This commit is contained in:
D-X-Y
2019-02-01 01:27:38 +11:00
commit 13e908f4df
104 changed files with 102494 additions and 0 deletions

89
lib/nas/CifarNet.py Normal file
View File

@@ -0,0 +1,89 @@
import torch
import torch.nn as nn
from .construct_utils import Cell, Transition
class AuxiliaryHeadCIFAR(nn.Module):
def __init__(self, C, num_classes):
"""assuming input size 8x8"""
super(AuxiliaryHeadCIFAR, self).__init__()
self.features = nn.Sequential(
nn.ReLU(inplace=True),
nn.AvgPool2d(5, stride=3, padding=0, count_include_pad=False), # image size = 2 x 2
nn.Conv2d(C, 128, 1, bias=False),
nn.BatchNorm2d(128),
nn.ReLU(inplace=True),
nn.Conv2d(128, 768, 2, bias=False),
nn.BatchNorm2d(768),
nn.ReLU(inplace=True)
)
self.classifier = nn.Linear(768, num_classes)
def forward(self, x):
x = self.features(x)
x = self.classifier(x.view(x.size(0),-1))
return x
class NetworkCIFAR(nn.Module):
def __init__(self, C, num_classes, layers, auxiliary, genotype):
super(NetworkCIFAR, self).__init__()
self._layers = layers
stem_multiplier = 3
C_curr = stem_multiplier*C
self.stem = nn.Sequential(
nn.Conv2d(3, C_curr, 3, padding=1, bias=False),
nn.BatchNorm2d(C_curr)
)
C_prev_prev, C_prev, C_curr = C_curr, C_curr, C
self.cells = nn.ModuleList()
reduction_prev = False
for i in range(layers):
if i in [layers//3, 2*layers//3]:
C_curr *= 2
reduction = True
else:
reduction = False
if reduction and genotype.reduce is None:
cell = Transition(C_prev_prev, C_prev, C_curr, reduction_prev)
else:
cell = Cell(genotype, C_prev_prev, C_prev, C_curr, reduction, reduction_prev)
reduction_prev = reduction
self.cells.append( cell )
C_prev_prev, C_prev = C_prev, cell.multiplier*C_curr
if i == 2*layers//3:
C_to_auxiliary = C_prev
if auxiliary:
self.auxiliary_head = AuxiliaryHeadCIFAR(C_to_auxiliary, num_classes)
else:
self.auxiliary_head = None
self.global_pooling = nn.AdaptiveAvgPool2d(1)
self.classifier = nn.Linear(C_prev, num_classes)
self.drop_path_prob = -1
def update_drop_path(self, drop_path_prob):
self.drop_path_prob = drop_path_prob
def auxiliary_param(self):
if self.auxiliary_head is None: return []
else: return list( self.auxiliary_head.parameters() )
def forward(self, inputs):
s0 = s1 = self.stem(inputs)
for i, cell in enumerate(self.cells):
s0, s1 = s1, cell(s0, s1, self.drop_path_prob)
if i == 2*self._layers//3:
if self.auxiliary_head and self.training:
logits_aux = self.auxiliary_head(s1)
out = self.global_pooling(s1)
out = out.view(out.size(0), -1)
logits = self.classifier(out)
if self.auxiliary_head and self.training:
return logits, logits_aux
else:
return logits

101
lib/nas/ImageNet.py Normal file
View File

@@ -0,0 +1,101 @@
import torch
import torch.nn as nn
from .construct_utils import Cell, Transition
class AuxiliaryHeadImageNet(nn.Module):
def __init__(self, C, num_classes):
"""assuming input size 14x14"""
super(AuxiliaryHeadImageNet, self).__init__()
self.features = nn.Sequential(
nn.ReLU(inplace=True),
nn.AvgPool2d(5, stride=2, padding=0, count_include_pad=False),
nn.Conv2d(C, 128, 1, bias=False),
nn.BatchNorm2d(128),
nn.ReLU(inplace=True),
nn.Conv2d(128, 768, 2, bias=False),
# NOTE: This batchnorm was omitted in my earlier implementation due to a typo.
# Commenting it out for consistency with the experiments in the paper.
# nn.BatchNorm2d(768),
nn.ReLU(inplace=True)
)
self.classifier = nn.Linear(768, num_classes)
def forward(self, x):
x = self.features(x)
x = self.classifier(x.view(x.size(0),-1))
return x
class NetworkImageNet(nn.Module):
def __init__(self, C, num_classes, layers, auxiliary, genotype):
super(NetworkImageNet, self).__init__()
self._layers = layers
self.stem0 = nn.Sequential(
nn.Conv2d(3, C // 2, kernel_size=3, stride=2, padding=1, bias=False),
nn.BatchNorm2d(C // 2),
nn.ReLU(inplace=True),
nn.Conv2d(C // 2, C, 3, stride=2, padding=1, bias=False),
nn.BatchNorm2d(C),
)
self.stem1 = nn.Sequential(
nn.ReLU(inplace=True),
nn.Conv2d(C, C, 3, stride=2, padding=1, bias=False),
nn.BatchNorm2d(C),
)
C_prev_prev, C_prev, C_curr = C, C, C
self.cells = nn.ModuleList()
reduction_prev = True
for i in range(layers):
if i in [layers // 3, 2 * layers // 3]:
C_curr *= 2
reduction = True
else:
reduction = False
if reduction and genotype.reduce is None:
cell = Transition(C_prev_prev, C_prev, C_curr, reduction_prev)
else:
cell = Cell(genotype, C_prev_prev, C_prev, C_curr, reduction, reduction_prev)
reduction_prev = reduction
self.cells += [cell]
C_prev_prev, C_prev = C_prev, cell.multiplier * C_curr
if i == 2 * layers // 3:
C_to_auxiliary = C_prev
if auxiliary:
self.auxiliary_head = AuxiliaryHeadImageNet(C_to_auxiliary, num_classes)
else:
self.auxiliary_head = None
self.global_pooling = nn.AvgPool2d(7)
self.classifier = nn.Linear(C_prev, num_classes)
self.drop_path_prob = -1
def update_drop_path(self, drop_path_prob):
self.drop_path_prob = drop_path_prob
def auxiliary_param(self):
if self.auxiliary_head is None: return []
else: return list( self.auxiliary_head.parameters() )
def forward(self, input):
s0 = self.stem0(input)
s1 = self.stem1(s0)
for i, cell in enumerate(self.cells):
s0, s1 = s1, cell(s0, s1, self.drop_path_prob)
#print ('{:} : {:} - {:}'.format(i, s0.size(), s1.size()))
if i == 2 * self._layers // 3:
if self.auxiliary_head and self.training:
logits_aux = self.auxiliary_head(s1)
out = self.global_pooling(s1)
logits = self.classifier(out.view(out.size(0), -1))
if self.auxiliary_head and self.training:
return logits, logits_aux
else:
return logits

27
lib/nas/SE_Module.py Normal file
View File

@@ -0,0 +1,27 @@
import torch
import torch.nn as nn
# Squeeze and Excitation module
class SqEx(nn.Module):
def __init__(self, n_features, reduction=16):
super(SqEx, self).__init__()
if n_features % reduction != 0:
raise ValueError('n_features must be divisible by reduction (default = 16)')
self.linear1 = nn.Linear(n_features, n_features // reduction, bias=True)
self.nonlin1 = nn.ReLU(inplace=True)
self.linear2 = nn.Linear(n_features // reduction, n_features, bias=True)
self.nonlin2 = nn.Sigmoid()
def forward(self, x):
y = F.avg_pool2d(x, kernel_size=x.size()[2:4])
y = y.permute(0, 2, 3, 1)
y = self.nonlin1(self.linear1(y))
y = self.nonlin2(self.linear2(y))
y = y.permute(0, 3, 1, 2)
y = x * y
return y

18
lib/nas/__init__.py Normal file
View File

@@ -0,0 +1,18 @@
from .model_search import Network
from .model_search_v1 import NetworkV1
from .model_search_f1 import NetworkF1
# acceleration model
from .model_search_f1_acc2 import NetworkFACC1
from .model_search_acc2 import NetworkACC2
from .model_search_v3 import NetworkV3
from .model_search_v4 import NetworkV4
from .model_search_v5 import NetworkV5
from .CifarNet import NetworkCIFAR
from .ImageNet import NetworkImageNet
# genotypes
from .genotypes import DARTS_V1, DARTS_V2
from .genotypes import NASNet, PNASNet, AmoebaNet, ENASNet
from .genotypes import DMS_V1, DMS_F1, GDAS_CC
from .construct_utils import return_alphas_str

