added upsampling module
This commit is contained in:
167
train.py
Executable file → Normal file
167
train.py
Executable file → Normal file
@@ -16,26 +16,43 @@ import torch.nn.functional as F
|
||||
|
||||
from torch.utils.data import DataLoader
|
||||
from raft import RAFT
|
||||
from evaluate import validate_sintel, validate_kitti
|
||||
import evaluate
|
||||
import datasets
|
||||
|
||||
from torch.utils.tensorboard import SummaryWriter
|
||||
|
||||
try:
|
||||
from torch.cuda.amp import GradScaler
|
||||
except:
|
||||
# dummy GradScaler for PyTorch < 1.6
|
||||
class GradScaler:
|
||||
def __init__(self):
|
||||
pass
|
||||
def scale(self, loss):
|
||||
return loss
|
||||
def unscale_(self, optimizer):
|
||||
pass
|
||||
def step(self, optimizer):
|
||||
optimizer.step()
|
||||
def update(self):
|
||||
pass
|
||||
|
||||
|
||||
# exclude extremly large displacements
|
||||
MAX_FLOW = 1000
|
||||
SUM_FREQ = 200
|
||||
MAX_FLOW = 500
|
||||
SUM_FREQ = 100
|
||||
VAL_FREQ = 5000
|
||||
|
||||
|
||||
def count_parameters(model):
|
||||
return sum(p.numel() for p in model.parameters() if p.requires_grad)
|
||||
|
||||
def sequence_loss(flow_preds, flow_gt, valid):
|
||||
def sequence_loss(flow_preds, flow_gt, valid, max_flow=MAX_FLOW):
|
||||
""" Loss function defined over sequence of flow predictions """
|
||||
|
||||
n_predictions = len(flow_preds)
|
||||
flow_loss = 0.0
|
||||
|
||||
# exlude invalid pixels and extremely large diplacements
|
||||
valid = (valid >= 0.5) & (flow_gt.abs().sum(dim=1) < MAX_FLOW)
|
||||
mag = torch.sum(flow_gt**2, dim=1).sqrt()
|
||||
valid = (valid >= 0.5) & (mag < max_flow)
|
||||
|
||||
for i in range(n_predictions):
|
||||
i_weight = 0.8**(n_predictions - i - 1)
|
||||
@@ -54,39 +71,22 @@ def sequence_loss(flow_preds, flow_gt, valid):
|
||||
|
||||
return flow_loss, metrics
|
||||
|
||||
def show_image(img):
|
||||
img = img.permute(1,2,0).cpu().numpy()
|
||||
plt.imshow(img/255.0)
|
||||
plt.show()
|
||||
# cv2.imshow('image', img/255.0)
|
||||
# cv2.waitKey()
|
||||
|
||||
def fetch_dataloader(args):
|
||||
""" Create the data loader for the corresponding training set """
|
||||
|
||||
if args.dataset == 'chairs':
|
||||
train_dataset = datasets.FlyingChairs(args, image_size=args.image_size)
|
||||
|
||||
elif args.dataset == 'things':
|
||||
clean_dataset = datasets.SceneFlow(args, image_size=args.image_size, dstype='frames_cleanpass')
|
||||
final_dataset = datasets.SceneFlow(args, image_size=args.image_size, dstype='frames_finalpass')
|
||||
train_dataset = clean_dataset + final_dataset
|
||||
|
||||
elif args.dataset == 'sintel':
|
||||
clean_dataset = datasets.MpiSintel(args, image_size=args.image_size, dstype='clean')
|
||||
final_dataset = datasets.MpiSintel(args, image_size=args.image_size, dstype='final')
|
||||
train_dataset = clean_dataset + final_dataset
|
||||
|
||||
elif args.dataset == 'kitti':
|
||||
train_dataset = datasets.KITTI(args, image_size=args.image_size, is_val=False)
|
||||
|
||||
gpuargs = {'num_workers': 4, 'drop_last' : True}
|
||||
train_loader = DataLoader(train_dataset, batch_size=args.batch_size,
|
||||
pin_memory=True, shuffle=True, **gpuargs)
|
||||
|
||||
print('Training with %d image pairs' % len(train_dataset))
|
||||
return train_loader
|
||||
def count_parameters(model):
|
||||
return sum(p.numel() for p in model.parameters() if p.requires_grad)
|
||||
|
||||
def fetch_optimizer(args, model):
|
||||
""" Create the optimizer and learning rate scheduler """
