Update ViT
This commit is contained in:
@@ -3,3 +3,5 @@
|
||||
#####################################################
|
||||
# The models in this folder is written with xlayers #
|
||||
#####################################################
|
||||
|
||||
from .transformers import get_transformer
|
||||
|
@@ -1,6 +1,8 @@
|
||||
#####################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.06 #
|
||||
#####################################################
|
||||
# Vision Transformer: arxiv.org/pdf/2010.11929.pdf #
|
||||
#####################################################
|
||||
import math
|
||||
from functools import partial
|
||||
from typing import Optional, Text, List
|
||||
@@ -10,186 +12,163 @@ import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
from xautodl import spaces
|
||||
from xautodl.xlayers import trunc_normal_
|
||||
from xautodl.xlayers import super_core
|
||||
from xautodl import xlayers
|
||||
from xautodl.xlayers import weight_init
|
||||
|
||||
|
||||
__all__ = ["DefaultSearchSpace", "DEFAULT_NET_CONFIG", "get_transformer"]
|
||||
def pair(t):
|
||||
return t if isinstance(t, tuple) else (t, t)
|
||||
|
||||
|
||||
def _get_mul_specs(candidates, num):
|
||||
results = []
|
||||
for i in range(num):
|
||||
results.append(spaces.Categorical(*candidates))
|
||||
return results
|
||||
def _init_weights(m):
|
||||
if isinstance(m, nn.Linear):
|
||||
weight_init.trunc_normal_(m.weight, std=0.02)
|
||||
if isinstance(m, nn.Linear) and m.bias is not None:
|
||||
nn.init.constant_(m.bias, 0)
|
||||
elif isinstance(m, xlayers.SuperLinear):
|
||||
weight_init.trunc_normal_(m._super_weight, std=0.02)
|
||||
if m._super_bias is not None:
|
||||
nn.init.constant_(m._super_bias, 0)
|
||||
elif isinstance(m, xlayers.SuperLayerNorm1D):
|
||||
nn.init.constant_(m.weight, 1.0)
|
||||
nn.init.constant_(m.bias, 0)
|
||||
|
||||
|
||||
def _get_list_mul(num, multipler):
|
||||
results = []
|
||||
for i in range(1, num + 1):
|
||||
results.append(i * multipler)
|
||||
return results
|
||||
name2config = {
|
||||
"vit-base": dict(
|
||||
type="vit",
|
||||
image_size=256,
|
||||
patch_size=16,
|
||||
num_classes=1000,
|
||||
dim=768,
|
||||
depth=12,
|
||||
heads=12,
|
||||
dropout=0.1,
|
||||
emb_dropout=0.1,
|
||||
),
|
||||
"vit-large": dict(
|
||||
type="vit",
|
||||
image_size=256,
|
||||
patch_size=16,
|
||||
num_classes=1000,
|
||||
dim=1024,
|
||||
depth=24,
|
||||
heads=16,
|
||||
dropout=0.1,
|
||||
emb_dropout=0.1,
|
||||
),
|
||||
"vit-huge": dict(
|
||||
type="vit",
|
||||
image_size=256,
|
||||
patch_size=16,
|
||||
num_classes=1000,
|
||||
dim=1280,
|
||||
depth=32,
|
||||
heads=16,
|
||||
dropout=0.1,
|
||||
emb_dropout=0.1,
|
||||
),
|
||||
}
|
||||
|
||||
|
||||
def _assert_types(x, expected_types):
|
||||
if not isinstance(x, expected_types):
|
||||
raise TypeError(
|
||||
"The type [{:}] is expected to be {:}.".format(type(x), expected_types)
|
||||
)
|
||||
|
||||
|
||||
DEFAULT_NET_CONFIG = None
|
||||
_default_max_depth = 5
|
||||
DefaultSearchSpace = dict(
|
||||
d_feat=6,
|
||||
embed_dim=spaces.Categorical(*_get_list_mul(8, 16)),
|
||||
num_heads=_get_mul_specs((1, 2, 4, 8), _default_max_depth),
|
||||
mlp_hidden_multipliers=_get_mul_specs((0.5, 1, 2, 4, 8), _default_max_depth),
|
||||
qkv_bias=True,
|
||||
pos_drop=0.0,
|
||||
other_drop=0.0,
|
||||
)
|
||||
|
||||
|
||||
class SuperTransformer(super_core.SuperModule):
|
||||
class SuperViT(xlayers.SuperModule):
|
||||
"""The super model for transformer."""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
d_feat: int = 6,
|
||||
embed_dim: List[super_core.IntSpaceType] = DefaultSearchSpace["embed_dim"],
|
||||
num_heads: List[super_core.IntSpaceType] = DefaultSearchSpace["num_heads"],
|
||||
mlp_hidden_multipliers: List[super_core.IntSpaceType] = DefaultSearchSpace[
|
||||
"mlp_hidden_multipliers"
|
||||
],
|
||||
qkv_bias: bool = DefaultSearchSpace["qkv_bias"],
|
||||
pos_drop: float = DefaultSearchSpace["pos_drop"],
|
||||
other_drop: float = DefaultSearchSpace["other_drop"],
|
||||
max_seq_len: int = 65,
|
||||
image_size,
|
||||
patch_size,
|
||||
num_classes,
|
||||
dim,
|
||||
depth,
|
||||
heads,
|
||||
mlp_multiplier=4,
|
||||
channels=3,
|
||||
dropout=0.0,
|
||||
emb_dropout=0.0,
|
||||
):
|
||||
super(SuperTransformer, self).__init__()
|
||||
self._embed_dim = embed_dim
|
||||
self._num_heads = num_heads
|
||||
self._mlp_hidden_multipliers = mlp_hidden_multipliers
|
||||
super(SuperViT, self).__init__()
|
||||
image_height, image_width = pair(image_size)
|
||||
patch_height, patch_width = pair(patch_size)
|
||||
|
||||
# the stem part
|
||||
self.input_embed = super_core.SuperAlphaEBDv1(d_feat, embed_dim)
|
||||
self.cls_token = nn.Parameter(torch.zeros(1, 1, self.embed_dim))
|
||||
self.pos_embed = super_core.SuperPositionalEncoder(
|
||||
d_model=embed_dim, max_seq_len=max_seq_len, dropout=pos_drop
|
||||
if image_height % patch_height != 0 or image_width % patch_width != 0:
|
||||
raise ValueError("Image dimensions must be divisible by the patch size.")