151
lib/nas/construct_utils.py Normal file
View File

@@ -0,0 +1,151 @@
import random
import torch
import torch.nn as nn
import torch.nn.functional as F
from .operations import OPS, FactorizedReduce, ReLUConvBN, Identity
def random_select(length, ratio):
clist = []
index = random.randint(0, length-1)
for i in range(length):
if i == index or random.random() < ratio:
clist.append( 1 )
else:
clist.append( 0 )
return clist
def all_select(length):
return [1 for i in range(length)]
def drop_path(x, drop_prob):
if drop_prob > 0.:
keep_prob = 1. - drop_prob
mask = x.new_zeros(x.size(0), 1, 1, 1)
mask = mask.bernoulli_(keep_prob)
x.div_(keep_prob)
x.mul_(mask)
return x
def return_alphas_str(basemodel):
string = 'normal : {:}'.format( F.softmax(basemodel.alphas_normal, dim=-1) )
if hasattr(basemodel, 'alphas_reduce'):
string = string + '\nreduce : {:}'.format( F.softmax(basemodel.alphas_reduce, dim=-1) )
return string
class Cell(nn.Module):
def __init__(self, genotype, C_prev_prev, C_prev, C, reduction, reduction_prev):
super(Cell, self).__init__()
print(C_prev_prev, C_prev, C)
if reduction_prev:
self.preprocess0 = FactorizedReduce(C_prev_prev, C)
else:
self.preprocess0 = ReLUConvBN(C_prev_prev, C, 1, 1, 0)
self.preprocess1 = ReLUConvBN(C_prev, C, 1, 1, 0)
if reduction:
op_names, indices, values = zip(*genotype.reduce)
concat = genotype.reduce_concat
else:
op_names, indices, values = zip(*genotype.normal)
concat = genotype.normal_concat
self._compile(C, op_names, indices, values, concat, reduction)
def _compile(self, C, op_names, indices, values, concat, reduction):
assert len(op_names) == len(indices)
self._steps = len(op_names) // 2
self._concat = concat
self.multiplier = len(concat)
self._ops = nn.ModuleList()
for name, index in zip(op_names, indices):
stride = 2 if reduction and index < 2 else 1
op = OPS[name](C, stride, True)
self._ops.append( op )
self._indices = indices
self._values = values
def forward(self, s0, s1, drop_prob):
s0 = self.preprocess0(s0)
s1 = self.preprocess1(s1)
states = [s0, s1]
for i in range(self._steps):
h1 = states[self._indices[2*i]]
h2 = states[self._indices[2*i+1]]
op1 = self._ops[2*i]
op2 = self._ops[2*i+1]
h1 = op1(h1)
h2 = op2(h2)
if self.training and drop_prob > 0.:
if not isinstance(op1, Identity):
h1 = drop_path(h1, drop_prob)
if not isinstance(op2, Identity):
h2 = drop_path(h2, drop_prob)
s = h1 + h2
states += [s]
return torch.cat([states[i] for i in self._concat], dim=1)
class Transition(nn.Module):
def __init__(self, C_prev_prev, C_prev, C, reduction_prev, multiplier=4):
super(Transition, self).__init__()
if reduction_prev:
self.preprocess0 = FactorizedReduce(C_prev_prev, C)
else:
self.preprocess0 = ReLUConvBN(C_prev_prev, C, 1, 1, 0)
self.preprocess1 = ReLUConvBN(C_prev, C, 1, 1, 0)
self.multiplier = multiplier
self.reduction = True
self.ops1 = nn.ModuleList(
[nn.Sequential(
nn.ReLU(inplace=False),
nn.Conv2d(C, C, (1, 3), stride=(1, 2), padding=(0, 1), groups=8, bias=False),
nn.Conv2d(C, C, (3, 1), stride=(2, 1), padding=(1, 0), groups=8, bias=False),
nn.BatchNorm2d(C, affine=True),
nn.ReLU(inplace=False),
nn.Conv2d(C, C, 1, stride=1, padding=0, bias=False),
nn.BatchNorm2d(C, affine=True)),
nn.Sequential(
nn.ReLU(inplace=False),
nn.Conv2d(C, C, (1, 3), stride=(1, 2), padding=(0, 1), groups=8, bias=False),
nn.Conv2d(C, C, (3, 1), stride=(2, 1), padding=(1, 0), groups=8, bias=False),
nn.BatchNorm2d(C, affine=True),
nn.ReLU(inplace=False),
nn.Conv2d(C, C, 1, stride=1, padding=0, bias=False),
nn.BatchNorm2d(C, affine=True))])
self.ops2 = nn.ModuleList(
[nn.Sequential(
nn.MaxPool2d(3, stride=1, padding=1),
nn.BatchNorm2d(C, affine=True)),
nn.Sequential(
nn.MaxPool2d(3, stride=2, padding=1),
nn.BatchNorm2d(C, affine=True))])
def forward(self, s0, s1, drop_prob = -1):
s0 = self.preprocess0(s0)
s1 = self.preprocess1(s1)
X0 = self.ops1[0] (s0)
X1 = self.ops1[1] (s1)
if self.training and drop_prob > 0.:
X0, X1 = drop_path(X0, drop_prob), drop_path(X1, drop_prob)
X2 = self.ops2[0] (X0+X1)
X3 = self.ops2[1] (s1)
if self.training and drop_prob > 0.:
X2, X3 = drop_path(X2, drop_prob), drop_path(X3, drop_prob)
return torch.cat([X0, X1, X2, X3], dim=1)

