complete maml and remove vis_compare_algo

This commit is contained in:
D-X-Y
2021-05-10 11:19:18 +08:00
parent 755c7c90cf
commit 147da98f94
2 changed files with 103 additions and 112 deletions

View File

@@ -221,76 +221,7 @@ def visualize_env(save_dir, version):
os.system("{:} {xdir}/env-{ver}.webm".format(base_cmd, xdir=save_dir, ver=version))
def compare_algs(save_dir, alg_dir="./outputs/lfna-synthetic"):
save_dir = Path(str(save_dir))
save_dir.mkdir(parents=True, exist_ok=True)
dpi, width, height = 30, 1800, 1400
figsize = width / float(dpi), height / float(dpi)
LabelSize, LegendFontsize, font_gap = 80, 80, 5
cache_path = Path(alg_dir) / "env-info.pth"
assert cache_path.exists(), "{:} does not exist".format(cache_path)
env_info = torch.load(cache_path)
alg_name2dir = OrderedDict()
alg_name2dir["Optimal"] = "use-same-timestamp"
alg_name2dir["History SL"] = "use-all-past-data"
colors = ["r", "g"]
dynamic_env = env_info["dynamic_env"]
min_t, max_t = dynamic_env.min_timestamp, dynamic_env.max_timestamp
linewidths = 10
for idx, (timestamp, (ori_allx, ori_ally)) in enumerate(
tqdm(dynamic_env, ncols=50)
):
if idx == 0:
continue
fig = plt.figure(figsize=figsize)
cur_ax = fig.add_subplot(1, 1, 1)
# the data
allx, ally = ori_allx[:, 0].numpy(), ori_ally[:, 0].numpy()
plot_scatter(cur_ax, allx, ally, "k", 0.99, linewidths, "Raw Data")
for idx_alg, (alg, xdir) in enumerate(alg_name2dir.items()):
ckp_path = (
Path(alg_dir)
/ xdir
/ "{:04d}-{:04d}.pth".format(idx, env_info["total"])
)
assert ckp_path.exists()
ckp_data = torch.load(ckp_path)
with torch.no_grad():
predicts = ckp_data["model"](ori_allx)
predicts = predicts.cpu().view(-1).numpy()
plot_scatter(cur_ax, allx, predicts, colors[idx_alg], 0.99, linewidths, alg)
cur_ax.set_xlabel("X", fontsize=LabelSize)
cur_ax.set_ylabel("Y", rotation=0, fontsize=LabelSize)
for tick in cur_ax.xaxis.get_major_ticks():
tick.label.set_fontsize(LabelSize - font_gap)
tick.label.set_rotation(10)
for tick in cur_ax.yaxis.get_major_ticks():
tick.label.set_fontsize(LabelSize - font_gap)
cur_ax.set_xlim(-10, 10)
cur_ax.set_ylim(-60, 60)
cur_ax.legend(loc=1, fontsize=LegendFontsize)
save_path = save_dir / "{:05d}".format(idx)
fig.savefig(str(save_path) + ".pdf", dpi=dpi, bbox_inches="tight", format="pdf")
fig.savefig(str(save_path) + ".png", dpi=dpi, bbox_inches="tight", format="png")
plt.close("all")
save_dir = save_dir.resolve()
base_cmd = "ffmpeg -y -i {xdir}/%05d.png -vf scale={w}:{h} -pix_fmt yuv420p -vb 5000k".format(
xdir=save_dir, w=width, h=height
)
os.system("{:} {xdir}/compare-alg.mp4".format(base_cmd, xdir=save_dir))
os.system("{:} {xdir}/compare-alg.webm".format(base_cmd, xdir=save_dir))
def compare_algs_v2(save_dir, alg_dir="./outputs/lfna-synthetic"):
def compare_algs(save_dir, version, alg_dir="./outputs/lfna-synthetic"):
save_dir = Path(str(save_dir))
save_dir.mkdir(parents=True, exist_ok=True)
@@ -298,16 +229,21 @@ def compare_algs_v2(save_dir, alg_dir="./outputs/lfna-synthetic"):
figsize = width / float(dpi), height / float(dpi)
LabelSize, LegendFontsize, font_gap = 80, 80, 5
cache_path = Path(alg_dir) / "env-info.pth"
cache_path = Path(alg_dir) / "env-{:}-info.pth".format(version)
assert cache_path.exists(), "{:} does not exist".format(cache_path)
env_info = torch.load(cache_path)
alg_name2dir = OrderedDict()
alg_name2dir["Optimal"] = "use-same-timestamp"
# alg_name2dir["Supervised Learning (History Data)"] = "use-all-past-data"
alg_name2dir["Supervised Learning (History Data)"] = "use-all-past-data"
