Update xmisc

This commit is contained in:
D-X-Y
2021-06-10 23:42:00 -07:00
parent 98f981dd45
commit 248686820c
8 changed files with 72 additions and 487 deletions

View File

@@ -58,6 +58,7 @@ def main(args):
pin_memory=True,
drop_last=False,
)
iters_per_epoch = len(train_data) // args.batch_size
logger.log("The training loader: {:}".format(train_loader))
logger.log("The validation loader: {:}".format(valid_loader))
@@ -67,159 +68,44 @@ def main(args):
lr=args.lr,
weight_decay=args.weight_decay,
)
loss = xmisc.nested_call_by_yaml(args.loss_config)
objective = xmisc.nested_call_by_yaml(args.loss_config)
logger.log("The optimizer is:\n{:}".format(optimizer))
logger.log("The loss is {:}".format(loss))
logger.log("The objective is {:}".format(objective))
logger.log("The iters_per_epoch={:}".format(iters_per_epoch))
model, loss = torch.nn.DataParallel(model).cuda(), loss.cuda()
model, objective = torch.nn.DataParallel(model).cuda(), objective.cuda()
scheduler = xmisc.LRMultiplier(
optimizer, xmisc.get_scheduler(args.scheduler, args.lr), args.steps
)
import pdb
pdb.set_trace()
train_func, valid_func = get_procedures(args.procedure)
total_epoch = optim_config.epochs + optim_config.warmup
# Main Training and Evaluation Loop
start_time = time.time()
epoch_time = AverageMeter()
for epoch in range(start_epoch, total_epoch):
scheduler.update(epoch, 0.0)
start_time, iter_time = time.time(), xmisc.AverageMeter()
for xiter, data in enumerate(train_loader):
need_time = "Time Left: {:}".format(
convert_secs2time(epoch_time.avg * (total_epoch - epoch), True)
)
epoch_str = "epoch={:03d}/{:03d}".format(epoch, total_epoch)
LRs = scheduler.get_lr()
find_best = False
# set-up drop-out ratio
if hasattr(base_model, "update_drop_path"):
base_model.update_drop_path(
model_config.drop_path_prob * epoch / total_epoch
)
logger.log(
"\n***{:s}*** start {:s} {:s}, LR=[{:.6f} ~ {:.6f}], scheduler={:}".format(
time_string(), epoch_str, need_time, min(LRs), max(LRs), scheduler
xmisc.time_utils.convert_secs2time(
iter_time.avg * (len(train_loader) - xiter), True
)
)
iter_str = "{:6d}/{:06d}".format(xiter, len(train_loader))
# train for one epoch
train_loss, train_acc1, train_acc5 = train_func(
train_loader,
network,
criterion,
scheduler,
optimizer,
optim_config,
epoch_str,
args.print_freq,
logger,
)
# log the results
logger.log(
"***{:s}*** TRAIN [{:}] loss = {:.6f}, accuracy-1 = {:.2f}, accuracy-5 = {:.2f}".format(
time_string(), epoch_str, train_loss, train_acc1, train_acc5
)
)
inputs, targets = data
targets = targets.cuda(non_blocking=True)
model.train()
# evaluate the performance
if (epoch % args.eval_frequency == 0) or (epoch + 1 == total_epoch):
logger.log("-" * 150)
valid_loss, valid_acc1, valid_acc5 = valid_func(
valid_loader,
network,
criterion,
optim_config,
epoch_str,
args.print_freq_eval,
logger,
)
valid_accuracies[epoch] = valid_acc1
logger.log(
"***{:s}*** VALID [{:}] loss = {:.6f}, accuracy@1 = {:.2f}, accuracy@5 = {:.2f} | Best-Valid-Acc@1={:.2f}, Error@1={:.2f}".format(
time_string(),
epoch_str,
valid_loss,
valid_acc1,
valid_acc5,
valid_accuracies["best"],
100 - valid_accuracies["best"],
)
)
if valid_acc1 > valid_accuracies["best"]:
valid_accuracies["best"] = valid_acc1
find_best = True
logger.log(
"Currently, the best validation accuracy found at {:03d}-epoch :: acc@1={:.2f}, acc@5={:.2f}, error@1={:.2f}, error@5={:.2f}, save into {:}.".format(
epoch,
valid_acc1,
valid_acc5,
100 - valid_acc1,
100 - valid_acc5,
model_best_path,
)
)
num_bytes = (
torch.cuda.max_memory_cached(next(network.parameters()).device) * 1.0
)
logger.log(
"[GPU-Memory-Usage on {:} is {:} bytes, {:.2f} KB, {:.2f} MB, {:.2f} GB.]".format(
next(network.parameters()).device,
int(num_bytes),
num_bytes / 1e3,
num_bytes / 1e6,
num_bytes / 1e9,
)
)
max_bytes[epoch] = num_bytes
if epoch % 10 == 0:
torch.cuda.empty_cache()
optimizer.zero_grad()
outputs = model(inputs)
loss = objective(outputs, targets)
# save checkpoint
save_path = save_checkpoint(
{
"epoch": epoch,
"args": deepcopy(args),
"max_bytes": deepcopy(max_bytes),
"FLOP": flop,
"PARAM": param,
"valid_accuracies": deepcopy(valid_accuracies),
"model-config": model_config._asdict(),
"optim-config": optim_config._asdict(),
"base-model": base_model.state_dict(),
"scheduler": scheduler.state_dict(),
"optimizer": optimizer.state_dict(),
},
model_base_path,
logger,
)
if find_best:
copy_checkpoint(model_base_path, model_best_path, logger)
last_info = save_checkpoint(
{
"epoch": epoch,
"args": deepcopy(args),
"last_checkpoint": save_path,
},
logger.path("info"),
logger,
)
loss.backward()
optimizer.step()
scheduler.step()
if xiter % iters_per_epoch == 0:
logger.log("TRAIN [{:}] loss = {:.6f}".format(iter_str, loss.item()))
# measure elapsed time
epoch_time.update(time.time() - start_time)
iter_time.update(time.time() - start_time)
start_time = time.time()
logger.log("\n" + "-" * 200)
logger.log(
"Finish training/validation in {:} with Max-GPU-Memory of {:.2f} MB, and save final checkpoint into {:}".format(
convert_secs2time(epoch_time.sum, True),
max(v for k, v in max_bytes.items()) / 1e6,
logger.path("info"),
)
)
logger.log("-" * 200 + "\n")
logger.close()
@@ -249,7 +135,7 @@ if __name__ == "__main__":
parser.add_argument("--weight_decay", type=float, help="The weight decay")
parser.add_argument("--scheduler", type=str, help="The scheduler indicator.")
parser.add_argument("--steps", type=int, help="The total number of steps.")
parser.add_argument("--batch_size", type=int, default=2, help="The batch size.")
parser.add_argument("--batch_size", type=int, default=256, help="The batch size.")
parser.add_argument("--workers", type=int, default=4, help="The number of workers")
# Random Seed
parser.add_argument("--rand_seed", type=int, default=-1, help="manual seed")