|
||||
optimizer = optim.AdamW(model.parameters(), lr=args.lr, weight_decay=args.wdecay, eps=args.epsilon)
|
||||
|
||||
scheduler = optim.lr_scheduler.OneCycleLR(optimizer, args.lr, args.num_steps,
|
||||
pct_start=0.2, cycle_momentum=False, anneal_strategy='linear')
|
||||
scheduler = optim.lr_scheduler.OneCycleLR(optimizer, args.lr, args.num_steps+100,
|
||||
pct_start=0.05, cycle_momentum=False, anneal_strategy='linear')
|
||||
|
||||
return optimizer, scheduler
|
||||
|
||||
@@ -97,17 +97,22 @@ class Logger:
|
||||
self.scheduler = scheduler
|
||||
self.total_steps = 0
|
||||
self.running_loss = {}
|
||||
self.writer = None
|
||||
|
||||
def _print_training_status(self):
|
||||
metrics_data = [self.running_loss[k]/SUM_FREQ for k in sorted(self.running_loss.keys())]
|
||||
training_str = "[{:6d}, {:10.7f}] ".format(self.total_steps+1, self.scheduler.get_lr()[0])
|
||||
training_str = "[{:6d}, {:10.7f}] ".format(self.total_steps+1, self.scheduler.get_last_lr()[0])
|
||||
metrics_str = ("{:10.4f}, "*len(metrics_data)).format(*metrics_data)
|
||||
|
||||
# print the training status
|
||||
print(training_str + metrics_str)
|
||||
|
||||
for key in self.running_loss:
|
||||
self.running_loss[key] = 0.0
|
||||
if self.writer is None:
|
||||
self.writer = SummaryWriter()
|
||||
|
||||
for k in self.running_loss:
|
||||
self.writer.add_scalar(k, self.running_loss[k]/SUM_FREQ, self.total_steps)
|
||||
self.running_loss[k] = 0.0
|
||||
|
||||
def push(self, metrics):
|
||||
self.total_steps += 1
|
||||
@@ -122,56 +127,95 @@ class Logger:
|
||||
self._print_training_status()
|
||||
self.running_loss = {}
|
||||
|
||||
def write_dict(self, results):
|
||||
if self.writer is None:
|
||||
self.writer = SummaryWriter()
|
||||
|
||||
for key in results:
|
||||
self.writer.add_scalar(key, results[key], self.total_steps)
|
||||
|
||||
def close(self):
|
||||
self.writer.close()
|
||||
|
||||
|
||||
def train(args):
|
||||
|
||||
model = RAFT(args)
|
||||
model = nn.DataParallel(model)
|
||||
model = nn.DataParallel(RAFT(args), device_ids=args.gpus)
|
||||
print("Parameter Count: %d" % count_parameters(model))
|
||||
|
||||
if args.restore_ckpt is not None:
|
||||
model.load_state_dict(torch.load(args.restore_ckpt))
|
||||
model.load_state_dict(torch.load(args.restore_ckpt), strict=False)
|
||||
|
||||
model.cuda()
|
||||
model.train()
|
||||
|
||||
if 'chairs' not in args.dataset:
|
||||
|
||||
if args.stage != 'chairs':
|
||||
model.module.freeze_bn()
|
||||
|
||||
train_loader = fetch_dataloader(args)
|
||||
train_loader = datasets.fetch_dataloader(args)
|
||||
optimizer, scheduler = fetch_optimizer(args, model)
|
||||
|
||||
total_steps = 0
|
||||
scaler = GradScaler(enabled=args.mixed_precision)
|
||||
logger = Logger(model, scheduler)
|
||||
|
||||
VAL_FREQ = 5000
|
||||
add_noise = True
|
||||
|
||||
should_keep_training = True
|
||||
while should_keep_training:
|
||||
|
||||
for i_batch, data_blob in enumerate(train_loader):
|
||||
optimizer.zero_grad()
|
||||
image1, image2, flow, valid = [x.cuda() for x in data_blob]
|
||||
|
||||
optimizer.zero_grad()
|
||||
flow_predictions = model(image1, image2, iters=args.iters)
|
||||
|
||||
# show_image(image1[0])
|
||||
# show_image(image2[0])
|
||||
|
||||
if args.add_noise:
|
||||
stdv = np.random.uniform(0.0, 5.0)
|
||||
image1 = (image1 + stdv * torch.randn(*image1.shape).cuda()).clamp(0.0, 255.0)
|
||||
image2 = (image2 + stdv * torch.randn(*image2.shape).cuda()).clamp(0.0, 255.0)