alg_name2dir["MAML"] = "use-maml-s1"
alg_name2all_containers = OrderedDict()
if version == "v1":
poststr = "v1-d16"
else:
raise ValueError("Invalid version: {:}".format(version))
for idx_alg, (alg, xdir) in enumerate(alg_name2dir.items()):
ckp_path = Path(alg_dir) / xdir / "final-ckp.pth"
ckp_path = Path(alg_dir) / "{:}-{:}".format(xdir, poststr) / "final-ckp.pth"
xdata = torch.load(ckp_path)
alg_name2all_containers[alg] = xdata["w_container_per_epoch"]
# load the basic model
@@ -320,7 +256,7 @@ def compare_algs_v2(save_dir, alg_dir="./outputs/lfna-synthetic"):
)
alg2xs, alg2ys = defaultdict(list), defaultdict(list)
colors = ["r", "g"]
colors = ["r", "g", "b"]
dynamic_env = env_info["dynamic_env"]
min_t, max_t = dynamic_env.min_timestamp, dynamic_env.max_timestamp
@@ -339,15 +275,6 @@ def compare_algs_v2(save_dir, alg_dir="./outputs/lfna-synthetic"):
plot_scatter(cur_ax, allx, ally, "k", 0.99, linewidths, "Raw Data")
for idx_alg, (alg, xdir) in enumerate(alg_name2dir.items()):
"""
ckp_path = (
Path(alg_dir)
/ xdir
/ "{:04d}-{:04d}.pth".format(idx, env_info["total"])
)
assert ckp_path.exists()
ckp_data = torch.load(ckp_path)
"""
with torch.no_grad():
# predicts = ckp_data["model"](ori_allx)
predicts = model.forward_with_container(
@@ -369,8 +296,12 @@ def compare_algs_v2(save_dir, alg_dir="./outputs/lfna-synthetic"):
tick.label.set_rotation(10)
for tick in cur_ax.yaxis.get_major_ticks():
tick.label.set_fontsize(LabelSize - font_gap)
cur_ax.set_xlim(-10, 10)
cur_ax.set_ylim(-60, 60)
if version == "v1":
cur_ax.set_xlim(-2, 2)
cur_ax.set_ylim(-8, 8)
elif version == "v2":
cur_ax.set_xlim(-10, 10)
cur_ax.set_ylim(-60, 60)
cur_ax.legend(loc=1, fontsize=LegendFontsize)
# the trajectory data
@@ -398,16 +329,20 @@ def compare_algs_v2(save_dir, alg_dir="./outputs/lfna-synthetic"):
cur_ax.set_ylim(0, 10)
cur_ax.legend(loc=1, fontsize=LegendFontsize)
save_path = save_dir / "{:05d}".format(idx)
save_path = save_dir / "v{:}-{:05d}".format(version, idx)
fig.savefig(str(save_path) + ".pdf", dpi=dpi, bbox_inches="tight", format="pdf")
fig.savefig(str(save_path) + ".png", dpi=dpi, bbox_inches="tight", format="png")
plt.close("all")
save_dir = save_dir.resolve()
base_cmd = "ffmpeg -y -i {xdir}/%05d.png -vf scale={w}:{h} -pix_fmt yuv420p -vb 5000k".format(
xdir=save_dir, w=width, h=height
base_cmd = "ffmpeg -y -i {xdir}/v{ver}-%05d.png -vf scale={w}:{h} -pix_fmt yuv420p -vb 5000k".format(
xdir=save_dir, w=width, h=height, ver=version
)
os.system(
"{:} {xdir}/com-alg-{ver}.mp4".format(base_cmd, xdir=save_dir, ver=version)
)
os.system(
"{:} {xdir}/com-alg-{ver}.webm".format(base_cmd, xdir=save_dir, ver=version)
)
os.system("{:} {xdir}/compare-alg.mp4".format(base_cmd, xdir=save_dir))
os.system("{:} {xdir}/compare-alg.webm".format(base_cmd, xdir=save_dir))
if __name__ == "__main__":
@@ -421,8 +356,7 @@ if __name__ == "__main__":
)
args = parser.parse_args()
visualize_env(os.path.join(args.save_dir, "vis-env"), "v1")
visualize_env(os.path.join(args.save_dir, "vis-env"), "v2")
# compare_algs_v2(os.path.join(args.save_dir, "compare-alg-v2"))
# visualize_env(os.path.join(args.save_dir, "vis-env"), "v1")
# visualize_env(os.path.join(args.save_dir, "vis-env"), "v2")
compare_algs(os.path.join(args.save_dir, "compare-alg-v2"), "v1")
# compare_cl(os.path.join(args.save_dir, "compare-cl"))
# compare_algs(os.path.join(args.save_dir, "compare-alg"))