4 Software Defined
Networks

This chapter introduces Software-defined Networks (SDN) as a new networking
approach in contrast to traditional networks. In order to understand the principles of
SDN, the layer views of network functionality in traditional networks and in SDN are
juxtaposed, the SDN architecture is then presented. The concepts of flow commonly
used in the SDN literature is analysed in this text. A deployment example with P4-
based SDN is followed. The exercise illustrates how to employ SDN to “program” a
network, revealing a new way of performing network control and management.
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4.1 Introduction
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Figure 4.1: Switch and Router in OSI model [Danc 15]

There are different ways to layer networked systems. Two well-known ones are the
ISO OSI (Open Systems Interconnection) and the TCP/IP reference models. Figure 4.1
shows an example of a switch and a router through the OSI view. The switch spans
two OSl layers, namely Physical and Data Link whereas the router implements an
additional Network layer. A network device is classified into its highest layer, which
means that the switch belongs to the Data Link layer and the router to the Network
layer. The OSI layering mechanism provides a common basis for the coordination of
networking standards’ development as well as facilitates the understanding of these
standards and the interaction of networked systems.
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Figure 4.2: Layer view of networking device’s functionality [Danc 15]

In another view, a traditional network device can be seen as being composed of the
three planes (or layers) depicted in Figure 4.2: management plane, control plane, and
data plane.
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e The data plane consists of various ports for receiving and transmitting packets
based on its forwarding table, and switching fabrics for transferring packets from
an input buffer to an output buffer.
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e The control plane represents protocols used for populating forwarding tables in
the data plane, e.g., the routing protocols like RIP, OSPF, BGP in a router.
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e The management plane includes software services used by a network

administrator (manager) to monitor and configure the control functionalities.
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Figure 4.3 describes the roles of these planes and their interactions.
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Figure 4.3: Roles of the management, control and data planes [GoBI 14]

Although traditional IP networks have widespread adoption, they are complex and
hard to manage. To make any change to a network, operators need to configure each
individual network device separately using low-level and vendor-specific commands.
The vertical integration of the control and data plane in each network device reduces
the flexibility and hinders the innovation and evolution of networking infrastructure.
These limitations pose a question of new networking paradigms, leading to the

introduction of Software-Defined Networking (SDN).
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Some key ideas of SDN are the introduction of dynamic programmability in
forwarding devices, the decoupling of the control and data planes, and the global
view of the network by logical centralization of the “network brain” [KRV+ 15] in a

single place, namely the controller.
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4.2 Architecture

Having explained the three-plane view of traditional networks, we will now go

deeper into the SDN architecture.
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SDN is a network architecture where network control is decoupled from forwarding

and is directly programmable [Foun 12].
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A comparison of a traditional network and an SDN in the three-plane view is
illustrated in Figure 4.4. In the traditional network, the routing table at the data plane
of a router is populated by its control plane residing in the same device, such as the
OSPF routing protocol running on the router’s operating system in this example. In
SDN, the controller acts as a "network operating system," and the OSPF routing
protocol runs atop the controller, which instructs the controller to populate flow
tables in the SDN devices via the southbound API. The mapping of the management
plane’s services in these two networks is not relevant in terms of network control and

is not portrayed in this example to avoid unnecessary confusion.
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Figure 4.4: An example of functionality plane mapping in traditional networks and in
SDN

The general SDN architecture is illustrated in Figure 4.5.
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Figure 4.5: General architecture of SDN [GoBl 14]

Kreutz et al. [KRV+ 15] define SDN as a network architecture with four pillars:Kreutz
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1. The control and data planes are decoupled. Control functionality is removed
from network devices that will become simple (packet) forwarding elements.
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(BEE) BAITE.

2. Forwarding decisions are flow-based, instead of destination-based (refer to

Section 4.3 for the explanation of the flow concept).
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3. Control logic is moved to an external entity, the so-called SDN controller.
EHIEEERBEI—1MEBSER, BFmMBARISDNIZHIES.

4. The network is programmable through software applications running on top of
the controller that interacts with underlying data plane devices.
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Another important characteristic of SDN mentioned in [RFC 7426] is the

standardization of the interfaces between the control and data planes.

[RFC 7426] FEZIRYSDNRIB— P EERFHE RIS FENSEFE Bz O R
€.



4.2.1 Components

The main components of a SDN include devices in the data plane and one or more

controllers.
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SDN devices, also commonly referred to as SDN switches, are simple forwarding
elements without embedded control or software to take autonomous decisions like
routing protocols or default/fixed forwarding behavior. The network intelligence is
removed from them to a logically centralized controller. Packets are handled in these
switches based on their flow tables, whose entries contain control information of
different layers (e.g., layer 2 - 4). Standardized interfaces are introduced between the
controller and the switches, which provide a means for the controller to install flow

tables in these switches.
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Controller

The controller is a software stack that controls SDN devices. One important function
of the controller is the provision of topology service, which maintains a consistent
overview of the network. Any change in the network, such as new devices being
added or some devices being removed, or some links being down, should be
reflected immediately in the network overview at the controller. The controller

changes the configuration of network devices based on applications’ requests.
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According to Goransson et al. [GoBI 14], four fundamental functions of an SDN

controller are:
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e End-user device discovery,
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e Network device discovery,

IR EARIR,

e Network device topology management, which maintains information about
the interconnection details of the network devices to each other and to the end-
user devices to which they are directly attached,
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¢ Flow management, which maintains a database of the flows being managed by
the controller and performs all necessary coordination with the devices to

ensure synchronization of the device flow entries with that database.
melE, MFHESREENRNEEE, ASREHITITEYENDE, LS
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Further functions of the network are realized by SDN applications (see Section 4.2.3).
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4.2.2 Interfaces