|
||||
|
||||
num_patches = (image_height // patch_height) * (image_width // patch_width)
|
||||
patch_dim = channels * patch_height * patch_width
|
||||
self.to_patch_embedding = xlayers.SuperSequential(
|
||||
xlayers.SuperReArrange(
|
||||
"b c (h p1) (w p2) -> b (h w) (p1 p2 c)",
|
||||
p1=patch_height,
|
||||
p2=patch_width,
|
||||
),
|
||||
xlayers.SuperLinear(patch_dim, dim),
|
||||
)
|
||||
# build the transformer encode layers -->> check params
|
||||
_assert_types(num_heads, (tuple, list))
|
||||
_assert_types(mlp_hidden_multipliers, (tuple, list))
|
||||
assert len(num_heads) == len(mlp_hidden_multipliers), "{:} vs {:}".format(
|
||||
len(num_heads), len(mlp_hidden_multipliers)
|
||||
)
|
||||
# build the transformer encode layers -->> backbone
|
||||
|
||||
self.pos_embedding = nn.Parameter(torch.randn(1, num_patches + 1, dim))
|
||||
self.cls_token = nn.Parameter(torch.randn(1, 1, dim))
|
||||
self.dropout = nn.Dropout(emb_dropout)
|
||||
|
||||
# build the transformer encode layers
|
||||
layers = []
|
||||
for num_head, mlp_hidden_multiplier in zip(num_heads, mlp_hidden_multipliers):
|
||||
layer = super_core.SuperTransformerEncoderLayer(
|
||||
embed_dim,
|
||||
num_head,
|
||||
qkv_bias,
|
||||
mlp_hidden_multiplier,
|
||||
other_drop,
|
||||
for ilayer in range(depth):
|
||||
layers.append(
|
||||
xlayers.SuperTransformerEncoderLayer(
|
||||
dim, heads, False, mlp_multiplier, dropout
|
||||
)
|
||||
)
|
||||
layers.append(layer)
|
||||
self.backbone = super_core.SuperSequential(*layers)
|
||||
|
||||
# the regression head
|
||||
self.head = super_core.SuperSequential(
|
||||
super_core.SuperLayerNorm1D(embed_dim), super_core.SuperLinear(embed_dim, 1)
|
||||
self.backbone = xlayers.SuperSequential(*layers)
|
||||
self.cls_head = xlayers.SuperSequential(
|
||||
xlayers.SuperLayerNorm1D(dim), xlayers.SuperLinear(dim, num_classes)
|
||||
)
|
||||
trunc_normal_(self.cls_token, std=0.02)
|
||||
self.apply(self._init_weights)
|
||||
|
||||
@property
|
||||
def embed_dim(self):
|
||||
return spaces.get_max(self._embed_dim)
|
||||
weight_init.trunc_normal_(self.cls_token, std=0.02)
|
||||
self.apply(_init_weights)
|
||||
|
||||
@property
|
||||
def abstract_search_space(self):
|
||||
root_node = spaces.VirtualNode(id(self))
|
||||
if not spaces.is_determined(self._embed_dim):
|
||||
root_node.append("_embed_dim", self._embed_dim.abstract(reuse_last=True))
|
||||
xdict = dict(
|
||||
input_embed=self.input_embed.abstract_search_space,
|
||||
pos_embed=self.pos_embed.abstract_search_space,
|
||||
backbone=self.backbone.abstract_search_space,
|
||||
head=self.head.abstract_search_space,
|
||||
)
|
||||
for key, space in xdict.items():
|
||||
if not spaces.is_determined(space):
|
||||
root_node.append(key, space)
|
||||
return root_node
|
||||
raise NotImplementedError
|
||||
|
||||
def apply_candidate(self, abstract_child: spaces.VirtualNode):
|
||||
super(SuperTransformer, self).apply_candidate(abstract_child)
|
||||
xkeys = ("input_embed", "pos_embed", "backbone", "head")
|
||||
for key in xkeys:
|
||||
if key in abstract_child:
|
||||
getattr(self, key).apply_candidate(abstract_child[key])
|
||||
|
||||
def _init_weights(self, m):
|
||||
if isinstance(m, nn.Linear):
|
||||
trunc_normal_(m.weight, std=0.02)
|
||||
if isinstance(m, nn.Linear) and m.bias is not None:
|
||||
nn.init.constant_(m.bias, 0)
|
||||
elif isinstance(m, super_core.SuperLinear):
|
||||
trunc_normal_(m._super_weight, std=0.02)
