Updates
This commit is contained in:
@@ -9,108 +9,211 @@ from xvision import normalize_points
|
||||
from xvision import denormalize_points
|
||||
|
||||
|
||||
class PointMeta():
|
||||
# points : 3 x num_pts (x, y, oculusion)
|
||||
# image_size: original [width, height]
|
||||
def __init__(self, num_point, points, box, image_path, dataset_name):
|
||||
class PointMeta:
|
||||
# points : 3 x num_pts (x, y, oculusion)
|
||||
# image_size: original [width, height]
|
||||
def __init__(self, num_point, points, box, image_path, dataset_name):
|
||||
|
||||
self.num_point = num_point
|
||||
if box is not None:
|
||||
assert (isinstance(box, tuple) or isinstance(box, list)) and len(box) == 4
|
||||
self.box = torch.Tensor(box)
|
||||
else: self.box = None
|
||||
if points is None:
|
||||
self.points = points
|
||||
else:
|
||||
assert len(points.shape) == 2 and points.shape[0] == 3 and points.shape[1] == self.num_point, 'The shape of point is not right : {}'.format( points )
|
||||
self.points = torch.Tensor(points.copy())
|
||||
self.image_path = image_path
|
||||
self.datasets = dataset_name
|
||||
self.num_point = num_point
|
||||
if box is not None:
|
||||
assert (isinstance(box, tuple) or isinstance(box, list)) and len(box) == 4
|
||||
self.box = torch.Tensor(box)
|
||||
else:
|
||||
self.box = None
|
||||
if points is None:
|
||||
self.points = points
|
||||
else:
|
||||
assert (
|
||||
len(points.shape) == 2
|
||||
and points.shape[0] == 3
|
||||
and points.shape[1] == self.num_point
|
||||
), "The shape of point is not right : {}".format(points)
|
||||
self.points = torch.Tensor(points.copy())
|
||||
self.image_path = image_path
|
||||
self.datasets = dataset_name
|
||||
|
||||
def __repr__(self):
|
||||
if self.box is None: boxstr = 'None'
|
||||
else : boxstr = 'box=[{:.1f}, {:.1f}, {:.1f}, {:.1f}]'.format(*self.box.tolist())
|
||||
return ('{name}(points={num_point}, '.format(name=self.__class__.__name__, **self.__dict__) + boxstr + ')')
|
||||
def __repr__(self):
|
||||
if self.box is None:
|
||||
boxstr = "None"
|
||||
else:
|
||||
boxstr = "box=[{:.1f}, {:.1f}, {:.1f}, {:.1f}]".format(*self.box.tolist())
|
||||
return (
|
||||
"{name}(points={num_point}, ".format(
|
||||
name=self.__class__.__name__, **self.__dict__
|
||||
)
|
||||
+ boxstr
|
||||
+ ")"
|
||||
)
|
||||
|
||||
def get_box(self, return_diagonal=False):
|
||||
if self.box is None: return None
|
||||
if not return_diagonal:
|
||||
return self.box.clone()
|
||||
else:
|
||||
W = (self.box[2]-self.box[0]).item()
|
||||
H = (self.box[3]-self.box[1]).item()
|
||||
return math.sqrt(H*H+W*W)
|
||||
def get_box(self, return_diagonal=False):
|
||||
if self.box is None:
|
||||
return None
|
||||
if not return_diagonal:
|
||||
return self.box.clone()
|
||||
else:
|
||||
W = (self.box[2] - self.box[0]).item()
|
||||
H = (self.box[3] - self.box[1]).item()
|
||||
return math.sqrt(H * H + W * W)
|
||||
|
||||
def get_points(self, ignore_indicator=False):
|
||||
if ignore_indicator: last = 2
|
||||
else : last = 3
|
||||
if self.points is not None: return self.points.clone()[:last, :]
|
||||
else : return torch.zeros((last, self.num_point))
|
||||
def get_points(self, ignore_indicator=False):
|
||||
if ignore_indicator:
|
||||
last = 2
|
||||
else:
|
||||
last = 3
|
||||
if self.points is not None:
|
||||
return self.points.clone()[:last, :]
|
||||
else:
|
||||
return torch.zeros((last, self.num_point))
|
||||
|
||||
def is_none(self):
|
||||
#assert self.box is not None, 'The box should not be None'
|
||||
return self.points is None
|
||||
#if self.box is None: return True
|
||||
#else : return self.points is None
|
||||
def is_none(self):
|
||||
# assert self.box is not None, 'The box should not be None'
|
||||
return self.points is None
|
||||
# if self.box is None: return True
|
||||
# else : return self.points is None
|
||||
|
||||
def copy(self):
|
||||
return copy.deepcopy(self)
|
||||
def copy(self):
|
||||
return copy.deepcopy(self)
|
||||
|
||||
def visiable_pts_num(self):
|
||||
with torch.no_grad():
|
||||
ans = self.points[2,:] > 0
|
||||
ans = torch.sum(ans)
|
||||
ans = ans.item()
|
||||
return ans
|
||||
|
||||
def special_fun(self, indicator):
|
||||
if indicator == '68to49': # For 300W or 300VW, convert the default 68 points to 49 points.