The SDN architecture introduces two interfaces: the northbound APIs lying between
the applications and the controller, and the southbound APIs between the controller
and the SDN devices. While OpenFlow [MAB+ 08] and P4Runtime [P4RTSpec] appear
to be the most dominant southbound APIs, there are no such counterparts for

northbound APIs so far. Each controller has its own northbound APIs.
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4.2.3 SDN Applications
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Figure 4.6: Application-Controller communication [GoBI 14]

The control functions of the network (e.g., MAC learning of switches, routing,
enforcement of QoS, security...) are programmed in applications, which logically
reside above the controller. Applications can change the configuration of switches via

the controller's northbound API.
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Taking a simple routing application as an example [KRV+ 15]: the logic of this
application is to define the path through which packets flow from a point A to a
point B. To achieve this goal, the routing application must, based on the topology
input, decide on the path to use and instruct the controller to install the respective

forwarding rules in all devices on the chosen path from A to B.
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Once the controller has finished initializing devices and reported the network
topology to the application, the application spends most of its processing time
responding to events. Application behavior is driven by events from the controller as
well as external inputs. The application affects the network by responding to the

events as modeled in Figure 4.6.
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The SDN application registers as a listener for certain events, and the controller
invokes the application’s callback method whenever such an event occurs. Some
examples of events handled by an SDN application are:

SDNR FFEFEM AR ESHRINITES, =S EXEEGRERNSE RN BEERRY
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e End-user device discovery,
e Network device discovery,

e Incoming packets.

In the first two cases, events are sent to the SDN application when a new end-user
device (e.g., a MAC address) or a new network device (e.g., a switch, router, or
wireless access point) is discovered. Incoming packet events are sent to the SDN
application when a packet is received from an SDN device either due to a flow entry
instructing the device to forward the packet to the controller or because no matching

flow entry exists in the SDN device.
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When there is no matching flow entry, the default action is usually to forward the
packet to the controller. However, depending on the nature of the application, the

packet may instead be dropped [GoBI 14].
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4.3 Flows

In SDN, forwarding decisions are flow-based, instead of destination-based as in
traditional networks. There is often confusion between the two concepts of path and

flow, which need to be clearly distinguished and used correctly.
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A path is the sequence of communication links and devices connecting two
endpoints. It is also known as a route and is the foundation of IP routing. The
concept of path is topology-oriented, meaning it focuses only on the way through

the network, without considering the type of traffic or its content (payload).
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A flow, or data stream, is a sequence of packets that share the same attributes.
These attributes include fields in the protocol header, such as IP address, MAC
address, status bit, etc.; they can also include the ingress port of a packet arriving at a
network device. Thus, the concept of flow encompasses traffic types and possibly

traffic content (payload). Flows are unidirectional and are determined by:
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e The path(E&%),

e The concerned attributes(fBx/E14),

e The direction (which can be considered a special case of the attributes, like

address);5[E (AIMLABIERIRTIAIER, BIaNHBLL) .

Example: Traffic between two endpoints A and B exchanging audio streams and

HTTP traffic can be seen as four different flows:

1. A flow for audio traffic along the path from A to B,
2. A flow for audio traffic along the path from B to A,
3. A flow for HTTP traffic along the path from A to B,

4. A flow for HTTP traffic along the path from B to A.
Bl ERNIRAANBZ BRI ESAMIHTTPIRER, LB AERIR:
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3. NAZIBEIHTTPIRER,
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Figure 4.7 [Danc 15] illustrates how four data streams are routed in a traditional

network (left picture) and in an SDN (right picture).
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e In a traditional network, data streams destined for the same destination are
typically routed along the same path because the routing mechanism is
destination-based.
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e In SDN, these data streams are routed based on their flows’ attributes, which
means they may traverse different paths from the source to the destination.
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Figure 4.7: Flows along different paths in the traditional network (left) and in
SDN [Danc 15]

It is important to note that a flow can be reflected differently in each device along
the path. For instance, one network device might handle the flow based on the first
attribute (e.g., destination IP address), while another might base its handling on the

second attribute (e.g., destination TCP port number).
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Specification of Flow fAIHE
An SDN device stores information about flows in tables, referred to as flow tables or

rule tables. Each table entry contains:
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e Match fields, which define the flow based on protocol fields (e.g., IP, MAC, port,
VLAN, etc). LEEFER, EFMNFER (fla0iP. MAC, imM. VLANEE) EX
it

e Actions, which are executed when the match fields are satisfied. ¥#{E, ZITHE=

Zime BRI A TR R AYERAE,

A match field can be wildcarded to match any value, thereby reducing the number of

table entries.
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The actions applied to a matched flow can include:

PLECi R A RV FrT BERLFA

e Sending the packets of that flow to a specific port (interface of the SDN device).
BzalsuEE &X2lEE R (SDNigEREO) .

e Dropping the packets. ER&UES.

e Forwarding the packets to the controller. &G L & Ei=HIS,

e Sending packets to some or all ports (flooding, broadcast, multicast). EEIEE &
FREBDEATERC (2. & 28) .

e Modifying the packets. {EEHEE,

e A combination of the above actions. LA H#{ERIEFES.

