Update xmisc with yaml

This commit is contained in:
D-X-Y
2021-06-10 02:11:27 -07:00
parent aef5c7579b
commit 1a7440d2af
11 changed files with 259 additions and 76 deletions

View File

@@ -3,63 +3,69 @@ import torch.nn as nn
class ImageNetHEAD(nn.Sequential):
def __init__(self, C, stride=2):
super(ImageNetHEAD, self).__init__()
self.add_module('conv1', nn.Conv2d(3, C // 2, kernel_size=3, stride=2, padding=1, bias=False))
self.add_module('bn1' , nn.BatchNorm2d(C // 2))
self.add_module('relu1', nn.ReLU(inplace=True))
self.add_module('conv2', nn.Conv2d(C // 2, C, kernel_size=3, stride=stride, padding=1, bias=False))
self.add_module('bn2' , nn.BatchNorm2d(C))
def __init__(self, C, stride=2):
super(ImageNetHEAD, self).__init__()
self.add_module(
"conv1",
nn.Conv2d(3, C // 2, kernel_size=3, stride=2, padding=1, bias=False),
)
self.add_module("bn1", nn.BatchNorm2d(C // 2))
self.add_module("relu1", nn.ReLU(inplace=True))
self.add_module(
"conv2",
nn.Conv2d(C // 2, C, kernel_size=3, stride=stride, padding=1, bias=False),
)
self.add_module("bn2", nn.BatchNorm2d(C))
class CifarHEAD(nn.Sequential):
def __init__(self, C):
super(CifarHEAD, self).__init__()
self.add_module('conv', nn.Conv2d(3, C, kernel_size=3, padding=1, bias=False))
self.add_module('bn', nn.BatchNorm2d(C))
def __init__(self, C):
super(CifarHEAD, self).__init__()
self.add_module("conv", nn.Conv2d(3, C, kernel_size=3, padding=1, bias=False))
self.add_module("bn", nn.BatchNorm2d(C))
class AuxiliaryHeadCIFAR(nn.Module):
def __init__(self, C, num_classes):
"""assuming input size 8x8"""
super(AuxiliaryHeadCIFAR, self).__init__()
self.features = nn.Sequential(
nn.ReLU(inplace=True),
nn.AvgPool2d(
5, stride=3, padding=0, count_include_pad=False
), # image size = 2 x 2
nn.Conv2d(C, 128, 1, bias=False),
nn.BatchNorm2d(128),
nn.ReLU(inplace=True),
nn.Conv2d(128, 768, 2, bias=False),
nn.BatchNorm2d(768),
nn.ReLU(inplace=True),
)
self.classifier = nn.Linear(768, num_classes)
def __init__(self, C, num_classes):
"""assuming input size 8x8"""
super(AuxiliaryHeadCIFAR, self).__init__()
self.features = nn.Sequential(
nn.ReLU(inplace=True),
nn.AvgPool2d(5, stride=3, padding=0, count_include_pad=False), # image size = 2 x 2
nn.Conv2d(C, 128, 1, bias=False),
nn.BatchNorm2d(128),
nn.ReLU(inplace=True),
nn.Conv2d(128, 768, 2, bias=False),
nn.BatchNorm2d(768),
nn.ReLU(inplace=True)
)
self.classifier = nn.Linear(768, num_classes)
def forward(self, x):
x = self.features(x)
x = self.classifier(x.view(x.size(0),-1))
return x
def forward(self, x):
x = self.features(x)
x = self.classifier(x.view(x.size(0), -1))
return x
class AuxiliaryHeadImageNet(nn.Module):
def __init__(self, C, num_classes):
"""assuming input size 14x14"""
super(AuxiliaryHeadImageNet, self).__init__()
self.features = nn.Sequential(
nn.ReLU(inplace=True),
nn.AvgPool2d(5, stride=2, padding=0, count_include_pad=False),
nn.Conv2d(C, 128, 1, bias=False),
nn.BatchNorm2d(128),
nn.ReLU(inplace=True),
nn.Conv2d(128, 768, 2, bias=False),
nn.BatchNorm2d(768),
nn.ReLU(inplace=True),
)
self.classifier = nn.Linear(768, num_classes)
def __init__(self, C, num_classes):
"""assuming input size 14x14"""
super(AuxiliaryHeadImageNet, self).__init__()
self.features = nn.Sequential(
nn.ReLU(inplace=True),
nn.AvgPool2d(5, stride=2, padding=0, count_include_pad=False),
nn.Conv2d(C, 128, 1, bias=False),
nn.BatchNorm2d(128),
nn.ReLU(inplace=True),
nn.Conv2d(128, 768, 2, bias=False),
nn.BatchNorm2d(768),
nn.ReLU(inplace=True)
)
self.classifier = nn.Linear(768, num_classes)
def forward(self, x):
x = self.features(x)
x = self.classifier(x.view(x.size(0),-1))
return x
def forward(self, x):
x = self.features(x)
x = self.classifier(x.view(x.size(0), -1))
return x

