beta-0.1
This commit is contained in:
@@ -3,10 +3,16 @@
|
||||
##################################################
|
||||
import torch
|
||||
from os import path as osp
|
||||
|
||||
__all__ = ['change_key', 'get_cell_based_tiny_net', 'get_search_spaces', 'get_cifar_models', 'get_imagenet_models', \
|
||||
'obtain_model', 'obtain_search_model', 'load_net_from_checkpoint', \
|
||||
'CellStructure', 'CellArchitectures'
|
||||
]
|
||||
|
||||
# useful modules
|
||||
from config_utils import dict2config
|
||||
from .SharedUtils import change_key
|
||||
from .clone_weights import init_from_model
|
||||
from .cell_searchs import CellStructure, CellArchitectures
|
||||
|
||||
# Cell-based NAS Models
|
||||
def get_cell_based_tiny_net(config):
|
||||
@@ -22,9 +28,13 @@ def get_cell_based_tiny_net(config):
|
||||
elif config.name == 'SETN':
|
||||
from .cell_searchs import TinyNetworkSETN
|
||||
return TinyNetworkSETN(config.C, config.N, config.max_nodes, config.num_classes, config.space)
|
||||
elif config.name == 'infer.tiny':
|
||||
from .cell_infers import TinyNetwork
|
||||
return TinyNetwork(config.C, config.N, config.genotype, config.num_classes)
|
||||
else:
|
||||
raise ValueError('invalid network name : {:}'.format(config.name))
|
||||
|
||||
|
||||
# obtain the search space, i.e., a dict mapping the operation name into a python-function for this op
|
||||
def get_search_spaces(xtype, name):
|
||||
if xtype == 'cell':
|
||||
|
1
lib/models/cell_infers/__init__.py
Normal file
1
lib/models/cell_infers/__init__.py
Normal file
@@ -0,0 +1 @@
|
||||
from .tiny_network import TinyNetwork
|
51
lib/models/cell_infers/cells.py
Normal file
51
lib/models/cell_infers/cells.py
Normal file
@@ -0,0 +1,51 @@
|
||||
##################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
|
||||
##################################################
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from copy import deepcopy
|
||||
from ..cell_operations import OPS
|
||||
|
||||
|
||||
class InferCell(nn.Module):
|
||||
|
||||
def __init__(self, genotype, C_in, C_out, stride):
|
||||
super(InferCell, self).__init__()
|
||||
|
||||
self.layers = nn.ModuleList()
|
||||
self.node_IN = []
|
||||
self.node_IX = []
|
||||
self.genotype = deepcopy(genotype)
|
||||
for i in range(1, len(genotype)):
|
||||
node_info = genotype[i-1]
|
||||
cur_index = []
|
||||
cur_innod = []
|
||||
for (op_name, op_in) in node_info:
|
||||
if op_in == 0:
|
||||
layer = OPS[op_name](C_in , C_out, stride)
|
||||
else:
|
||||
layer = OPS[op_name](C_out, C_out, 1)
|
||||
cur_index.append( len(self.layers) )
|
||||
cur_innod.append( op_in )
|
||||
self.layers.append( layer )
|
||||
self.node_IX.append( cur_index )
|
||||
self.node_IN.append( cur_innod )
|
||||
self.nodes = len(genotype)
|
||||
self.in_dim = C_in
|
||||
self.out_dim = C_out
|
||||
|
||||
def extra_repr(self):
|
||||
string = 'info :: nodes={nodes}, inC={in_dim}, outC={out_dim}'.format(**self.__dict__)
|
||||
laystr = []
|
||||
for i, (node_layers, node_innods) in enumerate(zip(self.node_IX,self.node_IN)):
|
||||
y = ['I{:}-L{:}'.format(_ii, _il) for _il, _ii in zip(node_layers, node_innods)]
|
||||
x = '{:}<-({:})'.format(i+1, ','.join(y))
|
||||
laystr.append( x )
|
||||
return string + ', [{:}]'.format( ' | '.join(laystr) ) + ', {:}'.format(self.genotype.tostr())
|
||||
|
||||
def forward(self, inputs):
|
||||
nodes = [inputs]
|
||||
for i, (node_layers, node_innods) in enumerate(zip(self.node_IX,self.node_IN)):
|
||||
node_feature = sum( self.layers[_il](nodes[_ii]) for _il, _ii in zip(node_layers, node_innods) )
|
||||