Priority {JL5cZ%

Table entries are organized in rows, each with a specified priority. More specific
entries should have higher priority than general ones (which have more masked
fields).
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4.4 SDN Deployment Example with P4 and
P4Runtime

The most common implementations of SDN include those based on OpenFlow
[MAB+ 08] and P4 [BDG+ 14].
SDNEH WAYSEI EIEE T OpenFlow [MAB+ 08] #1P4 [BDG+ 14] HYSCHA,

OpenFlow assumes that SDN devices have fixed behavior. It supports populating the
rule tables in these devices but is constrained by their fixed capabilities. OpenFlow
cannot be used to deploy a rule that influences a new packet header not yet

available in these fixed-function devices.
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P4 was introduced to address this limitation by providing a mechanism to program
devices' behavior. P4Runtime enables communication between SDN controllers and
P4 devices PARISINETERRRIX—AIRA, BRMH 7 —MmEIRE1T/IRIE.
PARuntimeSCH 7 SDNEHIER S P4IR S Z EIHVIESS.

4.4.1 P4

P4 is a language for programming the data plane of network devices. The name P4
comes from the original paper that introduced the language: “Programming
Protocol-independent Packet Processors” [BDG+ 14]. The version of P4 introduced in
2014 is named P414, and the language was revised in 2016 to P416, which is used in
this assignment.
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In a traditional switch, the manufacturer defines the data-plane functionality. The

control plane manages the data plane by:
EEFIRF, SR FEVIIEHEEREN. EHFEEYIL AN ESEEEF
H:

e Managing entries in their rule tables (e.g., routing tables), EIEFINIZE (FI2NEEH
&) PRIFH,

Configuring specialized objects (e.g., meters), EEEEZAXER (Fla0itE88) |

Processing control packets (e.g., routing protocol packets), {MEIZHIEIER (51
ANESEAMMYEIES) |

Handling asynchronous events (e.g., link state changes or learning notifications).

WIEREEH (BIaNsEEAIASENEFESIER) .

A P4-programmable switch differs from a traditional switch in two essential ways:

PAR]JRAE SR SR ST A RN EE X5

1. Data plane functionality is not predefined: The functionality is defined by a P4
program. The data plane is configured at initialization to implement the behavior
described by the P4 program and has no built-in knowledge of existing network

protocols.
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2. Dynamic communication with the control plane: The control plane
communicates with the data plane using the same channels as in fixed-function
devices, but the tables and objects in the data plane are not fixed. Instead, they
are defined by a P4 program. The P4 compiler generates the API used by the
control plane to interact with the data plane.
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Figure 4.8: Programming a target with P4 [P4Spec]

Figure 4.8 shows a typical tool workflow for programming a target using P4. A target
is defined as a packet-processing system capable of executing a P4 program. The
term target is used interchangeably with device in most P4 specifications and in this
manuscript.
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Target manufacturers provide the hardware or software implementation framework,
an architecture definition, and a P4 compiler for the target. P4 programmers write
programs specific to a target architecture, which defines a set of P4-programmable
components and their external data plane interfaces.

BirR SRS R AR a4 SCINESR.  ZRE XANE T BiRReaAIPASRIERS.
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Compiling a set of P4 programs produces two artifacts:

PRiF—HPAREF SR TR :



1. A data plane configuration implementing the forwarding logic described in the

program.
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2. An API for managing the state of the data plane objects from the control plane.

APl, BFMNEHFEEEEEFLENSRAVIAE.
Architecture Model

The P4 architecture identifies the P4-programmable blocks (e.g., parser, ingress

control flow, egress control flow, deparser, etc.) and their data plane interfaces.

PASRMITE N T PARTJRAEtRIR (flanfiEffres. ADEHlR. HOEHER. RETES)
NELIEFEmERO.

The P4 architecture can be thought of as a contract between the program and the
target. Each manufacturer must provide both a P4 compiler and an accompanying

architecture definition for their target.
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Figure 4.9: P4 program interfaces

Figure 4.9 illustrates the data plane interfaces between P4-programmable blocks. It
depicts a target with two programmable blocks (#1 and #2), each of which is
programmed through a separate fragment of P4 code. The target interfaces with the
P4 program via a set of control registers or signals:

[El4.9 B~ 7 PAR]fRiEiRIR Z [AIEUEF IO, BFER 7T — 1281 I iRER
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¢ Input controls provide information to P4 programs (e.g., the input port a packet
was received from). SINIZHl HPAREFREERE (FIa0, FUEIEIREERIEANIG
L) .

e Output controls can be written to by P4 programs to influence the target's
behavior (e.g., the output port where a packet should be directed). fgyi#z=Hl =T
RPAEFS LN BIRKENTA (FlaN, SUEENHS|1SRRYEEHRO) .

Control registers/signals are represented in P4 as intrinsic metadata, while P4
programs can also define and manipulate user-defined metadata to store data

related to each packet.

EhE /S SEPARRTAMRERENE, MPAERERILIEN R FRARENX T
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There are various architectures, such as V1Model, SimpleSumeSwitch, and the
Portable Switch Architecture (PSA) [PSADraft]. In this assignment, we use the
V1Model on the BMv2 (Behavioral Model version 2) Simple Switch target because of

its ease of deployment as a software switch.
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Figure 4.10: V1Model architecture

Figure 4.10 illustrates the programmable blocks of the V1Model architecture. The

standard metadata in V1Model includes:

struct standard metadata t {
bit<9> ingress port;
bit<9> egress_spec;
bit<9> egress port;

bit<32> clone spec;


https://github.com/p4lang/p4c/blob/main/p4include/v1model.p4
https://github.com/NetFPGA/P4-NetFPGA-public/wiki
https://github.com/p4lang/behavioral-model/blob/main/docs/simple_switch.md

6 bit<32> instance_type;

7 bit<1> drop;

8 bit<16> recirculate port;
9 bit<32> packet length;

10 bit<32> enq_timestamp;

11 bit<19> enq_qdepth;

12 bit<32> deq timedelta;

13 bit<19> deq _qdepth;

14 bit<48> ingress global timestamp;
15 bit<32> 1f field list;

16 bit<16> mcast _grp;

17 bit<1> resubmit_flag;

18 bit<16> egress rid;

19 bit<1> checksum_error;

20 bit<3> priority;

21 }

The ingress_port is the port on which a packet arrived. The egress_spec specifies the
port to which the packet should be sent. The egress_port denotes the port from
which the packet is departing and is read-only in the egress pipeline.

ingress_port 2EHREEEIXANRO. egress_spec IEELHUEEN M AIXEIRNR.,
egress_port REIEEEFIRC, AHOBEFERIZN.,

The file vimodel.p4 is extensively commented, providing details on these and other

fields of the standard metadata.