|
||||
assert self.num_point == 68, 'num-point must be 68 vs. {:}'.format(self.num_point)
|
||||
self.num_point = 49
|
||||
out = torch.ones((68), dtype=torch.uint8)
|
||||
out[[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,60,64]] = 0
|
||||
if self.points is not None: self.points = self.points.clone()[:, out]
|
||||
else:
|
||||
raise ValueError('Invalid indicator : {:}'.format( indicator ))
|
||||
def visiable_pts_num(self):
|
||||
with torch.no_grad():
|
||||
ans = self.points[2, :] > 0
|
||||
ans = torch.sum(ans)
|
||||
ans = ans.item()
|
||||
return ans
|
||||
|
||||
def apply_horizontal_flip(self):
|
||||
#self.points[0, :] = width - self.points[0, :] - 1
|
||||
# Mugsy spefic or Synthetic
|
||||
if self.datasets.startswith('HandsyROT'):
|
||||
ori = np.array(list(range(0, 42)))
|
||||
pos = np.array(list(range(21,42)) + list(range(0,21)))
|
||||
self.points[:, pos] = self.points[:, ori]
|
||||
elif self.datasets.startswith('face68'):
|
||||
ori = np.array(list(range(0, 68)))
|
||||
pos = np.array([17,16,15,14,13,12,11,10, 9, 8,7,6,5,4,3,2,1, 27,26,25,24,23,22,21,20,19,18, 28,29,30,31, 36,35,34,33,32, 46,45,44,43,48,47, 40,39,38,37,42,41, 55,54,53,52,51,50,49,60,59,58,57,56,65,64,63,62,61,68,67,66])-1
|
||||
self.points[:, ori] = self.points[:, pos]
|
||||
else:
|
||||
raise ValueError('Does not support {:}'.format(self.datasets))
|
||||
def special_fun(self, indicator):
|
||||
if (
|
||||
indicator == "68to49"
|
||||
): # For 300W or 300VW, convert the default 68 points to 49 points.