nodes.append( node_feature )
|
||||
return nodes[-1]
|
58
lib/models/cell_infers/tiny_network.py
Normal file
58
lib/models/cell_infers/tiny_network.py
Normal file
@@ -0,0 +1,58 @@
|
||||
##################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
|
||||
##################################################
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from ..cell_operations import ResNetBasicblock
|
||||
from .cells import InferCell
|
||||
|
||||
|
||||
class TinyNetwork(nn.Module):
|
||||
|
||||
def __init__(self, C, N, genotype, num_classes):
|
||||
super(TinyNetwork, self).__init__()
|
||||
self._C = C
|
||||
self._layerN = N
|
||||
|
||||
self.stem = nn.Sequential(
|
||||
nn.Conv2d(3, C, kernel_size=3, padding=1, bias=False),
|
||||
nn.BatchNorm2d(C))
|
||||
|
||||
layer_channels = [C ] * N + [C*2 ] + [C*2 ] * N + [C*4 ] + [C*4 ] * N
|
||||
layer_reductions = [False] * N + [True] + [False] * N + [True] + [False] * N
|
||||
|
||||
C_prev = C
|
||||
self.cells = nn.ModuleList()
|
||||
for index, (C_curr, reduction) in enumerate(zip(layer_channels, layer_reductions)):
|
||||
if reduction:
|
||||
cell = ResNetBasicblock(C_prev, C_curr, 2)
|
||||
else:
|
||||
cell = InferCell(genotype, C_prev, C_curr, 1)
|
||||
self.cells.append( cell )
|
||||
C_prev = cell.out_dim
|
||||
self._Layer= len(self.cells)
|
||||
|
||||
self.lastact = nn.Sequential(nn.BatchNorm2d(C_prev), nn.ReLU(inplace=True))
|
||||
self.global_pooling = nn.AdaptiveAvgPool2d(1)
|
||||
self.classifier = nn.Linear(C_prev, num_classes)
|
||||
|
||||
def get_message(self):
|
||||
string = self.extra_repr()
|
||||
for i, cell in enumerate(self.cells):
|
||||
string += '\n {:02d}/{:02d} :: {:}'.format(i, len(self.cells), cell.extra_repr())
|
||||
return string
|
||||
|
||||
def extra_repr(self):
|
||||
return ('{name}(C={_C}, N={_layerN}, L={_Layer})'.format(name=self.__class__.__name__, **self.__dict__))
|
||||
|
||||
def forward(self, inputs):
|
||||
feature = self.stem(inputs)
|
||||
for i, cell in enumerate(self.cells):
|
||||
feature = cell(feature)
|
||||
|
||||
out = self.lastact(feature)
|
||||
out = self.global_pooling( out )
|
||||
out = out.view(out.size(0), -1)
|
||||
logits = self.classifier(out)
|
||||
|
||||
return out, logits
|
@@ -17,7 +17,8 @@ CONNECT_NAS_BENCHMARK = ['none', 'skip_connect', 'nor_conv_3x3']
|
||||
AA_NAS_BENCHMARK = ['none', 'skip_connect', 'nor_conv_1x1', 'nor_conv_3x3', 'avg_pool_3x3']
|
||||
|
||||
SearchSpaceNames = {'connect-nas' : CONNECT_NAS_BENCHMARK,
|
||||
'aa-nas' : AA_NAS_BENCHMARK}
|
||||
'aa-nas' : AA_NAS_BENCHMARK,
|
||||
'full' : sorted(list(OPS.keys()))}
|
||||
|
||||
|
||||
class ReLUConvBN(nn.Module):
|
||||
|
@@ -2,3 +2,4 @@ from .search_model_darts_v1 import TinyNetworkDartsV1
|
||||
from .search_model_darts_v2 import TinyNetworkDartsV2
|
||||
from .search_model_gdas import TinyNetworkGDAS
|
||||
from .search_model_setn import TinyNetworkSETN
|
||||
from .genotypes import Structure as CellStructure, architectures as CellArchitectures
|
||||
|
@@ -60,6 +60,13 @@ class Structure:
|
||||
strings.append( string )
|
||||
return '+'.join(strings)
|
||||
|
||||
def check_valid_op(self, op_names):
|
||||
for node_info in self.nodes:
|
||||
for inode_edge in node_info:
|
||||
#assert inode_edge[0] in op_names, 'invalid op-name : {:}'.format(inode_edge[0])
|
||||
if inode_edge[0] not in op_names: return False
|
||||
return True
|
||||
|
||||
def __repr__(self):
|
||||
return ('{name}({node_num} nodes with {node_info})'.format(name=self.__class__.__name__, node_info=self.tostr(), **self.__dict__))
|
||||
|
||||
|
Reference in New Issue
Block a user