M4 vimodel.p4 FREFMRYER, RHET X TXEFERNEMINETEIEFRAIF
MER.

The P416 program template for the V1Model architecture includes:
P416T2FHEHR & TV1ModelZ8ty, BELAITERS

SLERHISE (HEADER specification)

f#the3 (PARSER)

B2 FNISIE (CHECKSUM VERIFICATION)

ANO4ME (INGRESS PROCESSING)

H 048 (EGRESS PROCESSING)

FRISFNEHT (CHECKSUM UPDATE)

REZTESIR (DEPARSER blocks)
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V1Switchg

#include <core.p4>
#include <vlmodel.p4>

/* EBEN */

struct metadata { ... }

struct headers {
ethernet_t ethernet;

ipvd t ipv4;

/* fEfTRR */

parser MyParser(packet in packet,

out headers hdr,

inout metadata meta,

inout standard _metadata_t smeta) {
}
/* REaFISGIE */

control MyVerifyChecksum(in headers hdr,

inout metadata meta) {

/* NOSGIE */
control MyIngress(inout headers hdr,
inout metadata meta,

inout standard metadata_t std meta) {

/* HOKIE */
control MyEgress(inout headers hdr,
inout metadata meta,

inout standard metadata_t std meta) {

/* RfEHTER */

control MyDeparser(packet out packet,



41 in headers hdr) {

42

43 }

44 control MyEgress(inout headers hdr,

45 inout metadata meta,

46 inout standard metadata_t std meta) {
47

48 }

49

50

51 control MyComputeChecksum(inout headers hdr,
52 inout metadata meta) {
53

54 }

55

56

57 control MyDeparser(inout headers hdr,

58 inout metadata meta) {
59

60 }

61

62

63 V1Switch(

64 MyParser(),

65 MyVerifyChecksum(),

66 MyIngress(),

67 MyEgress(),

68 MyComputeChecksum(),

69 MyDeparser()

70 ) main;

71

P4_{16} defines various data types, such as bit, bool, int, string, struct,
enum, and header _union . These data types are described in its specification

[P4Spec] (see Section 7 of the specification).

PA16TEN. T ZFhEdEERY, HI40 bit . bool . int. string. struct. enum
F0 header_union , XLEEUESEBIEEAE [P4Spec] (BWAEETT) FEIFMIR
BA.

Another useful reference is the P4 Language Cheat Sheet, which outlines the basic
building blocks of P4.


https://github.com/p4lang/tutorials/blob/master/p4-cheat-sheet.pdf

A TERNSERHE (P4 Language Cheat Sheet), EA1iix T P4
HUEAIZER,

An example of compiling a P4 source file into a P4 Device Config file, which can be

executed in BMv2 switches, is provided in a later section.

BREGPAFN A RIFE/IPAZEFECE (P4 Device Config) SX{4, FHEBMV2IZHRAISHHA
1THIGY, BEREETI HRM.

4.4.2 P4ARuntime

The P4Runtime API [P4RTSpec] is a control plane specification for managing the

data plane elements of a device defined or described by a P4 program.

P4Runtime API [PARTSpec] B—Mi=HIFENE, AT EIERPAERENEHHEIAR
IR HIEFEITE.

P4 Runtime

Configuration P4 Primary Controller
P4info
~ P4Blob gRPC Client . gRPC Client

P4 Source Interface | .proto

Code
> g RPC Server

I I Instrumentation I

Platform Drivers

Config

Figure 4.11: PARuntime reference architecture [P4RTSpec]

Figure 4.11 illustrates the P4Runtime reference architecture. The device or target to
be controlled is at the bottom, while one or more controllers are shown at the top.
P4Runtime grants write access to only a single primary controller for each

read/write entity.


https://github.com/p4lang/tutorials/blob/master/p4-cheat-sheet.pdf

El4.11 [Z7< 7 PARuntimeZE 2581, FEEFINNRBEBERITRES, M— P EE1h
PEEHISE TR, MNTFEMNE/SLMK, PARuntime{UEF— 1 EiEHIZEHSiHEIN
BR.

The P4Runtime API defines the messages and semantics of the interface between the

client(s) and the server. The APl is specified in the p4runtime.proto Protobuf file.

P4Runtime API FEX T B FimtliRSSea < [EHZEORERFIEN., ZAPIHE
p4runtime.proto Protobuf3{&47FiH{T 7B,

The controller can access P4 entities that are declared in the P4Info metadata.
EHlEs e LAAIEE P4InforoélilE RAERRRYPASLIK,

The P4Info structure is defined in the p4info.proto file, another Protobuf file

included as part of the P4Runtime standard.

P4InfoZEtd BN 1E pi4info.proto MAEF, XEP4RuntimetmER—E(%
The controller can set the ForwardingPipelineConfig, which involves:
=88 e] IR B ForwardingPipelineConfig, SiELATAA:

e [nstalling and running the compiled P4 program output included in the
p4_device config field of the Protobuf message.
REIEITEETE Protobuf jBE p4_device_config FERHFRICIRIFPAIZFHI
H.

