update GDAS reduction cell
This commit is contained in:
@@ -234,3 +234,58 @@ class PartAwareOp(nn.Module):
|
||||
final_fea = torch.cat((x,features), dim=1)
|
||||
outputs = self.last( final_fea )
|
||||
return outputs
|
||||
|
||||
|
||||
# Searching for A Robust Neural Architecture in Four GPU Hours
|
||||
class GDAS_Reduction_Cell(nn.Module):
|
||||
|
||||
def __init__(self, C_prev_prev, C_prev, C, reduction_prev, multiplier, affine, track_running_stats):
|
||||
super(GDAS_Reduction_Cell, self).__init__()
|
||||
if reduction_prev:
|
||||
self.preprocess0 = FactorizedReduce(C_prev_prev, C, 2, affine, track_running_stats)
|
||||
else:
|
||||
self.preprocess0 = ReLUConvBN(C_prev_prev, C, 1, 1, 0, 1, affine, track_running_stats)
|
||||
self.preprocess1 = ReLUConvBN(C_prev, C, 1, 1, 0, 1, affine, track_running_stats)
|
||||
self.multiplier = multiplier
|
||||
|
||||
self.reduction = True
|
||||
self.ops1 = nn.ModuleList(
|
||||
[nn.Sequential(
|
||||
nn.ReLU(inplace=False),
|
||||
nn.Conv2d(C, C, (1, 3), stride=(1, 2), padding=(0, 1), groups=8, bias=False),
|
||||
nn.Conv2d(C, C, (3, 1), stride=(2, 1), padding=(1, 0), groups=8, bias=False),
|
||||
nn.BatchNorm2d(C, affine=True),
|
||||
nn.ReLU(inplace=False),
|
||||
nn.Conv2d(C, C, 1, stride=1, padding=0, bias=False),
|
||||
nn.BatchNorm2d(C, affine=True)),
|
||||
nn.Sequential(
|
||||
nn.ReLU(inplace=False),
|
||||
nn.Conv2d(C, C, (1, 3), stride=(1, 2), padding=(0, 1), groups=8, bias=False),
|
||||
nn.Conv2d(C, C, (3, 1), stride=(2, 1), padding=(1, 0), groups=8, bias=False),
|
||||
nn.BatchNorm2d(C, affine=True),
|
||||
nn.ReLU(inplace=False),
|
||||
nn.Conv2d(C, C, 1, stride=1, padding=0, bias=False),
|
||||
nn.BatchNorm2d(C, affine=True))])
|
||||
|
||||
self.ops2 = nn.ModuleList(
|
||||
[nn.Sequential(
|
||||
nn.MaxPool2d(3, stride=1, padding=1),
|
||||
nn.BatchNorm2d(C, affine=True)),
|
||||
nn.Sequential(
|
||||
nn.MaxPool2d(3, stride=2, padding=1),
|
||||
nn.BatchNorm2d(C, affine=True))])
|
||||
|
||||
def forward(self, s0, s1, drop_prob = -1):
|
||||
s0 = self.preprocess0(s0)
|
||||
s1 = self.preprocess1(s1)
|
||||
|
||||
X0 = self.ops1[0] (s0)
|
||||
X1 = self.ops1[1] (s1)
|
||||
if self.training and drop_prob > 0.:
|
||||
X0, X1 = drop_path(X0, drop_prob), drop_path(X1, drop_prob)
|
||||
|
||||
X2 = self.ops2[0] (X0+X1)
|
||||
X3 = self.ops2[1] (s1)
|
||||
if self.training and drop_prob > 0.:
|
||||
X2, X3 = drop_path(X2, drop_prob), drop_path(X3, drop_prob)
|
||||
return torch.cat([X0, X1, X2, X3], dim=1)
|
||||
|
Reference in New Issue
Block a user