init
This commit is contained in:
122
lib/datasets/LanguageDataset.py
Normal file
122
lib/datasets/LanguageDataset.py
Normal file
@@ -0,0 +1,122 @@
|
||||
import os
|
||||
import torch
|
||||
|
||||
from collections import Counter
|
||||
|
||||
|
||||
class Dictionary(object):
|
||||
def __init__(self):
|
||||
self.word2idx = {}
|
||||
self.idx2word = []
|
||||
self.counter = Counter()
|
||||
self.total = 0
|
||||
|
||||
def add_word(self, word):
|
||||
if word not in self.word2idx:
|
||||
self.idx2word.append(word)
|
||||
self.word2idx[word] = len(self.idx2word) - 1
|
||||
token_id = self.word2idx[word]
|
||||
self.counter[token_id] += 1
|
||||
self.total += 1
|
||||
return self.word2idx[word]
|
||||
|
||||
def __len__(self):
|
||||
return len(self.idx2word)
|
||||
|
||||
|
||||
class Corpus(object):
|
||||
def __init__(self, path):
|
||||
self.dictionary = Dictionary()
|
||||
self.train = self.tokenize(os.path.join(path, 'train.txt'))
|
||||
self.valid = self.tokenize(os.path.join(path, 'valid.txt'))
|
||||
self.test = self.tokenize(os.path.join(path, 'test.txt'))
|
||||
|
||||
def tokenize(self, path):
|
||||
"""Tokenizes a text file."""
|
||||
assert os.path.exists(path)
|
||||
# Add words to the dictionary
|
||||
with open(path, 'r', encoding='utf-8') as f:
|
||||
tokens = 0
|
||||
for line in f:
|
||||
words = line.split() + ['<eos>']
|
||||
tokens += len(words)
|
||||
for word in words:
|
||||
self.dictionary.add_word(word)
|
||||
|
||||
# Tokenize file content
|
||||
with open(path, 'r', encoding='utf-8') as f:
|
||||
ids = torch.LongTensor(tokens)
|
||||
token = 0
|
||||
for line in f:
|
||||
words = line.split() + ['<eos>']
|
||||
for word in words:
|
||||
ids[token] = self.dictionary.word2idx[word]
|
||||
token += 1
|
||||
|
||||
return ids
|
||||
|
||||
class SentCorpus(object):
|
||||
def __init__(self, path):
|
||||
self.dictionary = Dictionary()
|
||||
self.train = self.tokenize(os.path.join(path, 'train.txt'))
|
||||
self.valid = self.tokenize(os.path.join(path, 'valid.txt'))
|
||||
self.test = self.tokenize(os.path.join(path, 'test.txt'))
|
||||
|
||||
def tokenize(self, path):
|
||||
"""Tokenizes a text file."""
|
||||
assert os.path.exists(path)
|
||||
# Add words to the dictionary
|
||||
with open(path, 'r', encoding='utf-8') as f:
|
||||
tokens = 0
|
||||
for line in f:
|
||||
words = line.split() + ['<eos>']
|
||||
tokens += len(words)
|
||||
for word in words:
|
||||
self.dictionary.add_word(word)
|
||||
|
||||
# Tokenize file content
|
||||
sents = []
|
||||
with open(path, 'r', encoding='utf-8') as f:
|
||||
for line in f:
|
||||
if not line:
|
||||
continue
|
||||
words = line.split() + ['<eos>']
|
||||
sent = torch.LongTensor(len(words))
|
||||
for i, word in enumerate(words):
|
||||
sent[i] = self.dictionary.word2idx[word]
|
||||
sents.append(sent)
|
||||
|
||||
return sents
|
||||
|
||||
class BatchSentLoader(object):
|
||||
def __init__(self, sents, batch_size, pad_id=0, cuda=False, volatile=False):
|
||||
self.sents = sents
|
||||
self.batch_size = batch_size
|
||||
self.sort_sents = sorted(sents, key=lambda x: x.size(0))
|
||||
self.cuda = cuda
|
||||
self.volatile = volatile
|
||||
self.pad_id = pad_id
|
||||
|
||||
def __next__(self):
|
||||
if self.idx >= len(self.sort_sents):
|
||||
raise StopIteration
|
||||
|
||||
batch_size = min(self.batch_size, len(self.sort_sents)-self.idx)
|
||||
batch = self.sort_sents[self.idx:self.idx+batch_size]
|
||||
max_len = max([s.size(0) for s in batch])
|
||||
tensor = torch.LongTensor(max_len, batch_size).fill_(self.pad_id)
|
||||
for i in range(len(batch)):
|
||||
s = batch[i]
|
||||
tensor[:s.size(0),i].copy_(s)
|
||||
if self.cuda:
|
||||
tensor = tensor.cuda()
|
||||
|
||||
self.idx += batch_size
|
||||
|
||||
return tensor
|
||||
|
||||
next = __next__
|
||||
|
||||
def __iter__(self):
|
||||
self.idx = 0
|
||||
return self
|
Reference in New Issue
Block a user