¢ Installing the associated P4Info metadata.

LEHHARRY P4InfoTTdiiE.

The controller can also query the target for the ForwardingPipelineConfig to

retrieve the device configuration and the P4Info.

1= B8R R LAE A B #RigE5HY ForwardingPipelineConfig UASKEUR S EC EF]
P4Info,

The P4Runtime API is implemented by a program running a gRPC server that binds
to an auto-generated P4Runtime Service interface. This program is called the
P4Runtime server. By default, the server must listen on TCP port 9559, allocated by
IANA for the P4Runtime service. However, servers should allow users to override the

default port using a configuration file or a startup flag.


https://github.com/p4lang/p4runtime

P4Runtime APl BIT1z1T— e B NERBY PARuntime fRS5#2ERY gRPC fRSS =5
LI, IXNMEF#EFRY PARuntimefRS388. EOABR T, RSFEs4UENT TCPiRO
9559, IXZEIANAJIPARuntimefRE o BcAYImE. ANiY, IREFF|NAITFHAFBEEEEX
e EotnE B =i AR .

In this assignment, we follow the “idealized workflow” described in the P4Runtime
specification [P4RTSpec] (Section 3.2). This workflow includes:fEAR{EL S, FfiNE
f&PARuntimeRISE [PARTSpec] AR "B IIERIE" (BUALESE3.27) . %
TERRELE:

1. Compiling a P4 source program to produce: }§P4RIEFIRIZN -
o A P4 device config. PAIZRELE.

o P4Info metadata. P4InfoscZiiE.
These together comprise the ForwardingPipelineConfig message.
XL [F)ZHAY, ForwardingPipelineConfig 52,

2. The P4Runtime controller selects an appropriate configuration for a particular
target and installs it via the SetForwardingPipelineConfig RPC.
PARuntimeiZ=Hlssit SIS E BirREIEE, FHEd
SetForwardingPipelineConfig RPC T4,

The P4Info metadata describes: P4InforcEiE A T :

e The overall program itself (Pkginfo). Z2/NEFAS (Pkginfo) .

e All entity instances derived from the P4 program, such as tables and extern

instances. FTEMPARRRRIRERISCIRSLA, AIan Z& A0 FpERSEHI.

Each entity instance is assigned a numeric ID by the P4 compiler, which serves as a

concise "handle" for use in API calls.

B LARLOIRPAGRIER D EC— 124D, FIFAPIER SR ERINES R,

In this workflow, P4 compiler backends are developed for each unique type of
target and generate two outputs:

R TERRES, AEMINEEEENBRREHA T PARmIEREIR, FHERR IR
H

e P4Info: A schema that is target- and architecture-independent, although its

specific contents are likely to be architecture-dependent.

Pdinfo: —/BirflIZRFTRANEL, BEEARRARIRESIIBEX.

» A target-specific device config.

HEBMSENERE.



The compiler ensures that the P4 program is compatible with the specific target and

rejects incompatible code.

TRixentARPAEF ST ERINRES, FHRERFREINE.

P4
Remote
Controller

gRPC Client

P4Runtime

gRPC Server

Instrumentation

Platform Drivers

Config
P4 Pipeline

P4 Target

Figure 4.12: Single remote controller [P4RTSpec]

P4Runtime supports the use of multiple controllers. A controller can either be
embedded in a P4 target or operate separately. For P4-based SDN, the preferred
approach is to deploy controllers separately from the targets, as shown in Figure
4.12.

P4Runtime X552 M=HIRRAYERA. E=HIRSRILABRAEPAB MRS S, BRILIRIZ
17. XJTETPIRISDN, BN RSERREsEab=, 1 EB4.12 Fir,

\—_—

[

A single logically centralized controller can control multiple targets simultaneously.

— IZEEPIUEEIRR TLARRHESIZ A BiRRE.



4.4.3 Test-bed

The provided infrastructure for this assignment includes an “outer” virtual

machine ( gruppeX.rnp.lab.nm.ifi.1lmu.de ), which hosts seven “inner” virtual

machines. These inner machines include:
IZ AR ERERTIZEETE— “IMER" IR
(gruppeX.rnp.lab.nm.ifi.lmu.de ), EFSIET 1 “PER"ELIN, Si5:
e Hosts: pcl, pc2, pc3.
e Switches: S1, S2, S3.

e A controller deployed at router4 .

gruppeX.rnp.lab.nm.ifi.Imu.de

Figure 4.13: Provided RNP infrastructure

The connections between these machines are illustrated in Figure 4.13: XL54/28 2

|BIA9EREEAN Bl4.13 Fis:

e Dashed lines: Represent the management network, used for accessing and
configuring the inner machines. B&: F®REIEMNLS, BT AEFEE RS
Bt

¢ Solid lines: Represent the data network, used for communication between the

inner machines.

All ethe interfaces of the inner machines are connected to the same switch in

the management network. 384¢: FRREHEML, BTREM=SZENEE. T
BREMN=EE ethe EOEMEREIEEMEHIE—IHEL,



The infrastructure is pre-configured with all the software necessary for this

assignment. The P4 compiler is installed only on the controller ( router4 ). As a
result, P4 source files must be compiled on the controller to generate: ERigHEE TR
F=eRZ B TR, PASRIERR (N LS Hlgs (routerda ) £, FHIE, P4
RS nfErShas EhmiE, LAERK:

e P4 Device Config: Consumed by P4 switches. PHEZRECEI Y HPARIHAY(E
F.

