(time.time() - start_time)
per_epoch_time.update(time.time() - start_time)
start_time = time.time()
logger.log("-" * 200 + "\n")
@@ -192,7 +242,7 @@ if __name__ == "__main__":
parser.add_argument(
"--meta_batch",
type=int,
default=2,
default=5,
help="The batch size for the meta-model",
)
parser.add_argument(