Fix bugs in LFNA

This commit is contained in:
D-X-Y
2021-05-16 21:56:09 +10:00
parent 9a2c9fc435
commit 06fe246d82
9 changed files with 34 additions and 109 deletions

View File

@@ -101,10 +101,7 @@ def main(args):
)
lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(
optimizer,
milestones=[
int(args.epochs * 0.8),
int(args.epochs * 0.9),
],
milestones=[int(args.epochs * 0.8), int(args.epochs * 0.9),],
gamma=0.1,
)
logger.log("The base-model is\n{:}".format(base_model))
@@ -166,7 +163,7 @@ def main(args):
w_container_per_epoch = dict()
for idx in range(args.seq_length, len(eval_env)):
# build-timestamp
future_time = env_info["{:}-timestamp".format(idx)]
future_time = env_info["{:}-timestamp".format(idx)].item()
time_seqs = []
for iseq in range(args.seq_length):
time_seqs.append(future_time - iseq * eval_env.timestamp_interval)
@@ -190,7 +187,7 @@ def main(args):
)
# creating the new meta-time-embedding
distance = meta_model.get_closest_meta_distance(future_time.item())
distance = meta_model.get_closest_meta_distance(future_time)
if distance < eval_env.timestamp_interval:
continue
#
@@ -198,7 +195,9 @@ def main(args):
optimizer = torch.optim.Adam(
[new_param], lr=args.init_lr, weight_decay=1e-5, amsgrad=True
)
meta_model.replace_append_learnt(torch.Tensor([future_time]).to(args.device), new_param)
meta_model.replace_append_learnt(
torch.Tensor([future_time], device=args.device), new_param
)
meta_model.eval()
base_model.train()
for iepoch in range(args.epochs):
@@ -241,22 +240,13 @@ if __name__ == "__main__":
help="The synthetic enviornment version.",
)
parser.add_argument(
"--hidden_dim",
type=int,
default=16,
help="The hidden dimension.",
"--hidden_dim", type=int, default=16, help="The hidden dimension.",
)
parser.add_argument(
"--layer_dim",
type=int,
default=16,
help="The layer chunk dimension.",
"--layer_dim", type=int, default=16, help="The layer chunk dimension.",
)
parser.add_argument(
"--time_dim",
type=int,
default=16,
help="The timestamp dimension.",
"--time_dim", type=int, default=16, help="The timestamp dimension.",
)
#####
parser.add_argument(
@@ -272,10 +262,7 @@ if __name__ == "__main__":
help="The weight decay for the optimizer (default is Adam)",
)
parser.add_argument(
"--meta_batch",
type=int,
default=64,
help="The batch size for the meta-model",
"--meta_batch", type=int, default=64, help="The batch size for the meta-model",
)
parser.add_argument(
"--sampler_enlarge",
@@ -297,10 +284,7 @@ if __name__ == "__main__":
"--workers", type=int, default=4, help="The number of workers in parallel."
)
parser.add_argument(
"--device",
type=str,
default="cpu",
help="",
"--device", type=str, default="cpu", help="",
)
# Random Seed
parser.add_argument("--rand_seed", type=int, default=-1, help="manual seed")