203
lib/nas/genotypes.py Normal file
View File

@@ -0,0 +1,203 @@
from collections import namedtuple
Genotype = namedtuple('Genotype', 'normal normal_concat reduce reduce_concat')
PRIMITIVES = [
'none',
'max_pool_3x3',
'avg_pool_3x3',
'skip_connect',
'sep_conv_3x3',
'sep_conv_5x5',
'dil_conv_3x3',
'dil_conv_5x5'
]
NASNet = Genotype(
normal = [
('sep_conv_5x5', 1, 1.0),
('sep_conv_3x3', 0, 1.0),
('sep_conv_5x5', 0, 1.0),
('sep_conv_3x3', 0, 1.0),
('avg_pool_3x3', 1, 1.0),
('skip_connect', 0, 1.0),
('avg_pool_3x3', 0, 1.0),
('avg_pool_3x3', 0, 1.0),
('sep_conv_3x3', 1, 1.0),
('skip_connect', 1, 1.0),
],
normal_concat = [2, 3, 4, 5, 6],
reduce = [
('sep_conv_5x5', 1, 1.0),
('sep_conv_7x7', 0, 1.0),
('max_pool_3x3', 1, 1.0),
('sep_conv_7x7', 0, 1.0),
('avg_pool_3x3', 1, 1.0),
('sep_conv_5x5', 0, 1.0),
('skip_connect', 3, 1.0),
('avg_pool_3x3', 2, 1.0),
('sep_conv_3x3', 2, 1.0),
('max_pool_3x3', 1, 1.0),
],
reduce_concat = [4, 5, 6],
)
AmoebaNet = Genotype(
normal = [
('avg_pool_3x3', 0, 1.0),
('max_pool_3x3', 1, 1.0),
('sep_conv_3x3', 0, 1.0),
('sep_conv_5x5', 2, 1.0),
('sep_conv_3x3', 0, 1.0),
('avg_pool_3x3', 3, 1.0),
('sep_conv_3x3', 1, 1.0),
('skip_connect', 1, 1.0),
('skip_connect', 0, 1.0),
('avg_pool_3x3', 1, 1.0),
],
normal_concat = [4, 5, 6],
reduce = [
('avg_pool_3x3', 0, 1.0),
('sep_conv_3x3', 1, 1.0),
('max_pool_3x3', 0, 1.0),
('sep_conv_7x7', 2, 1.0),
('sep_conv_7x7', 0, 1.0),
('avg_pool_3x3', 1, 1.0),
('max_pool_3x3', 0, 1.0),
('max_pool_3x3', 1, 1.0),
('conv_7x1_1x7', 0, 1.0),
('sep_conv_3x3', 5, 1.0),
],
reduce_concat = [3, 4, 6]
)
DARTS_V1 = Genotype(
normal=[
('sep_conv_3x3', 1, 1.0),
('sep_conv_3x3', 0, 1.0),
('skip_connect', 0, 1.0),
('sep_conv_3x3', 1, 1.0),
('skip_connect', 0, 1.0),
('sep_conv_3x3', 1, 1.0),
('sep_conv_3x3', 0, 1.0),
('skip_connect', 2, 1.0)],
normal_concat=[2, 3, 4, 5],
reduce=[
('max_pool_3x3', 0, 1.0),
('max_pool_3x3', 1, 1.0),
('skip_connect', 2, 1.0),
('max_pool_3x3', 0, 1.0),
('max_pool_3x3', 0, 1.0),
('skip_connect', 2, 1.0),
('skip_connect', 2, 1.0),
('avg_pool_3x3', 0, 1.0)],
reduce_concat=[2, 3, 4, 5]
)
DARTS_V2 = Genotype(
normal=[
('sep_conv_3x3', 0, 1.0),
('sep_conv_3x3', 1, 1.0),
('sep_conv_3x3', 0, 1.0),
('sep_conv_3x3', 1, 1.0),
('sep_conv_3x3', 1, 1.0),
('skip_connect', 0, 1.0),
('skip_connect', 0, 1.0),
('dil_conv_3x3', 2, 1.0)],
normal_concat=[2, 3, 4, 5],
reduce=[
('max_pool_3x3', 0, 1.0),
('max_pool_3x3', 1, 1.0),
('skip_connect', 2, 1.0),
('max_pool_3x3', 1, 1.0),
('max_pool_3x3', 0, 1.0),
('skip_connect', 2, 1.0),
('skip_connect', 2, 1.0),
('max_pool_3x3', 1, 1.0)],
reduce_concat=[2, 3, 4, 5]
)
PNASNet = Genotype(
normal = [
('sep_conv_5x5', 0, 1.0),
('max_pool_3x3', 0, 1.0),
('sep_conv_7x7', 1, 1.0),
('max_pool_3x3', 1, 1.0),
('sep_conv_5x5', 1, 1.0),
('sep_conv_3x3', 1, 1.0),
('sep_conv_3x3', 4, 1.0),
('max_pool_3x3', 1, 1.0),
('sep_conv_3x3', 0, 1.0),
('skip_connect', 1, 1.0),
],
normal_concat = [2, 3, 4, 5, 6],
reduce = [
('sep_conv_5x5', 0, 1.0),
('max_pool_3x3', 0, 1.0),
('sep_conv_7x7', 1, 1.0),
('max_pool_3x3', 1, 1.0),
('sep_conv_5x5', 1, 1.0),
('sep_conv_3x3', 1, 1.0),
('sep_conv_3x3', 4, 1.0),
('max_pool_3x3', 1, 1.0),
('sep_conv_3x3', 0, 1.0),
('skip_connect', 1, 1.0),
],
reduce_concat = [2, 3, 4, 5, 6],
)
# https://arxiv.org/pdf/1802.03268.pdf
ENASNet = Genotype(
normal = [
('sep_conv_3x3', 1, 1.0),
('skip_connect', 1, 1.0),
('sep_conv_5x5', 1, 1.0),
('skip_connect', 0, 1.0),
('avg_pool_3x3', 0, 1.0),
('sep_conv_3x3', 1, 1.0),
('sep_conv_3x3', 0, 1.0),
('avg_pool_3x3', 1, 1.0),
('sep_conv_5x5', 1, 1.0),
('avg_pool_3x3', 0, 1.0),
],
normal_concat = [2, 3, 4, 5, 6],
reduce = [
('sep_conv_5x5', 0, 1.0),
('sep_conv_3x3', 1, 1.0), # 2
('sep_conv_3x3', 1, 1.0),
('avg_pool_3x3', 1, 1.0), # 3
('sep_conv_3x3', 1, 1.0),
('avg_pool_3x3', 1, 1.0), # 4
('avg_pool_3x3', 1, 1.0),
('sep_conv_5x5', 4, 1.0), # 5
('sep_conv_3x3', 5, 1.0),
('sep_conv_5x5', 0, 1.0),
],
reduce_concat = [2, 3, 4, 5, 6],
)
DARTS = DARTS_V2
# Search by normal and reduce
DMS_V1 = Genotype(
normal=[('skip_connect', 0, 0.13017432391643524), ('skip_connect', 1, 0.12947972118854523), ('skip_connect', 0, 0.13062666356563568), ('sep_conv_5x5', 2, 0.12980839610099792), ('sep_conv_3x3', 3, 0.12923765182495117), ('skip_connect', 0, 0.12901571393013), ('sep_conv_5x5', 4, 0.12938997149467468), ('sep_conv_3x3', 3, 0.1289220005273819)],
normal_concat=range(2, 6),
reduce=[('sep_conv_5x5', 0, 0.12862831354141235), ('sep_conv_3x3', 1, 0.12783904373645782), ('sep_conv_5x5', 2, 0.12725995481014252), ('sep_conv_5x5', 1, 0.12705285847187042), ('dil_conv_5x5', 2, 0.12797553837299347), ('sep_conv_3x3', 1, 0.12737272679805756), ('sep_conv_5x5', 0, 0.12833961844444275), ('sep_conv_5x5', 1, 0.12758426368236542)],
reduce_concat=range(2, 6)
)
# Search by normal and fixing reduction
DMS_F1 = Genotype(
normal=[('skip_connect', 0, 0.16), ('skip_connect', 1, 0.13), ('skip_connect', 0, 0.17), ('sep_conv_3x3', 2, 0.15), ('skip_connect', 0, 0.17), ('sep_conv_3x3', 2, 0.15), ('skip_connect', 0, 0.16), ('sep_conv_3x3', 2, 0.15)],
normal_concat=[2, 3, 4, 5],
reduce=None,
reduce_concat=[2, 3, 4, 5],
)
# Combine DMS_V1 and DMS_F1
GDAS_CC = Genotype(
normal=[('skip_connect', 0, 0.13017432391643524), ('skip_connect', 1, 0.12947972118854523), ('skip_connect', 0, 0.13062666356563568), ('sep_conv_5x5', 2, 0.12980839610099792), ('sep_conv_3x3', 3, 0.12923765182495117), ('skip_connect', 0, 0.12901571393013), ('sep_conv_5x5', 4, 0.12938997149467468), ('sep_conv_3x3', 3, 0.1289220005273819)],
normal_concat=range(2, 6),
reduce=None,
reduce_concat=range(2, 6)
)

19
lib/nas/head_utils.py Normal file
View File

@@ -0,0 +1,19 @@
import torch
import torch.nn as nn
class ImageNetHEAD(nn.Sequential):
def __init__(self, C, stride=2):
super(ImageNetHEAD, self).__init__()
self.add_module('conv1', nn.Conv2d(3, C // 2, kernel_size=3, stride=2, padding=1, bias=False))
self.add_module('bn1' , nn.BatchNorm2d(C // 2))
self.add_module('relu1', nn.ReLU(inplace=True))
self.add_module('conv2', nn.Conv2d(C // 2, C, kernel_size=3, stride=stride, padding=1, bias=False))
self.add_module('bn2' , nn.BatchNorm2d(C))
class CifarHEAD(nn.Sequential):
def __init__(self, C):
super(CifarHEAD, self).__init__()
self.add_module('conv', nn.Conv2d(3, C, kernel_size=3, padding=1, bias=False))
self.add_module('bn', nn.BatchNorm2d(C))

166
lib/nas/model_search.py Normal file
View File

@@ -0,0 +1,166 @@
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn.parameter import Parameter
from .head_utils import CifarHEAD, ImageNetHEAD
from .operations import OPS, FactorizedReduce, ReLUConvBN
from .genotypes import PRIMITIVES, Genotype
class MixedOp(nn.Module):
def __init__(self, C, stride):
super(MixedOp, self).__init__()
self._ops = nn.ModuleList()
for primitive in PRIMITIVES:
op = OPS[primitive](C, stride, False)
self._ops.append(op)
def forward(self, x, weights):
return sum(w * op(x) for w, op in zip(weights, self._ops))
class Cell(nn.Module):
def __init__(self, steps, multiplier, C_prev_prev, C_prev, C, reduction, reduction_prev):
super(Cell, self).__init__()
self.reduction = reduction
if reduction_prev:
self.preprocess0 = FactorizedReduce(C_prev_prev, C, affine=False)
else:
self.preprocess0 = ReLUConvBN(C_prev_prev, C, 1, 1, 0, affine=False)
self.preprocess1 = ReLUConvBN(C_prev, C, 1, 1, 0, affine=False)
self._steps = steps
self._multiplier = multiplier
self._ops = nn.ModuleList()
for i in range(self._steps):
for j in range(2+i):
stride = 2 if reduction and j < 2 else 1
op = MixedOp(C, stride)
self._ops.append(op)
def forward(self, s0, s1, weights):
s0 = self.preprocess0(s0)
s1 = self.preprocess1(s1)
states = [s0, s1]
offset = 0
for i in range(self._steps):
clist = []
for j, h in enumerate(states):
x = self._ops[offset+j](h, weights[offset+j])
clist.append( x )
s = sum(clist)
offset += len(states)
states.append(s)
return torch.cat(states[-self._multiplier:], dim=1)
class Network(nn.Module):
def __init__(self, C, num_classes, layers, steps=4, multiplier=4, stem_multiplier=3, head='cifar'):
super(Network, self).__init__()
self._C = C
self._num_classes = num_classes
self._layers = layers
self._steps = steps
self._multiplier = multiplier
C_curr = stem_multiplier*C
if head == 'cifar':
self.stem = nn.Sequential(
nn.Conv2d(3, C_curr, 3, padding=1, bias=False),
nn.BatchNorm2d(C_curr)
)
elif head == 'imagenet':
self.stem = ImageNetHEAD(C_curr, stride=1)
else:
raise ValueError('Invalid head : {:}'.format(head))
C_prev_prev, C_prev, C_curr = C_curr, C_curr, C
reduction_prev, cells = False, []
for i in range(layers):
if i in [layers//3, 2*layers//3]:
C_curr *= 2
reduction = True
else:
reduction = False
cell = Cell(steps, multiplier, C_prev_prev, C_prev, C_curr, reduction, reduction_prev)
reduction_prev = reduction
cells.append( cell )
C_prev_prev, C_prev = C_prev, multiplier*C_curr
self.cells = nn.ModuleList(cells)
self.global_pooling = nn.AdaptiveAvgPool2d(1)
self.classifier = nn.Linear(C_prev, num_classes)
# initialize architecture parameters
k = sum(1 for i in range(self._steps) for n in range(2+i))
num_ops = len(PRIMITIVES)
self.alphas_normal = Parameter(torch.Tensor(k, num_ops))
self.alphas_reduce = Parameter(torch.Tensor(k, num_ops))
nn.init.normal_(self.alphas_normal, 0, 0.001)
nn.init.normal_(self.alphas_reduce, 0, 0.001)
def set_tau(self, tau):
return -1
def get_tau(self):
return -1
def arch_parameters(self):
return [self.alphas_normal, self.alphas_reduce]
def base_parameters(self):
lists = list(self.stem.parameters()) + list(self.cells.parameters())
lists += list(self.global_pooling.parameters())
lists += list(self.classifier.parameters())
return lists
def forward(self, inputs):
batch, C, H, W = inputs.size()
s0 = s1 = self.stem(inputs)
for i, cell in enumerate(self.cells):
if cell.reduction:
weights = F.softmax(self.alphas_reduce, dim=-1)
else:
weights = F.softmax(self.alphas_normal, dim=-1)
s0, s1 = s1, cell(s0, s1, weights)
out = self.global_pooling(s1)
out = out.view(batch, -1)
logits = self.classifier(out)
return logits
def genotype(self):
def _parse(weights):
gene, n, start = [], 2, 0
for i in range(self._steps):
end = start + n
W = weights[start:end].copy()
edges = sorted(range(i + 2), key=lambda x: -max(W[x][k] for k in range(len(W[x])) if k != PRIMITIVES.index('none')))[:2]
for j in edges:
k_best = None
for k in range(len(W[j])):
if k != PRIMITIVES.index('none'):
if k_best is None or W[j][k] > W[j][k_best]:
k_best = k
gene.append((PRIMITIVES[k_best], j, float(W[j][k_best])))
start = end
n += 1
return gene
with torch.no_grad():
gene_normal = _parse(F.softmax(self.alphas_normal, dim=-1).cpu().numpy())
gene_reduce = _parse(F.softmax(self.alphas_reduce, dim=-1).cpu().numpy())
concat = range(2+self._steps-self._multiplier, self._steps+2)
genotype = Genotype(
normal=gene_normal, normal_concat=concat,
reduce=gene_reduce, reduce_concat=concat
)
return genotype

