added upsampling module

This commit is contained in:
Zach Teed
2020-07-25 17:36:17 -06:00
parent dc1220825d
commit a2408eab78
32 changed files with 23559 additions and 619 deletions

View File

@@ -2,7 +2,6 @@ import sys
sys.path.append('core')
from PIL import Image
import cv2
import argparse
import os
import time
@@ -13,88 +12,185 @@ import matplotlib.pyplot as plt
import datasets
from utils import flow_viz
from utils import frame_utils
from raft import RAFT
from utils.utils import InputPadder, forward_interpolate
def validate_sintel(args, model, iters=50):
""" Evaluate trained model on Sintel(train) clean + final passes """
@torch.no_grad()
def create_sintel_submission(model, iters=32, warm_start=False, output_path='sintel_submission'):
""" Create submission for the Sintel leaderboard """
model.eval()
pad = 2
for dstype in ['clean', 'final']:
val_dataset = datasets.MpiSintel(args, do_augument=False, dstype=dstype)
test_dataset = datasets.MpiSintel(split='test', aug_params=None, dstype=dstype)
epe_list = []
for i in range(len(val_dataset)):
image1, image2, flow_gt, _ = val_dataset[i]
image1 = image1[None].cuda()
image2 = image2[None].cuda()
image1 = F.pad(image1, [0, 0, pad, pad], mode='replicate')
image2 = F.pad(image2, [0, 0, pad, pad], mode='replicate')
with torch.no_grad():
flow_predictions = model.module(image1, image2, iters=iters)
flow_pr = flow_predictions[-1][0,:,pad:-pad]
epe = torch.sum((flow_pr - flow_gt.cuda())**2, dim=0)
epe = torch.sqrt(epe).mean()
epe_list.append(epe.item())
print("Validation (%s) EPE: %f" % (dstype, np.mean(epe_list)))
def validate_kitti(args, model, iters=32):
""" Evaluate trained model on KITTI (train) """
model.eval()
val_dataset = datasets.KITTI(args, do_augument=False, is_val=True, do_pad=True)
with torch.no_grad():
epe_list, out_list = [], []
for i in range(len(val_dataset)):
image1, image2, flow_gt, valid_gt = val_dataset[i]
image1 = image1[None].cuda()
image2 = image2[None].cuda()
flow_gt = flow_gt.cuda()
valid_gt = valid_gt.cuda()
flow_predictions = model.module(image1, image2, iters=iters)
flow_pr = flow_predictions[-1][0]
epe = torch.sum((flow_pr - flow_gt)**2, dim=0).sqrt()
mag = torch.sum(flow_gt**2, dim=0).sqrt()
flow_prev, sequence_prev = None, None
for test_id in range(len(test_dataset)):
image1, image2, (sequence, frame) = test_dataset[test_id]
if sequence != sequence_prev:
flow_prev = None
epe = epe.view(-1)
mag = mag.view(-1)
val = valid_gt.view(-1) >= 0.5
padder = InputPadder(image1.shape)
image1, image2 = padder.pad(image1[None].cuda(), image2[None].cuda())
out = ((epe > 3.0) & ((epe/mag) > 0.05)).float()
epe_list.append(epe[val].mean().item())
out_list.append(out[val].cpu().numpy())
flow_low, flow_pr = model(image1, image2, iters=iters, flow_init=flow_prev, test_mode=True)
flow = padder.unpad(flow_pr[0]).permute(1, 2, 0).cpu().numpy()
if warm_start:
flow_prev = forward_interpolate(flow_low[0])[None].cuda()
output_dir = os.path.join(output_path, dstype, sequence)
output_file = os.path.join(output_dir, 'frame%04d.flo' % (frame+1))
if not os.path.exists(output_dir):
os.makedirs(output_dir)
frame_utils.writeFlow(output_file, flow)
sequence_prev = sequence
@torch.no_grad()
def create_kitti_submission(model, iters=24, output_path='kitti_submission'):