|
||||
assert self.num_point == 68, "num-point must be 68 vs. {:}".format(
|
||||
self.num_point
|
||||
)
|
||||
self.num_point = 49
|
||||
out = torch.ones((68), dtype=torch.uint8)
|
||||
out[[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 60, 64]] = 0
|
||||
if self.points is not None:
|
||||
self.points = self.points.clone()[:, out]
|
||||
else:
|
||||
raise ValueError("Invalid indicator : {:}".format(indicator))
|
||||
|
||||
def apply_horizontal_flip(self):
|
||||
# self.points[0, :] = width - self.points[0, :] - 1
|
||||
# Mugsy spefic or Synthetic
|
||||
if self.datasets.startswith("HandsyROT"):
|
||||
ori = np.array(list(range(0, 42)))
|
||||
pos = np.array(list(range(21, 42)) + list(range(0, 21)))
|
||||
self.points[:, pos] = self.points[:, ori]
|
||||
elif self.datasets.startswith("face68"):
|
||||
ori = np.array(list(range(0, 68)))
|
||||
pos = (
|
||||
np.array(
|
||||
[
|
||||
17,
|
||||
16,
|
||||
15,
|
||||
14,
|
||||
13,
|
||||
12,
|
||||
11,
|
||||
10,
|
||||
9,
|
||||
8,
|
||||
7,
|
||||
6,
|
||||
5,
|
||||
4,
|
||||
3,
|
||||
2,
|
||||
1,
|
||||
27,
|
||||
26,
|
||||
25,
|
||||
24,
|
||||
23,
|
||||
22,
|
||||
21,
|
||||
20,
|
||||
19,
|
||||
18,
|
||||
28,
|
||||
29,
|
||||
30,
|
||||
31,
|
||||
36,
|
||||
35,
|
||||
34,
|
||||
33,
|
||||
32,
|
||||
46,
|
||||
45,
|
||||
44,
|
||||
43,
|
||||
48,
|
||||
47,
|
||||
40,
|
||||
39,
|
||||
38,
|
||||
37,
|
||||
42,
|
||||
41,
|
||||
55,
|
||||
54,
|
||||
53,
|
||||
52,
|
||||
51,
|
||||
50,
|
||||
49,
|
||||
60,
|
||||
59,
|
||||
58,
|
||||
57,
|
||||
56,
|
||||
65,
|
||||
64,
|
||||
63,
|
||||
62,
|
||||
61,
|
||||
68,
|
||||
67,
|
||||
66,
|
||||
]
|
||||
)
|
||||
- 1
|
||||
)
|
||||
self.points[:, ori] = self.points[:, pos]
|
||||
else:
|
||||
raise ValueError("Does not support {:}".format(self.datasets))
|
||||
|
||||
|
||||
# shape = (H,W)
|
||||
def apply_affine2point(points, theta, shape):
|
||||
assert points.size(0) == 3, 'invalid points shape : {:}'.format(points.size())
|
||||
with torch.no_grad():
|
||||
ok_points = points[2,:] == 1
|
||||
assert torch.sum(ok_points).item() > 0, 'there is no visiable point'
|
||||
points[:2,:] = normalize_points(shape, points[:2,:])
|
||||
assert points.size(0) == 3, "invalid points shape : {:}".format(points.size())
|
||||
with torch.no_grad():
|
||||
ok_points = points[2, :] == 1
|
||||
assert torch.sum(ok_points).item() > 0, "there is no visiable point"
|
||||
points[:2, :] = normalize_points(shape, points[:2, :])
|
||||
|
||||
norm_trans_points = ok_points.unsqueeze(0).repeat(3, 1).float()
|
||||
norm_trans_points = ok_points.unsqueeze(0).repeat(3, 1).float()
|
||||
|
||||
trans_points, ___ = torch.gesv(points[:, ok_points], theta)
|
||||
trans_points, ___ = torch.gesv(points[:, ok_points], theta)
|
||||
|
||||
norm_trans_points[:, ok_points] = trans_points
|
||||
|
||||
return norm_trans_points
|
||||
norm_trans_points[:, ok_points] = trans_points
|
||||
|
||||
return norm_trans_points
|
||||
|
||||
|
||||
def apply_boundary(norm_trans_points):
|
||||
with torch.no_grad():
|
||||
norm_trans_points = norm_trans_points.clone()
|
||||
oks = torch.stack((norm_trans_points[0]>-1, norm_trans_points[0]<1, norm_trans_points[1]>-1, norm_trans_points[1]<1, norm_trans_points[2]>0))
|
||||
oks = torch.sum(oks, dim=0) == 5
|
||||
norm_trans_points[2, :] = oks
|
||||
return norm_trans_points
|
||||
with torch.no_grad():
|
||||
norm_trans_points = norm_trans_points.clone()
|
||||
oks = torch.stack(
|
||||
(
|
||||
norm_trans_points[0] > -1,
|
||||
norm_trans_points[0] < 1,
|
||||
norm_trans_points[1] > -1,
|
||||
norm_trans_points[1] < 1,
|
||||
norm_trans_points[2] > 0,
|
||||
)
|
||||
)
|
||||
oks = torch.sum(oks, dim=0) == 5
|
||||
norm_trans_points[2, :] = oks
|
||||
return norm_trans_points
|
||||
|
Reference in New Issue
Block a user