View File

@@ -0,0 +1,180 @@
# gumbel softmax
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn.parameter import Parameter
from .operations import OPS, FactorizedReduce, ReLUConvBN
from .genotypes import PRIMITIVES, Genotype
class MixedOp(nn.Module):
def __init__(self, C, stride):
super(MixedOp, self).__init__()
self._ops = nn.ModuleList()
for primitive in PRIMITIVES:
op = OPS[primitive](C, stride, False)
self._ops.append(op)
def forward(self, x, weights, cpu_weights):
use_sum = sum([abs(_) > 1e-10 for _ in cpu_weights])
if use_sum > 3:
return sum(w * op(x) for w, op in zip(weights, self._ops))
else:
clist = []
for j, cpu_weight in enumerate(cpu_weights):
if abs(cpu_weight) > 1e-10:
clist.append( weights[j] * self._ops[j](x) )
assert len(clist) > 0, 'invalid length : {:}'.format(cpu_weights)
return sum(clist)
class Cell(nn.Module):
def __init__(self, steps, multiplier, C_prev_prev, C_prev, C, reduction, reduction_prev):
super(Cell, self).__init__()
self.reduction = reduction
if reduction_prev:
self.preprocess0 = FactorizedReduce(C_prev_prev, C, affine=False)
else:
self.preprocess0 = ReLUConvBN(C_prev_prev, C, 1, 1, 0, affine=False)
self.preprocess1 = ReLUConvBN(C_prev, C, 1, 1, 0, affine=False)
self._steps = steps
self._multiplier = multiplier
self._ops = nn.ModuleList()
for i in range(self._steps):
for j in range(2+i):
stride = 2 if reduction and j < 2 else 1
op = MixedOp(C, stride)
self._ops.append(op)
def forward(self, s0, s1, weights):
s0 = self.preprocess0(s0)
s1 = self.preprocess1(s1)
cpu_weights = weights.tolist()
states = [s0, s1]
offset = 0
for i in range(self._steps):
clist = []
for j, h in enumerate(states):
x = self._ops[offset+j](h, weights[offset+j], cpu_weights[offset+j])
clist.append( x )
s = sum(clist)
offset += len(states)
states.append(s)
return torch.cat(states[-self._multiplier:], dim=1)
class NetworkACC2(nn.Module):
def __init__(self, C, num_classes, layers, steps=4, multiplier=4, stem_multiplier=3):
super(NetworkACC2, self).__init__()
self._C = C
self._num_classes = num_classes
self._layers = layers
self._steps = steps
self._multiplier = multiplier
C_curr = stem_multiplier*C
self.stem = nn.Sequential(
nn.Conv2d(3, C_curr, 3, padding=1, bias=False),
nn.BatchNorm2d(C_curr)
)
C_prev_prev, C_prev, C_curr = C_curr, C_curr, C
reduction_prev, cells = False, []
for i in range(layers):
if i in [layers//3, 2*layers//3]:
C_curr *= 2
reduction = True
else:
reduction = False
cell = Cell(steps, multiplier, C_prev_prev, C_prev, C_curr, reduction, reduction_prev)
reduction_prev = reduction
cells.append( cell )
C_prev_prev, C_prev = C_prev, multiplier*C_curr
self.cells = nn.ModuleList(cells)
self.global_pooling = nn.AdaptiveAvgPool2d(1)
self.classifier = nn.Linear(C_prev, num_classes)
self.tau = 5
self.use_gumbel = True
# initialize architecture parameters
k = sum(1 for i in range(self._steps) for n in range(2+i))
num_ops = len(PRIMITIVES)
self.alphas_normal = Parameter(torch.Tensor(k, num_ops))
self.alphas_reduce = Parameter(torch.Tensor(k, num_ops))
nn.init.normal_(self.alphas_normal, 0, 0.001)
nn.init.normal_(self.alphas_reduce, 0, 0.001)
def set_gumbel(self, use_gumbel):
self.use_gumbel = use_gumbel
def set_tau(self, tau):
self.tau = tau
def get_tau(self):
return self.tau
def arch_parameters(self):
return [self.alphas_normal, self.alphas_reduce]
def base_parameters(self):
lists = list(self.stem.parameters()) + list(self.cells.parameters())
lists += list(self.global_pooling.parameters())
lists += list(self.classifier.parameters())
return lists
def forward(self, inputs):
batch, C, H, W = inputs.size()
s0 = s1 = self.stem(inputs)
for i, cell in enumerate(self.cells):
if cell.reduction:
if self.use_gumbel : weights = F.gumbel_softmax(self.alphas_reduce, self.tau, True)
else : weights = F.softmax(self.alphas_reduce, dim=-1)
else:
if self.use_gumbel : weights = F.gumbel_softmax(self.alphas_normal, self.tau, True)
else : weights = F.softmax(self.alphas_normal, dim=-1)
s0, s1 = s1, cell(s0, s1, weights)
out = self.global_pooling(s1)
out = out.view(batch, -1)
logits = self.classifier(out)
return logits
def genotype(self):
def _parse(weights):
gene, n, start = [], 2, 0
for i in range(self._steps):
end = start + n
W = weights[start:end].copy()
edges = sorted(range(i + 2), key=lambda x: -max(W[x][k] for k in range(len(W[x])) if k != PRIMITIVES.index('none')))[:2]
for j in edges:
k_best = None
for k in range(len(W[j])):
if k != PRIMITIVES.index('none'):
if k_best is None or W[j][k] > W[j][k_best]:
k_best = k
gene.append((PRIMITIVES[k_best], j, float(W[j][k_best])))
start = end
n += 1
return gene
with torch.no_grad():
gene_normal = _parse(F.softmax(self.alphas_normal, dim=-1).cpu().numpy())
gene_reduce = _parse(F.softmax(self.alphas_reduce, dim=-1).cpu().numpy())
concat = range(2+self._steps-self._multiplier, self._steps+2)
genotype = Genotype(
normal=gene_normal, normal_concat=concat,
reduce=gene_reduce, reduce_concat=concat
)
return genotype