e P4lInfo files: Consumed by controllers. P4Info3{4: {iizHIgsEHA,

Instructions for installing P4-related software are provided in the

, Which include a sample deployment on . Additionally, the
development team has facilitated P4 installation via the for
package managers on Debian 11 and Ubuntu 22.04. Installation can also be

performed directly from the

BRLEPMEXRIKMEANRER, TLSE PAESHIEE, HPEHE Ubuntu 20.04 EATR
FIERE. LI, FFRBEREED pdlang BE 124 71&FT Debian 11 1 Ubuntu
22.04 NEEEEETEST. BAILEEMN BB <%,

4.4.4 Example: deploying a simple repeater

We demonstrate how to execute P4 switches and have them controlled by a
controller using a simple repeater application. This example reuses material

provided by the

HeA B — & ERRT FREEEERFE (repeater application) ;ERIMANZEITPASLIRAL, F
BfEHlEH TR, APIERT ETHMSERS4E (ETH Networked Systems
Group) fRHRYFARL

Controller (router4)

PC1:192.168.1.1/24 S1 S2 PC2: 192.168.1.2/24

Figure 4.14: Network topology for the deployment example. The numbers surrounding a
switch indicate its port names.

Figure 4.14 illustrates the network topology used in this example, which includes:

e Two switches: S1 and S2.

e Two endpoints: PC1 and PC2.


https://github.com/p4lang/tutorials
https://github.com/p4lang/tutorials
https://github.com/p4lang/tutorials
https://github.com/p4lang/tutorials/blob/master/vm-ubuntu-20.04/root-release-bootstrap.sh
http://download.opensuse.org/repositories/home:/p4lang/
https://github.com/p4lang/tutorials/blob/master/vm-ubuntu-20.04/user-dev-bootstrap.sh
https://github.com/nsg-ethz/p4-learning/tree/master/exercises/02-Repeater/p4runtime

e A controller.

The P4 source files and the controller applications are stored on the controller

( router4 ) in the directories p4 and app , respectively.

P4 71 {=HIZRRIRTERE o BIFfETEHl=s (routerd ) BY p4 F0 app BRT.
Compiling repeater.p4

As mentioned earlier, the P4 compiler is installed on the controller ( router4 in this
case). To compile repeater.p4 and generate the P4 Device config and P4info

files, execute the following commands:

SNRIRMA, PAfmiFRSLcEThlzR L (TEABIFA routerd ) , BimiE
repeater.p4 FEERY PAZFECEXH 1 P4InfoXX i, BHRITIA TGRS

1 ssh root@router4d

2 cd p4d

3 p4c-bm2-ss --pdv --p4runtime-files build/repeater.pd4info.txt \
4

-0 build/repeater.json repeater.p4

This produces two files:

e repeater.json : The P4 Device config file for the P4 switches.

e repeater.pd4info.txt : The P4Info file for the controller application

repeater_controller.py.
EREIRN G D BE

e repeater.json : FATFPAIENBIPASEECE S,

e repeater.pdinfo.txt : I=HIESN FATERS repeater controller.py {SEFAEY
PAInfoSZ{4.

Distributing the P4 Device Config File

The repeater.json file needs to be copied to the switches S1 and S2 . This can

be done from the outer machine using the following commands:

7

FENF repeater.json XHEHIBARA 1 F s2 . AJLABIIMEBEHAITLLT

AN
<.



1
p)

scp -3 root@router4:pd4/build/repeater.json root@sl:
scp -3 root@router4d:pd4/build/repeater.json root@s2:

Creating P4 Switches

At Switch S1

Use the following commands to create a P4 switch on S1:

ERLUTHRSE s1 ERIEE— P4 3T :

N OO v A WDN R

ssh root@sl

ip link set ethl up

ip link set eth2 up

simple switch _grpc -i 1@ethl -i 2@eth2 --pcap pcaps \
--nanolog ipc:///log.ipc --device-id repeater.json \
--log-console --thrift-port A\

-- --grpc-server-addr 0.0.0.0:50051 --cpu-port

The simple_switch_grpc command creates a SimpleSwitchGrpc target, which is a

version of SimpleSwitch with P4ARuntime support.

simple switch_grpc A< EIiET— SimpleSwitchGrpc Bix, XEXFF
P4Runtime [y SimpleSwitch fR7x,

Explanation of parameters:

-1 1@ethl -i 2@eth2 : Binds the switch ports to the "physical” interfaces of the
virtual machine. -i 1@ethl -i 2@eth2 : &3 lim D48 ER EIEY YITE 5
.

--pcap pcaps : Generates PCAP files for interfaces. --pcap pcaps : IZEOS4ERL
PCAP 314,

--nanolog ipc:///log.ipc : Specifies the IPC socket for nanomsg pub/sub
logs. --nanolog ipc:///log.ipc : 8% nanomsg &%/ IRBEER IPC Ei
=

--device-id 1 : Sets the device ID for identifying the device in IPC messages.

--device-id 1:IREIRT ID, AT IPCHEPIRHRAIRE.

--log-console : Enables logging to stdout. --log-console : [BFAtRERILERY
HEIER.


https://github.com/p4lang/behavioral-model/blob/main/targets/simple_switch_grpc/README.md
https://github.com/p4lang/behavioral-model/blob/main/targets/simple_switch_grpc/README.md
https://github.com/p4lang/behavioral-model/blob/main/targets/simple_switch_grpc/README.md

e --thrift-port 9090 : Sets the TCP port for the Thrift runtime server. --
thrift-port 9090 : 188 Thrift iIz1TATIRSSE8EY TCP i,

e --grpc-server-addr 0.0.0.0:50051 : Binds the gRPC server to the specified
address. --grpc-server-addr 0.0.0.0:50051 : 1§ gRPC RS54 EE e e
ik,

e --cpu-port 255 : Specifies the logical port where a switch can communicate

with a controller (packet-in/out). --cpu-port 255 : I5EZiEiRL, 3HETIFIE
HeS LABd iZinOEE (BIEEmAN/EL) .