|
||||
if m._super_bias is not None:
|
||||
nn.init.constant_(m._super_bias, 0)
|
||||
elif isinstance(m, super_core.SuperLayerNorm1D):
|
||||
nn.init.constant_(m.weight, 1.0)
|
||||
nn.init.constant_(m.bias, 0)
|
||||
super(SuperViT, self).apply_candidate(abstract_child)
|
||||
raise NotImplementedError
|
||||
|
||||
def forward_candidate(self, input: torch.Tensor) -> torch.Tensor:
|
||||
batch, flatten_size = input.shape
|
||||
feats = self.input_embed(input) # batch * 60 * 64
|
||||
if not spaces.is_determined(self._embed_dim):
|
||||
embed_dim = self.abstract_child["_embed_dim"].value
|
||||
else:
|
||||
embed_dim = spaces.get_determined_value(self._embed_dim)
|
||||
cls_tokens = self.cls_token.expand(batch, -1, -1)
|
||||
cls_tokens = F.interpolate(
|
||||
cls_tokens, size=(embed_dim), mode="linear", align_corners=True
|
||||
)
|
||||
feats_w_ct = torch.cat((cls_tokens, feats), dim=1)
|
||||
feats_w_tp = self.pos_embed(feats_w_ct)
|
||||
xfeats = self.backbone(feats_w_tp)
|
||||
xfeats = xfeats[:, 0, :] # use the feature for the first token
|
||||
predicts = self.head(xfeats).squeeze(-1)
|
||||
return predicts
|
||||
raise NotImplementedError
|
||||
|
||||
def forward_raw(self, input: torch.Tensor) -> torch.Tensor:
|
||||
batch, flatten_size = input.shape
|
||||
feats = self.input_embed(input) # batch * 60 * 64
|
||||
tensors = self.to_patch_embedding(input)
|
||||
batch, seq, _ = tensors.shape
|
||||
|
||||
cls_tokens = self.cls_token.expand(batch, -1, -1)
|
||||
feats_w_ct = torch.cat((cls_tokens, feats), dim=1)
|
||||
feats_w_tp = self.pos_embed(feats_w_ct)
|
||||
xfeats = self.backbone(feats_w_tp)
|
||||
xfeats = xfeats[:, 0, :] # use the feature for the first token
|
||||
predicts = self.head(xfeats).squeeze(-1)
|
||||
return predicts
|
||||
feats = torch.cat((cls_tokens, tensors), dim=1)
|
||||
feats = feats + self.pos_embedding[:, : seq + 1, :]
|
||||
feats = self.dropout(feats)
|
||||
|
||||
feats = self.backbone(feats)
|
||||
|
||||
x = feats[:, 0] # the features for cls-token
|
||||
|
||||
return self.cls_head(x)
|
||||
|
||||
|
||||
def get_transformer(config):
|
||||
if config is None:
|
||||
return SuperTransformer(6)
|
||||
if isinstance(config, str) and config.lower() in name2config:
|
||||
config = name2config[config.lower()]
|
||||
if not isinstance(config, dict):
|
||||
raise ValueError("Invalid Configuration: {:}".format(config))
|
||||
name = config.get("name", "basic")
|
||||
if name == "basic":
|
||||
model = SuperTransformer(
|
||||
d_feat=config.get("d_feat"),
|
||||
embed_dim=config.get("embed_dim"),
|
||||
num_heads=config.get("num_heads"),
|
||||
mlp_hidden_multipliers=config.get("mlp_hidden_multipliers"),
|
||||
qkv_bias=config.get("qkv_bias"),
|
||||
pos_drop=config.get("pos_drop"),
|
||||
other_drop=config.get("other_drop"),
|
||||
model_type = config.get("type", "vit").lower()
|
||||
if model_type == "vit":
|
||||
model = SuperViT(
|
||||
image_size=config.get("image_size"),
|
||||
patch_size=config.get("patch_size"),
|
||||
num_classes=config.get("num_classes"),
|
||||
dim=config.get("dim"),
|
||||
depth=config.get("depth"),
|
||||
heads=config.get("heads"),
|
||||
dropout=config.get("dropout"),
|
||||
emb_dropout=config.get("emb_dropout"),
|
||||
)
|
||||
else:
|
||||
raise ValueError("Unknown model name: {:}".format(name))
|
||||
raise ValueError("Unknown model type: {:}".format(model_type))
|
||||
return model
|
||||
|
Reference in New Issue
Block a user