|
||||
|
||||
flow_predictions = model(image1, image2, iters=args.iters)
|
||||
|
||||
loss, metrics = sequence_loss(flow_predictions, flow, valid)
|
||||
loss.backward()
|
||||
scaler.scale(loss).backward()
|
||||
|
||||
scaler.unscale_(optimizer)
|
||||
torch.nn.utils.clip_grad_norm_(model.parameters(), args.clip)
|
||||
optimizer.step()
|
||||
|
||||
scaler.step(optimizer)
|
||||
scheduler.step()
|
||||
total_steps += 1
|
||||
|
||||
scaler.update()
|
||||
logger.push(metrics)
|
||||
|
||||
if total_steps % VAL_FREQ == VAL_FREQ-1:
|
||||
if total_steps % VAL_FREQ == VAL_FREQ - 1:
|
||||
PATH = 'checkpoints/%d_%s.pth' % (total_steps+1, args.name)
|
||||
torch.save(model.state_dict(), PATH)
|
||||
|
||||
if total_steps == args.num_steps:
|
||||
results = {}
|
||||
for val_dataset in args.validation:
|
||||
if val_dataset == 'chairs':
|
||||
results.update(evaluate.validate_chairs(model.module))
|
||||
elif val_dataset == 'sintel':
|
||||
results.update(evaluate.validate_sintel(model.module))
|
||||
elif val_dataset == 'kitti':
|
||||
results.update(evaluate.validate_kitti(model.module))
|
||||
|
||||
logger.write_dict(results)
|
||||
|
||||
model.train()
|
||||
if args.stage != 'chairs':
|
||||
model.module.freeze_bn()
|
||||
|
||||
total_steps += 1
|
||||
|
||||
if total_steps > args.num_steps:
|
||||
should_keep_training = False
|
||||
break
|
||||
|
||||
|
||||
logger.close()
|
||||
PATH = 'checkpoints/%s.pth' % args.name
|
||||
torch.save(model.state_dict(), PATH)
|
||||
|
||||
@@ -180,21 +224,25 @@ def train(args):
|
||||
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('--name', default='bla', help="name your experiment")
|
||||
parser.add_argument('--dataset', help="which dataset to use for training")
|
||||
parser.add_argument('--name', default='raft', help="name your experiment")
|
||||
parser.add_argument('--stage', help="determines which dataset to use for training")
|
||||
parser.add_argument('--restore_ckpt', help="restore checkpoint")
|
||||
parser.add_argument('--small', action='store_true', help='use small model')
|
||||
parser.add_argument('--validation', type=str, nargs='+')
|
||||
|
||||
parser.add_argument('--lr', type=float, default=0.00002)
|
||||
parser.add_argument('--num_steps', type=int, default=100000)
|
||||
parser.add_argument('--batch_size', type=int, default=6)
|
||||
parser.add_argument('--image_size', type=int, nargs='+', default=[384, 512])
|
||||
parser.add_argument('--gpus', type=int, nargs='+', default=[0,1])
|
||||
parser.add_argument('--mixed_precision', action='store_true', help='use mixed precision')
|
||||
|
||||
parser.add_argument('--iters', type=int, default=12)
|
||||
parser.add_argument('--wdecay', type=float, default=.00005)
|
||||
parser.add_argument('--epsilon', type=float, default=1e-8)
|
||||
parser.add_argument('--clip', type=float, default=1.0)
|
||||
parser.add_argument('--dropout', type=float, default=0.0)
|
||||
parser.add_argument('--add_noise', action='store_true')
|
||||
args = parser.parse_args()
|
||||
|
||||
torch.manual_seed(1234)
|
||||
@@ -203,9 +251,4 @@ if __name__ == '__main__':
|
||||
if not os.path.isdir('checkpoints'):
|
||||
os.mkdir('checkpoints')
|
||||
|
||||
# scale learning rate and batch size by number of GPUs
|
||||
num_gpus = torch.cuda.device_count()
|
||||
args.batch_size = args.batch_size * num_gpus
|
||||
args.lr = args.lr * num_gpus
|
||||
|
||||
train(args)
|
||||
train(args)
|
||||
Reference in New Issue
Block a user