167
lib/nas/model_search_f1.py Normal file
View File

@@ -0,0 +1,167 @@
# share parameters
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn.parameter import Parameter
from .operations import OPS, FactorizedReduce, ReLUConvBN
from .construct_utils import Transition
from .genotypes import PRIMITIVES, Genotype
class MixedOp(nn.Module):
def __init__(self, C, stride):
super(MixedOp, self).__init__()
self._ops = nn.ModuleList()
for primitive in PRIMITIVES:
op = OPS[primitive](C, stride, False)
self._ops.append(op)
def forward(self, x, weights):
return sum(w * op(x) for w, op in zip(weights, self._ops))
class Cell(nn.Module):
def __init__(self, steps, multiplier, C_prev_prev, C_prev, C, reduction, reduction_prev):
super(Cell, self).__init__()
self.reduction = reduction
if reduction_prev:
self.preprocess0 = FactorizedReduce(C_prev_prev, C, affine=False)
else:
self.preprocess0 = ReLUConvBN(C_prev_prev, C, 1, 1, 0, affine=False)
self.preprocess1 = ReLUConvBN(C_prev, C, 1, 1, 0, affine=False)
self._steps = steps
self._multiplier = multiplier
self._ops = nn.ModuleList()
for i in range(self._steps):
for j in range(2+i):
stride = 2 if reduction and j < 2 else 1
op = MixedOp(C, stride)
self._ops.append(op)
def forward(self, s0, s1, weights):
s0 = self.preprocess0(s0)
s1 = self.preprocess1(s1)
states = [s0, s1]
offset = 0
for i in range(self._steps):
clist = []
for j, h in enumerate(states):
x = self._ops[offset+j](h, weights[offset+j])
clist.append( x )
s = sum(clist)
offset += len(states)
states.append(s)
return torch.cat(states[-self._multiplier:], dim=1)
class NetworkF1(nn.Module):
def __init__(self, C, num_classes, layers, steps=4, multiplier=4, stem_multiplier=3):
super(NetworkF1, self).__init__()
self._C = C
self._num_classes = num_classes
self._layers = layers
self._steps = steps
self._multiplier = multiplier
C_curr = stem_multiplier*C
self.stem = nn.Sequential(
nn.Conv2d(3, C_curr, 3, padding=1, bias=False),
nn.BatchNorm2d(C_curr)
)
C_prev_prev, C_prev, C_curr = C_curr, C_curr, C
reduction_prev, cells = False, []
for i in range(layers):
if i in [layers//3, 2*layers//3]:
C_curr *= 2
reduction = True
else:
reduction = False
if reduction:
cell = Transition(C_prev_prev, C_prev, C_curr, reduction_prev, multiplier)
else:
cell = Cell(steps, multiplier, C_prev_prev, C_prev, C_curr, reduction, reduction_prev)
reduction_prev = reduction
cells.append( cell )
C_prev_prev, C_prev = C_prev, multiplier*C_curr
self.cells = nn.ModuleList(cells)
self.global_pooling = nn.AdaptiveAvgPool2d(1)
self.classifier = nn.Linear(C_prev, num_classes)
# initialize architecture parameters
k = sum(1 for i in range(self._steps) for n in range(2+i))
num_ops = len(PRIMITIVES)
self.alphas_normal = Parameter(torch.Tensor(k, num_ops))
#self.alphas_reduce = Parameter(torch.Tensor(k, num_ops))
nn.init.normal_(self.alphas_normal, 0, 0.001)
#nn.init.normal_(self.alphas_reduce, 0, 0.001)
def set_tau(self, tau):
return -1
def get_tau(self):
return -1
def arch_parameters(self):
return [self.alphas_normal]
def base_parameters(self):
lists = list(self.stem.parameters()) + list(self.cells.parameters())
lists += list(self.global_pooling.parameters())
lists += list(self.classifier.parameters())
return lists
def forward(self, inputs):
batch, C, H, W = inputs.size()
s0 = s1 = self.stem(inputs)
for i, cell in enumerate(self.cells):
if cell.reduction:
s0, s1 = s1, cell(s0, s1)
else:
weights = F.softmax(self.alphas_normal, dim=-1)
s0, s1 = s1, cell(s0, s1, weights)
#print('{:} : s0 : {:}, s1 : {:}'.format(i, s0.size(), s1.size()))
out = self.global_pooling(s1)
out = out.view(batch, -1)
logits = self.classifier(out)
return logits
def genotype(self):
def _parse(weights):
gene, n, start = [], 2, 0
for i in range(self._steps):
end = start + n
W = weights[start:end].copy()
edges = sorted(range(i + 2), key=lambda x: -max(W[x][k] for k in range(len(W[x])) if k != PRIMITIVES.index('none')))[:2]
for j in edges:
k_best = None
for k in range(len(W[j])):
if k != PRIMITIVES.index('none'):
if k_best is None or W[j][k] > W[j][k_best]:
k_best = k
gene.append((PRIMITIVES[k_best], j, float(W[j][k_best])))
start = end
n += 1
return gene
with torch.no_grad():
gene_normal = _parse(F.softmax(self.alphas_normal, dim=-1).cpu().numpy())
#gene_reduce = _parse(F.softmax(self.alphas_normal, dim=-1).cpu().numpy())
concat = range(2+self._steps-self._multiplier, self._steps+2)
genotype = Genotype(
normal=gene_normal, normal_concat=concat,
reduce=None , reduce_concat=concat
)
return genotype

View File

@@ -0,0 +1,183 @@
# share parameters
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn.parameter import Parameter
from .operations import OPS, FactorizedReduce, ReLUConvBN
from .construct_utils import Transition
from .genotypes import PRIMITIVES, Genotype
class MixedOp(nn.Module):
def __init__(self, C, stride):
super(MixedOp, self).__init__()
self._ops = nn.ModuleList()
for primitive in PRIMITIVES:
op = OPS[primitive](C, stride, False)
self._ops.append(op)
def forward(self, x, weights, cpu_weights):
use_sum = sum([abs(_) > 1e-10 for _ in cpu_weights])
if use_sum > 3:
return sum(w * op(x) for w, op in zip(weights, self._ops))
else:
clist = []
for j, cpu_weight in enumerate(cpu_weights):
if abs(cpu_weight) > 1e-10:
clist.append( weights[j] * self._ops[j](x) )
assert len(clist) > 0, 'invalid length : {:}'.format(cpu_weights)
return sum(clist)
class Cell(nn.Module):
def __init__(self, steps, multiplier, C_prev_prev, C_prev, C, reduction, reduction_prev):
super(Cell, self).__init__()
self.reduction = reduction
if reduction_prev:
self.preprocess0 = FactorizedReduce(C_prev_prev, C, affine=False)
else:
self.preprocess0 = ReLUConvBN(C_prev_prev, C, 1, 1, 0, affine=False)
self.preprocess1 = ReLUConvBN(C_prev, C, 1, 1, 0, affine=False)
self._steps = steps
self._multiplier = multiplier
self._ops = nn.ModuleList()
for i in range(self._steps):
for j in range(2+i):
stride = 2 if reduction and j < 2 else 1
op = MixedOp(C, stride)
self._ops.append(op)
def forward(self, s0, s1, weights):
s0 = self.preprocess0(s0)
s1 = self.preprocess1(s1)
cpu_weights = weights.tolist()
states = [s0, s1]
offset = 0
for i in range(self._steps):
clist = []
for j, h in enumerate(states):
x = self._ops[offset+j](h, weights[offset+j], cpu_weights[offset+j])
clist.append( x )
s = sum(clist)
offset += len(states)
states.append(s)
return torch.cat(states[-self._multiplier:], dim=1)
class NetworkFACC1(nn.Module):
def __init__(self, C, num_classes, layers, steps=4, multiplier=4, stem_multiplier=3):
super(NetworkFACC1, self).__init__()
self._C = C
self._num_classes = num_classes
self._layers = layers
self._steps = steps
self._multiplier = multiplier
self.tau = 5
self.use_gumbel = True
C_curr = stem_multiplier*C
self.stem = nn.Sequential(
nn.Conv2d(3, C_curr, 3, padding=1, bias=False),
nn.BatchNorm2d(C_curr)
)
C_prev_prev, C_prev, C_curr = C_curr, C_curr, C
reduction_prev, cells = False, []
for i in range(layers):
if i in [layers//3, 2*layers//3]:
C_curr *= 2
reduction = True
else:
reduction = False
if reduction:
cell = Transition(C_prev_prev, C_prev, C_curr, reduction_prev, multiplier)
else:
cell = Cell(steps, multiplier, C_prev_prev, C_prev, C_curr, reduction, reduction_prev)
reduction_prev = reduction
cells.append( cell )
C_prev_prev, C_prev = C_prev, multiplier*C_curr
self.cells = nn.ModuleList(cells)
self.global_pooling = nn.AdaptiveAvgPool2d(1)
self.classifier = nn.Linear(C_prev, num_classes)
# initialize architecture parameters
k = sum(1 for i in range(self._steps) for n in range(2+i))
num_ops = len(PRIMITIVES)
self.alphas_normal = Parameter(torch.Tensor(k, num_ops))
#self.alphas_reduce = Parameter(torch.Tensor(k, num_ops))
nn.init.normal_(self.alphas_normal, 0, 0.001)
#nn.init.normal_(self.alphas_reduce, 0, 0.001)
def set_gumbel(self, use_gumbel):
self.use_gumbel = use_gumbel
def set_tau(self, tau):
self.tau = tau
def get_tau(self):
return self.tau
def arch_parameters(self):
return [self.alphas_normal]
def base_parameters(self):
lists = list(self.stem.parameters()) + list(self.cells.parameters())
lists += list(self.global_pooling.parameters())
lists += list(self.classifier.parameters())
return lists
def forward(self, inputs):
batch, C, H, W = inputs.size()
s0 = s1 = self.stem(inputs)
for i, cell in enumerate(self.cells):
if cell.reduction:
s0, s1 = s1, cell(s0, s1)
else:
if self.use_gumbel : weights = F.gumbel_softmax(self.alphas_normal, self.tau, True)
else : weights = F.softmax(self.alphas_normal, dim=-1)
s0, s1 = s1, cell(s0, s1, weights)
#print('{:} : s0 : {:}, s1 : {:}'.format(i, s0.size(), s1.size()))
out = self.global_pooling(s1)
out = out.view(batch, -1)
logits = self.classifier(out)
return logits
def genotype(self):
def _parse(weights):
gene, n, start = [], 2, 0
for i in range(self._steps):
end = start + n
W = weights[start:end].copy()
edges = sorted(range(i + 2), key=lambda x: -max(W[x][k] for k in range(len(W[x])) if k != PRIMITIVES.index('none')))[:2]
for j in edges:
k_best = None
for k in range(len(W[j])):
if k != PRIMITIVES.index('none'):
if k_best is None or W[j][k] > W[j][k_best]:
k_best = k
gene.append((PRIMITIVES[k_best], j, float(W[j][k_best])))
start = end
n += 1
return gene
with torch.no_grad():
gene_normal = _parse(F.softmax(self.alphas_normal, dim=-1).cpu().numpy())
#gene_reduce = _parse(F.softmax(self.alphas_normal, dim=-1).cpu().numpy())
concat = range(2+self._steps-self._multiplier, self._steps+2)
genotype = Genotype(
normal=gene_normal, normal_concat=concat,
reduce=None , reduce_concat=concat
)
return genotype