For additional information, use the command: Y1IEEZER, B{EHmS:

1 simple switch grpc --help

At Switch S2

To create a P4 switch on S2, use similar commands: £ s2 _E6liE P4 355 S
U :

ssh root@s2

ip link set ethl up

ip link set eth2 up

simple switch_grpc -i 1@ethl -i 2@eth2 --pcap pcaps \
--nanolog ipc:///log.ipc --device-id repeater.json \

--log-console --thrift-port A\

N OO vl AW N R

-- --grpc-server-addr 0.0.0.0:50051 --cpu-port

Executing the Control Application

To execute the control application: I={ T4 N FBFE |

1 ssh root@router4d
2 cd app
3 python3 repeater_controller.py

The p4-utils library is used (with some modifications for packet-in, packet-out, and
idle timeout support) to implement control applications. It acts as a wrapper for

p4runtime-shell, simplifying controller plane development.


https://github.com/p4lang/behavioral-model/blob/main/targets/simple_switch_grpc/README.md
https://github.com/p4lang/p4runtime-shell

pa-utilsfE (B —EAEM AT packet-in, packet-out #] idle timeout) FIFSCH
HIN ETERE. BIYE pdruntime-shell 912588, B0 T8 EFF .

Useful APl information (e.g., table _add, table delete match ) is available on the

linked GitHub repository.

BX APl (U1 table add . table delete match ) BIFEHSE., TBILATE GitHub €
[ FE,

The repeater application uses the network topology information encoded in

topo_repeater.json . For other control applications, you need to provide the

relevant topology information in a similar file.

repeater T2 (£FRADTE topo_repeater.json HRIMBIAIMER. XJTHAh
EHINERRF, SRR HREERIIMERIMER.

Generating Traffic Between End-Points

After deploying the repeater application, you can test its functionality by generating
traffic between PC1 and PC2 . ZFE repeater N FEFERFE, HLUBIETE Pc1 F1 Pc2

Z ARG ERNNETIRE.

1. Configure the ethl interface on PC1:

1 ssh root@pcl
2 1ip addr add .168.1.1/24 broadcast .168.1.255 dev ethl

3 ip link set ethl up

2. Configure the ethl interface on PC2 and generate traffic using the ping

command:

ssh root@pc2

ip addr add .168.1.2/24 broadcast .168.1.255 dev ethl
ip link set ethl up

ping .168.1.1

A W N R

If the PCs successfully communicate via ping, the deployment of the repeater

application is confirmed.

NER pc1 #0 pPc2 BEWEEIY ping BEEIE(S, MiBA repeater M FEFEFERE I,


https://github.com/p4lang/behavioral-model/blob/main/targets/simple_switch_grpc/README.md
https://github.com/p4lang/p4runtime-shell
https://nsg-ethz.github.io/p4-utils/p4utils.utils.sswitch_p4runtime_API.html
https://nsg-ethz.github.io/p4-utils/p4utils.utils.sswitch_p4runtime_API.html
https://nsg-ethz.github.io/p4-utils/p4utils.utils.sswitch_p4runtime_API.html

Debugging the Data Plane Using simple_switch_CLI

The simple switch CLI command is useful for debugging the data plane. For

example, while S1 is running, open another terminal to observe or manipulate its
rule tables: simple switch CLI <SRBT EXSEEFE. HIR0, & s1 IEE=T
B, AL AR — P RinEOMZRSEREEMNER:

1. Access switch S1:

1 ssh root@sl
2 simple_switch_CLI

2. Use commands to debug:

o Show existing tables:

1 show tables

o Show contents of a specific rule table (e.g., repeater ):

1 table dump repeater

o Add arule to the repeater table:

1 table add repeater forward =1>
This adds a rule with match key = 1 , action = forward, and action
parameter = 2.

More commands and details can be found in the P4 language GitHub repository.
B SHIFA(SEAITE P4 language GitHub B 3.

4.4.5 Other P4 Sources and Control Applications for Reference

An advanced control application, arpcache.py, is provided on router4 alongside

the earlier example. Its corresponding P4 source file is packetinout.p4 .

— N ERIZHINFEERF arpcache.py SEIHBVRGI—EIRHAE rovtera £, HXY
MEY P4 BS54 )9 packetinout.p4 .


https://github.com/p4lang/behavioral-model/blob/main/docs/runtime_CLI.md
https://github.com/p4lang/behavioral-model/blob/main/docs/runtime_CLI.md

Additional useful examples are available in the MNM-GitHub repository VINIM-
GitHub. These examples should be practiced in the order specified on the

repository’s main page ( README.md ) for a better understanding and smooth

progression. Start with the simple_demo application, then proceed to

simple_switch, and so on.

ZEBIRGITTLAE MNM-GitHub €FE MNM-GitHub F3RE|, XLER{FIRi%LER
BEERMAE (README.md ) FISENINFHITES, LMEEFIHEEFEFIRFIELE. M
simple_demo RFfER FHiR, SAEMIRHETIT simple_switch ZEEth{l.,

Other P4 sources and control applications can also be found in:

Hfth P4 SRS AN AR B AT LATELA P2l

e The P4 language tutorials P4 Tutorials.

e The p4-learning repository P4 Learning.

4.5 Assignment

Students will "program" the provided infrastructure using P4-based SDN to meet

specific requirements based on a practical scenario.
FHRFEAET P4 /Y SDN XHEHAVEMRIEHTHRIZ, IIHEETCIMNaRANTE
4.5.1 Scenario

The Academic Affairs Office (AAO) of University A has:

1. A web server hosting the AAO-Website, publishing important student

information.