View File

@@ -1,6 +1,8 @@
##################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
##################################################
######################################################################
# This folder is deprecated, which is re-organized in "xalgorithms". #
######################################################################
from .starts import prepare_seed
from .starts import prepare_logger
from .starts import get_machine_info

View File

@@ -47,7 +47,7 @@ class SuperSelfAttention(SuperModule):
self.v_fc = SuperLinear(input_dim, input_dim, bias=qkv_bias)
self.attn_drop = SuperDrop(attn_drop or 0.0, [-1, -1, -1, -1], recover=True)
if proj_dim is None:
if proj_dim is not None:
self.proj = SuperLinear(input_dim, proj_dim)
self.proj_drop = SuperDropout(proj_drop or 0.0)
else:

View File

@@ -0,0 +1,8 @@
#####################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.06 #
#####################################################
from .module_utils import call_by_dict
from .module_utils import call_by_yaml
from .module_utils import nested_call_by_dict
from .module_utils import nested_call_by_yaml
from .yaml_utils import load_yaml

View File

@@ -0,0 +1,81 @@
#####################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.01 #
#####################################################
from typing import Union, Dict, Text, Any
import importlib
from .yaml_utils import load_yaml
CLS_FUNC_KEY = "class_or_func"
KEYS = (CLS_FUNC_KEY, "module_path", "args", "kwargs")
def has_key_words(xdict):
if not isinstance(xdict, dict):
return False
key_set = set(KEYS)
cur_set = set(xdict.keys())
return key_set.intersection(cur_set) == key_set
def get_module_by_module_path(module_path):
"""Load the module from the path."""
if module_path.endswith(".py"):
module_spec = importlib.util.spec_from_file_location("", module_path)
module = importlib.util.module_from_spec(module_spec)
module_spec.loader.exec_module(module)
else:
module = importlib.import_module(module_path)
return module
def call_by_dict(config: Dict[Text, Any], *args, **kwargs) -> object:
"""
get initialized instance with config
Parameters
----------
config : a dictionary, such as:
{
'cls_or_func': 'ClassName',
'args': list,
'kwargs': dict,
'model_path': a string indicating the path,
}
Returns
-------
object:
An initialized object based on the config info
"""
module = get_module_by_module_path(config["module_path"])
cls_or_func = getattr(module, config[CLS_FUNC_KEY])
args = tuple(list(config["args"]) + list(args))
kwargs = {**config["kwargs"], **kwargs}
return cls_or_func(*args, **kwargs)
def call_by_yaml(path, *args, **kwargs) -> object:
config = load_yaml(path)
return call_by_config(config, *args, **kwargs)
def nested_call_by_dict(config: Union[Dict[Text, Any], Any], *args, **kwargs) -> object:
"""Similar to `call_by_dict`, but differently, the args may contain another dict needs to be called."""
if not has_key_words(config):
return config
module = get_module_by_module_path(config["module_path"])
cls_or_func = getattr(module, config[CLS_FUNC_KEY])
args = tuple(list(config["args"]) + list(args))
kwargs = {**config["kwargs"], **kwargs}
# check whether there are nested special dict
new_args = [nested_call_by_dict(x) for x in args]
new_kwargs = {}
for key, x in kwargs.items():
new_kwargs[key] = nested_call_by_dict(x)
return cls_or_func(*new_args, **new_kwargs)
def nested_call_by_yaml(path, *args, **kwargs) -> object:
config = load_yaml(path)
return nested_call_by_dict(config, *args, **kwargs)

View File

@@ -0,0 +1,13 @@
#####################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.06 #
#####################################################
import os
import yaml
def load_yaml(path):
if not os.path.isfile(path):
raise ValueError("{:} is not a file.".format(path))
with open(path, "r") as stream:
data = yaml.safe_load(stream)
return data