161
lib/nas/model_search_v1.py Normal file
View File

@@ -0,0 +1,161 @@
# share parameters
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn.parameter import Parameter
from .operations import OPS, FactorizedReduce, ReLUConvBN
from .genotypes import PRIMITIVES, Genotype
class MixedOp(nn.Module):
def __init__(self, C, stride):
super(MixedOp, self).__init__()
self._ops = nn.ModuleList()
for primitive in PRIMITIVES:
op = OPS[primitive](C, stride, False)
self._ops.append(op)
def forward(self, x, weights):
return sum(w * op(x) for w, op in zip(weights, self._ops))
class Cell(nn.Module):
def __init__(self, steps, multiplier, C_prev_prev, C_prev, C, reduction, reduction_prev):
super(Cell, self).__init__()
self.reduction = reduction
if reduction_prev:
self.preprocess0 = FactorizedReduce(C_prev_prev, C, affine=False)
else:
self.preprocess0 = ReLUConvBN(C_prev_prev, C, 1, 1, 0, affine=False)
self.preprocess1 = ReLUConvBN(C_prev, C, 1, 1, 0, affine=False)
self._steps = steps
self._multiplier = multiplier
self._ops = nn.ModuleList()
for i in range(self._steps):
for j in range(2+i):
stride = 2 if reduction and j < 2 else 1
op = MixedOp(C, stride)
self._ops.append(op)
def forward(self, s0, s1, weights):
s0 = self.preprocess0(s0)
s1 = self.preprocess1(s1)
states = [s0, s1]
offset = 0
for i in range(self._steps):
clist = []
for j, h in enumerate(states):
x = self._ops[offset+j](h, weights[offset+j])
clist.append( x )
s = sum(clist)
offset += len(states)
states.append(s)
return torch.cat(states[-self._multiplier:], dim=1)
class NetworkV1(nn.Module):
def __init__(self, C, num_classes, layers, steps=4, multiplier=4, stem_multiplier=3):
super(NetworkV1, self).__init__()
self._C = C
self._num_classes = num_classes
self._layers = layers
self._steps = steps
self._multiplier = multiplier
C_curr = stem_multiplier*C
self.stem = nn.Sequential(
nn.Conv2d(3, C_curr, 3, padding=1, bias=False),
nn.BatchNorm2d(C_curr)
)
C_prev_prev, C_prev, C_curr = C_curr, C_curr, C
reduction_prev, cells = False, []
for i in range(layers):
if i in [layers//3, 2*layers//3]:
C_curr *= 2
reduction = True
else:
reduction = False
cell = Cell(steps, multiplier, C_prev_prev, C_prev, C_curr, reduction, reduction_prev)
reduction_prev = reduction
cells.append( cell )
C_prev_prev, C_prev = C_prev, multiplier*C_curr
self.cells = nn.ModuleList(cells)
self.global_pooling = nn.AdaptiveAvgPool2d(1)
self.classifier = nn.Linear(C_prev, num_classes)
# initialize architecture parameters
k = sum(1 for i in range(self._steps) for n in range(2+i))
num_ops = len(PRIMITIVES)
self.alphas_normal = Parameter(torch.Tensor(k, num_ops))
#self.alphas_reduce = Parameter(torch.Tensor(k, num_ops))
nn.init.normal_(self.alphas_normal, 0, 0.001)
#nn.init.normal_(self.alphas_reduce, 0, 0.001)
def set_tau(self, tau):
return -1
def get_tau(self):
return -1
def arch_parameters(self):
return [self.alphas_normal]
def base_parameters(self):
lists = list(self.stem.parameters()) + list(self.cells.parameters())
lists += list(self.global_pooling.parameters())
lists += list(self.classifier.parameters())
return lists
def forward(self, inputs):
batch, C, H, W = inputs.size()
s0 = s1 = self.stem(inputs)
for i, cell in enumerate(self.cells):
if cell.reduction:
weights = F.softmax(self.alphas_normal, dim=-1)
else:
weights = F.softmax(self.alphas_normal, dim=-1)
s0, s1 = s1, cell(s0, s1, weights)
out = self.global_pooling(s1)
out = out.view(batch, -1)
logits = self.classifier(out)
return logits
def genotype(self):
def _parse(weights):
gene, n, start = [], 2, 0
for i in range(self._steps):
end = start + n
W = weights[start:end].copy()
edges = sorted(range(i + 2), key=lambda x: -max(W[x][k] for k in range(len(W[x])) if k != PRIMITIVES.index('none')))[:2]
for j in edges:
k_best = None
for k in range(len(W[j])):
if k != PRIMITIVES.index('none'):
if k_best is None or W[j][k] > W[j][k_best]:
k_best = k
gene.append((PRIMITIVES[k_best], j, float(W[j][k_best])))
start = end
n += 1
return gene
with torch.no_grad():
gene_normal = _parse(F.softmax(self.alphas_normal, dim=-1).cpu().numpy())
gene_reduce = _parse(F.softmax(self.alphas_normal, dim=-1).cpu().numpy())
concat = range(2+self._steps-self._multiplier, self._steps+2)
genotype = Genotype(
normal=gene_normal, normal_concat=concat,
reduce=gene_reduce, reduce_concat=concat
)
return genotype

171
lib/nas/model_search_v3.py Normal file
View File

@@ -0,0 +1,171 @@
# random selection
import torch
import random
import torch.nn as nn
import torch.nn.functional as F
from torch.nn.parameter import Parameter
from .operations import OPS, FactorizedReduce, ReLUConvBN
from .genotypes import PRIMITIVES, Genotype
from .construct_utils import random_select, all_select
class MixedOp(nn.Module):
def __init__(self, C, stride):
super(MixedOp, self).__init__()
self._ops = nn.ModuleList()
for primitive in PRIMITIVES:
op = OPS[primitive](C, stride, False)
self._ops.append(op)
def forward(self, x, weights, cpu_weights):
return sum(w * op(x) for w, op in zip(weights, self._ops))
class Cell(nn.Module):
def __init__(self, steps, multiplier, C_prev_prev, C_prev, C, reduction, reduction_prev):
super(Cell, self).__init__()
self.reduction = reduction
if reduction_prev:
self.preprocess0 = FactorizedReduce(C_prev_prev, C, affine=False)
else:
self.preprocess0 = ReLUConvBN(C_prev_prev, C, 1, 1, 0, affine=False)
self.preprocess1 = ReLUConvBN(C_prev, C, 1, 1, 0, affine=False)
self._steps = steps
self._multiplier = multiplier
self._ops = nn.ModuleList()
for i in range(self._steps):
for j in range(2+i):
stride = 2 if reduction and j < 2 else 1
op = MixedOp(C, stride)
self._ops.append(op)
def forward(self, s0, s1, weights):
s0 = self.preprocess0(s0)
s1 = self.preprocess1(s1)
cpu_weights = weights.tolist()
states = [s0, s1]
offset = 0
for i in range(self._steps):
clist = []
if i == 0:
indicator = all_select( len(states) )
else:
indicator = random_select( len(states), 0.5 )
for j, h in enumerate(states):
if indicator[j] == 0: continue
x = self._ops[offset+j](h, weights[offset+j], cpu_weights[offset+j])
clist.append( x )
s = sum(clist) / sum(indicator)
offset += len(states)
states.append(s)
return torch.cat(states[-self._multiplier:], dim=1)
class NetworkV3(nn.Module):
def __init__(self, C, num_classes, layers, steps=4, multiplier=4, stem_multiplier=3):
super(NetworkV3, self).__init__()
self._C = C
self._num_classes = num_classes
self._layers = layers
self._steps = steps
self._multiplier = multiplier
C_curr = stem_multiplier*C
self.stem = nn.Sequential(
nn.Conv2d(3, C_curr, 3, padding=1, bias=False),
nn.BatchNorm2d(C_curr)
)
C_prev_prev, C_prev, C_curr = C_curr, C_curr, C
reduction_prev, cells = False, []
for i in range(layers):
if i in [layers//3, 2*layers//3]:
C_curr *= 2
reduction = True
else:
reduction = False
cell = Cell(steps, multiplier, C_prev_prev, C_prev, C_curr, reduction, reduction_prev)
reduction_prev = reduction
cells.append( cell )
C_prev_prev, C_prev = C_prev, multiplier*C_curr
self.cells = nn.ModuleList(cells)
self.global_pooling = nn.AdaptiveAvgPool2d(1)
self.classifier = nn.Linear(C_prev, num_classes)
self.tau = 5
# initialize architecture parameters
k = sum(1 for i in range(self._steps) for n in range(2+i))
num_ops = len(PRIMITIVES)
self.alphas_normal = Parameter(torch.Tensor(k, num_ops))
self.alphas_reduce = Parameter(torch.Tensor(k, num_ops))
nn.init.normal_(self.alphas_normal, 0, 0.001)
nn.init.normal_(self.alphas_reduce, 0, 0.001)
def set_tau(self, tau):
self.tau = tau
def get_tau(self):
return self.tau
def arch_parameters(self):
return [self.alphas_normal, self.alphas_reduce]
def base_parameters(self):
lists = list(self.stem.parameters()) + list(self.cells.parameters())
lists += list(self.global_pooling.parameters())
lists += list(self.classifier.parameters())
return lists
def forward(self, inputs):
batch, C, H, W = inputs.size()
s0 = s1 = self.stem(inputs)
for i, cell in enumerate(self.cells):
if cell.reduction:
weights = F.softmax(self.alphas_reduce, dim=-1)
else:
weights = F.softmax(self.alphas_reduce, dim=-1)
s0, s1 = s1, cell(s0, s1, weights)
out = self.global_pooling(s1)
out = out.view(batch, -1)
logits = self.classifier(out)
return logits
def genotype(self):
def _parse(weights):
gene, n, start = [], 2, 0
for i in range(self._steps):
end = start + n
W = weights[start:end].copy()
edges = sorted(range(i + 2), key=lambda x: -max(W[x][k] for k in range(len(W[x])) if k != PRIMITIVES.index('none')))[:2]
for j in edges:
k_best = None
for k in range(len(W[j])):
if k != PRIMITIVES.index('none'):
if k_best is None or W[j][k] > W[j][k_best]:
k_best = k
gene.append((PRIMITIVES[k_best], j, float(W[j][k_best])))
start = end
n += 1
return gene
with torch.no_grad():
gene_normal = _parse(F.softmax(self.alphas_normal, dim=-1).cpu().numpy())
gene_reduce = _parse(F.softmax(self.alphas_reduce, dim=-1).cpu().numpy())
concat = range(2+self._steps-self._multiplier, self._steps+2)
genotype = Genotype(
normal=gene_normal, normal_concat=concat,
reduce=gene_reduce, reduce_concat=concat
)
return genotype