2. An E-learning Server providing experimental e-learning services, such as

lectures, exercises, and evaluations.

RF A BHSIAZE (AAO) HIBLITHIR:

1. — Web R332, 1£& AAO Wi, BFAHREENFEEE,
2. — E-learning JR3388, RMHSCIOMMESRZIMRSS, WHEE. Z&IFMTEHE.


https://github.com/mnm-team/p4-sdn.git
https://github.com/mnm-team/p4-sdn.git
https://github.com/mnm-team/p4-sdn.git
https://github.com/p4lang/tutorials/tree/master/exercises
https://github.com/nsg-ethz/p4-learning/tree/master/exercises

External Internal

g

E-learning Server
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Figure 4.15: Simplified university network with two servers

The network containing these servers is shown in Figure 4.15.

e The E-learning Server is underutilized since the service is in the testing phase.

e The web server experiences high loads, especially during university entrance

exam result publications.
BEXEARSS 2RI 2SN B 4.15 Fis:
o BTIRSBAETNAMER, E-learning ARSSEE HISIRA B D RIEILT =R,
o ERFRMANFEIRNERES, Web JRSSEE HOSEEIMBIEN.
Temporary solution:

1. Deploy an additional instance of the AAO-Website on the E-learning Server.

2. Perform load balancing at the gateway to distribute traffic flows alternately

between the two servers.

3. If the traffic volume reaches 80% of the link bandwidth, drop the highest-load

traffic flow.

The internal network of University A is SDN-based. Students, acting as network

administrators, will program the network to achieve these requirements.
InBIRER 5 ZE

1. 7 E-learning BRS388 _LEZ AAO MIuGRIZRFMSLA,

2. FEMRHIT (A, BIRERBRARIA RS,

3. WIRAEAT HEETHEERY 80%, ERRNHZENRE.

RF A BIABBNEBET SDN, FERIFAMBEERR, MIEMBSIATINXLEER.



4.5.2 Demo

For demonstration purposes, the scenario is simplified, as shown in Figure 4.16:

e PC1 represents the external party.
e Switch S1 acts as the gateway.

e Switches S2, S3 and PC2, PC3 form the internal network.
RN ERER, Ba=Ets B 4.16:

o PC1 fZFRIMERSLAR,
o AZHEH S1 1EAMIK,
o 3ZHAHN S2, S3 7 PC2, PC3 HIpKIEBMIZE,

Controller (router4)

I N -~ <.
! A T h
1 ~ o o
b ~
I Y
N ¥ y ~
r y
N ~
Y
A

PC3:192.168.1.3/24

PC1:192.168.1.1/24

PC2:192.168.1.2/24

Figure 4.16: Network for deployment

Requirements:

1. If the traffic volume from PC1 to PC2 is > 512 Kbps:

o Perform load balancing at the gateway. Traffic flows will alternately be

delivered to PC3 and PC2, as PC3 also provides the same service as PC2.

o The response traffic from PC3 to PC1 must be modified at the gateway,

changing its source IP address and source MAC address to those of PC2.

2. Optional: If the traffic volume from PC1 to either PC2 or PC3 is > 768 Kbps,
drop the traffic flow causing the highest load.

1. ANERM PC1 El PC2 RUREIAZ BT 512 Kbps:



o FEMXHIT GaEtE, RETELAEI PC3 1 PC2, [/ PC3 RS

PC2 HHEIRIARSS.
o M PC3 Fl PC1 NIRALFREVIERRAMER, SH iR 1P HBlik 70 ilF MAC
Hbilt 508 PC2 AUtitlE,
2. \5%: WM PC1 &l PC2 5}, PC3 FUimEIA R BT 768 Kbps, EFREHHS
AORE,

Note: The traffic mentioned refers only to the direction from PC1 to PC2. Traffic in

the reverse direction (PC2 to PC1) or other directions can be ignored.

T8 ULRIBGRENISM PC1 8l PC2 19751H. RE PC2 Fl PC1 BUREURE
'fmlllbi__]-LJ\lu\m%o

#HHHH
Implementation
Student groups will:

e Develop appropriate SDN applications and P4 programs.

e Deploy these on the provided infrastructure to meet the above requirements.
FHNAFE:

o FF&RIEZAY SDN N BRERAHD P4 F2FF.

o BHIPEIRMOEMIZET, LBELARFEK,
4.5.3 Submission

e Submit the source code and a manual detailing how to deploy and run the

applications. $E3ZRCABLAR I+ 4 BRAIMAIERE NS T FBRE FRRI T

e The submission should be compressed into a zip file. 1222 NBFH/EL4E /9 zip X
4.

4.5.4 Assessment

The assignment will be assessed based on: {EAESTAEETF LA TH A :

1. The final demo presented in class (at the "Baracke"). [EiRE _FH{TH REEER
(#bsx: "Baracke") .

2. The manual submitted with the source code. $¥23ZHY F#f.



4.5.5 Important Dates

e 14.01.2025 23:59:
Submission of the source code that measures the traffic volume from PC1 to
PC2.

o Refer to the example on Counters available at https://github.com/mnmte

am/p4-sdn/tree/main/counters.
RZATFUEMN PC1 ) PC2 FEARRD.
o &% https://github.com/mnmteam/p4-sdn/tree/main/counters AT
THEERRI,
e 21.01.2025 13:59:.

Submission of the final source code and the manual.

1232 BREEIRINES 70 A
* 21.01.2025 14:00:

Demo presentation


https://github.com/mnmteam/p4-sdn/tree/main/counters
https://github.com/mnmteam/p4-sdn/tree/main/counters
https://github.com/mnmteam/p4-sdn/tree/main/counters