176
lib/nas/model_search_v4.py Normal file
View File

@@ -0,0 +1,176 @@
# random selection
import torch
import random
import torch.nn as nn
import torch.nn.functional as F
from torch.nn.parameter import Parameter
from .operations import OPS, FactorizedReduce, ReLUConvBN
from .genotypes import PRIMITIVES, Genotype
from .construct_utils import random_select, all_select
class MixedOp(nn.Module):
def __init__(self, C, stride):
super(MixedOp, self).__init__()
self._ops = nn.ModuleList()
for primitive in PRIMITIVES:
op = OPS[primitive](C, stride, False)
self._ops.append(op)
def forward(self, x, weights, cpu_weights):
indicators = random_select( len(cpu_weights), 0.5 )
clist, ws = [], []
for w, indicator, op in zip(weights, indicators, self._ops):
if indicator:
clist.append( w * op(x) )
ws.append( w )
return sum(clist) / sum(ws)
class Cell(nn.Module):
def __init__(self, steps, multiplier, C_prev_prev, C_prev, C, reduction, reduction_prev):
super(Cell, self).__init__()
self.reduction = reduction
if reduction_prev:
self.preprocess0 = FactorizedReduce(C_prev_prev, C, affine=False)
else:
self.preprocess0 = ReLUConvBN(C_prev_prev, C, 1, 1, 0, affine=False)
self.preprocess1 = ReLUConvBN(C_prev, C, 1, 1, 0, affine=False)
self._steps = steps
self._multiplier = multiplier
self._ops = nn.ModuleList()
for i in range(self._steps):
for j in range(2+i):
stride = 2 if reduction and j < 2 else 1
op = MixedOp(C, stride)
self._ops.append(op)
def forward(self, s0, s1, weights):
s0 = self.preprocess0(s0)
s1 = self.preprocess1(s1)
cpu_weights = weights.tolist()
states = [s0, s1]
offset = 0
for i in range(self._steps):
clist = []
if i == 0:
indicator = all_select( len(states) )
else:
indicator = random_select( len(states), 0.5 )
for j, h in enumerate(states):
if indicator[j] == 0: continue
x = self._ops[offset+j](h, weights[offset+j], cpu_weights[offset+j])
clist.append( x )
s = sum(clist) / sum(indicator)
offset += len(states)
states.append(s)
return torch.cat(states[-self._multiplier:], dim=1)
class NetworkV4(nn.Module):
def __init__(self, C, num_classes, layers, steps=4, multiplier=4, stem_multiplier=3):
super(NetworkV4, self).__init__()
self._C = C
self._num_classes = num_classes
self._layers = layers
self._steps = steps
self._multiplier = multiplier
C_curr = stem_multiplier*C
self.stem = nn.Sequential(
nn.Conv2d(3, C_curr, 3, padding=1, bias=False),
nn.BatchNorm2d(C_curr)
)
C_prev_prev, C_prev, C_curr = C_curr, C_curr, C
reduction_prev, cells = False, []
for i in range(layers):
if i in [layers//3, 2*layers//3]:
C_curr *= 2
reduction = True
else:
reduction = False
cell = Cell(steps, multiplier, C_prev_prev, C_prev, C_curr, reduction, reduction_prev)
reduction_prev = reduction
cells.append( cell )
C_prev_prev, C_prev = C_prev, multiplier*C_curr
self.cells = nn.ModuleList(cells)
self.global_pooling = nn.AdaptiveAvgPool2d(1)
self.classifier = nn.Linear(C_prev, num_classes)
self.tau = 5
# initialize architecture parameters
k = sum(1 for i in range(self._steps) for n in range(2+i))
num_ops = len(PRIMITIVES)
self.alphas_normal = Parameter(torch.Tensor(k, num_ops))
self.alphas_reduce = Parameter(torch.Tensor(k, num_ops))
nn.init.normal_(self.alphas_normal, 0, 0.001)
nn.init.normal_(self.alphas_reduce, 0, 0.001)
def set_tau(self, tau):
self.tau = tau
def get_tau(self):
return self.tau
def arch_parameters(self):
return [self.alphas_normal, self.alphas_reduce]
def base_parameters(self):
lists = list(self.stem.parameters()) + list(self.cells.parameters())
lists += list(self.global_pooling.parameters())
lists += list(self.classifier.parameters())
return lists
def forward(self, inputs):
batch, C, H, W = inputs.size()
s0 = s1 = self.stem(inputs)
for i, cell in enumerate(self.cells):
if cell.reduction:
weights = F.softmax(self.alphas_reduce, dim=-1)
else:
weights = F.softmax(self.alphas_reduce, dim=-1)
s0, s1 = s1, cell(s0, s1, weights)
out = self.global_pooling(s1)
out = out.view(batch, -1)
logits = self.classifier(out)
return logits
def genotype(self):
def _parse(weights):
gene, n, start = [], 2, 0
for i in range(self._steps):
end = start + n
W = weights[start:end].copy()
edges = sorted(range(i + 2), key=lambda x: -max(W[x][k] for k in range(len(W[x])) if k != PRIMITIVES.index('none')))[:2]
for j in edges:
k_best = None
for k in range(len(W[j])):
if k != PRIMITIVES.index('none'):
if k_best is None or W[j][k] > W[j][k_best]:
k_best = k
gene.append((PRIMITIVES[k_best], j, float(W[j][k_best])))
start = end
n += 1
return gene
with torch.no_grad():
gene_normal = _parse(F.softmax(self.alphas_normal, dim=-1).cpu().numpy())
gene_reduce = _parse(F.softmax(self.alphas_reduce, dim=-1).cpu().numpy())
concat = range(2+self._steps-self._multiplier, self._steps+2)
genotype = Genotype(
normal=gene_normal, normal_concat=concat,
reduce=gene_reduce, reduce_concat=concat
)
return genotype

174
lib/nas/model_search_v5.py Normal file
View File

@@ -0,0 +1,174 @@
# gumbel softmax
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn.parameter import Parameter
from .operations import OPS, FactorizedReduce, ReLUConvBN
from .genotypes import PRIMITIVES, Genotype
from .construct_utils import random_select, all_select
class MixedOp(nn.Module):
def __init__(self, C, stride):
super(MixedOp, self).__init__()
self._ops = nn.ModuleList()
for primitive in PRIMITIVES:
op = OPS[primitive](C, stride, False)
self._ops.append(op)
def forward(self, x, weights, cpu_weights):
clist = []
for j, cpu_weight in enumerate(cpu_weights):
if abs(cpu_weight) > 1e-10:
clist.append( weights[j] * self._ops[j](x) )
assert len(clist) > 0, 'invalid length : {:}'.format(cpu_weights)
if len(clist) == 1: return clist[0]
else : return sum(clist)
class Cell(nn.Module):
def __init__(self, steps, multiplier, C_prev_prev, C_prev, C, reduction, reduction_prev):
super(Cell, self).__init__()
self.reduction = reduction
if reduction_prev:
self.preprocess0 = FactorizedReduce(C_prev_prev, C, affine=False)
else:
self.preprocess0 = ReLUConvBN(C_prev_prev, C, 1, 1, 0, affine=False)
self.preprocess1 = ReLUConvBN(C_prev, C, 1, 1, 0, affine=False)
self._steps = steps
self._multiplier = multiplier
self._ops = nn.ModuleList()
for i in range(self._steps):
for j in range(2+i):
stride = 2 if reduction and j < 2 else 1
op = MixedOp(C, stride)
self._ops.append(op)
def forward(self, s0, s1, weights):
s0 = self.preprocess0(s0)
s1 = self.preprocess1(s1)
cpu_weights = weights.tolist()
states = [s0, s1]
offset = 0
for i in range(self._steps):
clist = []
if i == 0: indicator = all_select( len(states) )
else : indicator = random_select( len(states), 0.6 )
for j, h in enumerate(states):
if indicator[j] == 0: continue
x = self._ops[offset+j](h, weights[offset+j], cpu_weights[offset+j])
clist.append( x )
s = sum(clist)
offset += len(states)
states.append(s)
return torch.cat(states[-self._multiplier:], dim=1)
class NetworkV5(nn.Module):
def __init__(self, C, num_classes, layers, steps=4, multiplier=4, stem_multiplier=3):
super(NetworkV5, self).__init__()
self._C = C
self._num_classes = num_classes
self._layers = layers
self._steps = steps
self._multiplier = multiplier
C_curr = stem_multiplier*C
self.stem = nn.Sequential(
nn.Conv2d(3, C_curr, 3, padding=1, bias=False),
nn.BatchNorm2d(C_curr)
)
C_prev_prev, C_prev, C_curr = C_curr, C_curr, C
reduction_prev, cells = False, []
for i in range(layers):
if i in [layers//3, 2*layers//3]:
C_curr *= 2
reduction = True
else:
reduction = False
cell = Cell(steps, multiplier, C_prev_prev, C_prev, C_curr, reduction, reduction_prev)
reduction_prev = reduction
cells.append( cell )
C_prev_prev, C_prev = C_prev, multiplier*C_curr
self.cells = nn.ModuleList(cells)
self.global_pooling = nn.AdaptiveAvgPool2d(1)
self.classifier = nn.Linear(C_prev, num_classes)
self.tau = 5
# initialize architecture parameters
k = sum(1 for i in range(self._steps) for n in range(2+i))
num_ops = len(PRIMITIVES)
self.alphas_normal = Parameter(torch.Tensor(k, num_ops))
self.alphas_reduce = Parameter(torch.Tensor(k, num_ops))
nn.init.normal_(self.alphas_normal, 0, 0.001)
nn.init.normal_(self.alphas_reduce, 0, 0.001)
def set_tau(self, tau):
self.tau = tau
def get_tau(self):
return self.tau
def arch_parameters(self):
return [self.alphas_normal, self.alphas_reduce]
def base_parameters(self):
lists = list(self.stem.parameters()) + list(self.cells.parameters())
lists += list(self.global_pooling.parameters())
lists += list(self.classifier.parameters())
return lists
def forward(self, inputs):
batch, C, H, W = inputs.size()
s0 = s1 = self.stem(inputs)
for i, cell in enumerate(self.cells):
if cell.reduction:
weights = F.gumbel_softmax(self.alphas_reduce, self.tau, True)
else:
weights = F.gumbel_softmax(self.alphas_normal, self.tau, True)
s0, s1 = s1, cell(s0, s1, weights)
out = self.global_pooling(s1)
out = out.view(batch, -1)
logits = self.classifier(out)
return logits
def genotype(self):
def _parse(weights):
gene, n, start = [], 2, 0
for i in range(self._steps):
end = start + n
W = weights[start:end].copy()
edges = sorted(range(i + 2), key=lambda x: -max(W[x][k] for k in range(len(W[x])) if k != PRIMITIVES.index('none')))[:2]
for j in edges:
k_best = None
for k in range(len(W[j])):
if k != PRIMITIVES.index('none'):
if k_best is None or W[j][k] > W[j][k_best]:
k_best = k
gene.append((PRIMITIVES[k_best], j, float(W[j][k_best])))
start = end
n += 1
return gene
with torch.no_grad():
gene_normal = _parse(F.softmax(self.alphas_normal, dim=-1).cpu().numpy())
gene_reduce = _parse(F.softmax(self.alphas_reduce, dim=-1).cpu().numpy())
concat = range(2+self._steps-self._multiplier, self._steps+2)
genotype = Genotype(
normal=gene_normal, normal_concat=concat,
reduce=gene_reduce, reduce_concat=concat
)
return genotype

122
lib/nas/operations.py Normal file
View File

@@ -0,0 +1,122 @@
import torch
import torch.nn as nn
OPS = {
'none' : lambda C, stride, affine: Zero(stride),
'avg_pool_3x3' : lambda C, stride, affine: nn.Sequential(
nn.AvgPool2d(3, stride=stride, padding=1, count_include_pad=False),
nn.BatchNorm2d(C, affine=False) ),
'max_pool_3x3' : lambda C, stride, affine: nn.Sequential(
nn.MaxPool2d(3, stride=stride, padding=1),
nn.BatchNorm2d(C, affine=False) ),
'skip_connect' : lambda C, stride, affine: Identity() if stride == 1 else FactorizedReduce(C, C, affine=affine),
'sep_conv_3x3' : lambda C, stride, affine: SepConv(C, C, 3, stride, 1, affine=affine),
'sep_conv_5x5' : lambda C, stride, affine: SepConv(C, C, 5, stride, 2, affine=affine),
'sep_conv_7x7' : lambda C, stride, affine: SepConv(C, C, 7, stride, 3, affine=affine),
'dil_conv_3x3' : lambda C, stride, affine: DilConv(C, C, 3, stride, 2, 2, affine=affine),
'dil_conv_5x5' : lambda C, stride, affine: DilConv(C, C, 5, stride, 4, 2, affine=affine),
'conv_7x1_1x7' : lambda C, stride, affine: Conv717(C, C, stride, affine),
}
class Conv717(nn.Module):
def __init__(self, C_in, C_out, stride, affine):
super(Conv717, self).__init__()
self.op = nn.Sequential(
nn.ReLU(inplace=False),
nn.Conv2d(C_in , C_out, (1,7), stride=(1, stride), padding=(0, 3), bias=False),
nn.Conv2d(C_out, C_out, (7,1), stride=(stride, 1), padding=(3, 0), bias=False),
nn.BatchNorm2d(C_out, affine=affine)
)
def forward(self, x):
return self.op(x)
class ReLUConvBN(nn.Module):
def __init__(self, C_in, C_out, kernel_size, stride, padding, affine=True):
super(ReLUConvBN, self).__init__()
self.op = nn.Sequential(
nn.ReLU(inplace=False),
nn.Conv2d(C_in, C_out, kernel_size, stride=stride, padding=padding, bias=False),
nn.BatchNorm2d(C_out, affine=affine)
)
def forward(self, x):
return self.op(x)
class DilConv(nn.Module):
def __init__(self, C_in, C_out, kernel_size, stride, padding, dilation, affine=True):
super(DilConv, self).__init__()
self.op = nn.Sequential(
nn.ReLU(inplace=False),
nn.Conv2d(C_in, C_in, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation, groups=C_in, bias=False),
nn.Conv2d(C_in, C_out, kernel_size=1, padding=0, bias=False),
nn.BatchNorm2d(C_out, affine=affine),
)
def forward(self, x):
return self.op(x)
class SepConv(nn.Module):
def __init__(self, C_in, C_out, kernel_size, stride, padding, affine=True):
super(SepConv, self).__init__()
self.op = nn.Sequential(
nn.ReLU(inplace=False),
nn.Conv2d(C_in, C_in, kernel_size=kernel_size, stride=stride, padding=padding, groups=C_in, bias=False),
nn.Conv2d(C_in, C_in, kernel_size=1, padding=0, bias=False),
nn.BatchNorm2d(C_in, affine=affine),
nn.ReLU(inplace=False),
nn.Conv2d(C_in, C_in, kernel_size=kernel_size, stride=1, padding=padding, groups=C_in, bias=False),
nn.Conv2d(C_in, C_out, kernel_size=1, padding=0, bias=False),
nn.BatchNorm2d(C_out, affine=affine),
)
def forward(self, x):
return self.op(x)
class Identity(nn.Module):
def __init__(self):
super(Identity, self).__init__()
def forward(self, x):
return x
class Zero(nn.Module):
def __init__(self, stride):
super(Zero, self).__init__()
self.stride = stride
def forward(self, x):
if self.stride == 1:
return x.mul(0.)
return x[:,:,::self.stride,::self.stride].mul(0.)
class FactorizedReduce(nn.Module):
def __init__(self, C_in, C_out, affine=True):
super(FactorizedReduce, self).__init__()
assert C_out % 2 == 0
self.relu = nn.ReLU(inplace=False)
self.conv_1 = nn.Conv2d(C_in, C_out // 2, 1, stride=2, padding=0, bias=False)
self.conv_2 = nn.Conv2d(C_in, C_out // 2, 1, stride=2, padding=0, bias=False)
self.bn = nn.BatchNorm2d(C_out, affine=affine)
self.pad = nn.ConstantPad2d((0, 1, 0, 1), 0)
def forward(self, x):
x = self.relu(x)
y = self.pad(x)
out = torch.cat([self.conv_1(x), self.conv_2(y[:,:,1:,1:])], dim=1)
out = self.bn(out)
return out