""" Create submission for the Sintel leaderboard """
model.eval()
test_dataset = datasets.KITTI(split='testing', aug_params=None)
if not os.path.exists(output_path):
os.makedirs(output_path)
for test_id in range(len(test_dataset)):
image1, image2, (frame_id, ) = test_dataset[test_id]
padder = InputPadder(image1.shape)
image1, image2 = padder.pad(image1[None].cuda(), image2[None].cuda())
_, flow_pr = model(image1, image2, iters=iters, test_mode=True)
flow = padder.unpad(flow_pr[0]).permute(1, 2, 0).cpu().numpy()
output_filename = os.path.join(output_path, frame_id)
frame_utils.writeFlowKITTI(output_filename, flow)
@torch.no_grad()
def validate_chairs(model, iters=24):
""" Perform evaluation on the FlyingChairs (test) split """
model.eval()
epe_list = []
val_dataset = datasets.FlyingChairs(split='validation')
for val_id in range(len(val_dataset)):
image1, image2, flow_gt, _ = val_dataset[val_id]
image1 = image1[None].cuda()
image2 = image2[None].cuda()
_, flow_pr = model(image1, image2, iters=iters, test_mode=True)
epe = torch.sum((flow_pr[0].cpu() - flow_gt)**2, dim=0).sqrt()
epe_list.append(epe.view(-1).numpy())
epe = np.mean(np.concatenate(epe_list))
print("Validation Chairs EPE: %f" % epe)
return {'chairs': epe}
@torch.no_grad()
def validate_sintel(model, iters=32):
""" Peform validation using the Sintel (train) split """
model.eval()
results = {}
for dstype in ['clean', 'final']:
val_dataset = datasets.MpiSintel(split='training', dstype=dstype)
epe_list = []
for val_id in range(len(val_dataset)):
image1, image2, flow_gt, _ = val_dataset[val_id]
image1 = image1[None].cuda()
image2 = image2[None].cuda()
padder = InputPadder(image1.shape)
image1, image2 = padder.pad(image1, image2)
flow_low, flow_pr = model(image1, image2, iters=iters, test_mode=True)
flow = padder.unpad(flow_pr[0]).cpu()
epe = torch.sum((flow - flow_gt)**2, dim=0).sqrt()
epe_list.append(epe.view(-1).numpy())
epe_all = np.concatenate(epe_list)
epe = np.mean(epe_all)
px1 = np.mean(epe_all<1)
px3 = np.mean(epe_all<3)
px5 = np.mean(epe_all<5)
print("Validation (%s) EPE: %f, 1px: %f, 3px: %f, 5px: %f" % (dstype, epe, px1, px3, px5))
results[dstype] = np.mean(epe_list)
return results
@torch.no_grad()
def validate_kitti(model, iters=24):
""" Peform validation using the KITTI-2015 (train) split """
model.eval()
val_dataset = datasets.KITTI(split='training')
out_list, epe_list = [], []
for val_id in range(len(val_dataset)):
image1, image2, flow_gt, valid_gt = val_dataset[val_id]
image1 = image1[None].cuda()
image2 = image2[None].cuda()
padder = InputPadder(image1.shape)
image1, image2 = padder.pad(image1, image2)
flow_low, flow_pr = model(image1, image2, iters=iters, test_mode=True)
flow = padder.unpad(flow_pr[0]).cpu()
epe = torch.sum((flow - flow_gt)**2, dim=0).sqrt()
mag = torch.sum(flow_gt**2, dim=0).sqrt()
epe = epe.view(-1)
mag = mag.view(-1)
val = valid_gt.view(-1) >= 0.5
out = ((epe > 3.0) & ((epe/mag) > 0.05)).float()
epe_list.append(epe[val].mean().item())
out_list.append(out[val].cpu().numpy())
epe_list = np.array(epe_list)
out_list = np.concatenate(out_list)
epe = np.mean(epe_list)
f1 = 100 * np.mean(out_list)
print("Validation KITTI: %f, %f" % (np.mean(epe_list), 100*np.mean(out_list)))
print("Validation KITTI: %f, %f" % (epe, f1))
return {'kitti-epe': epe, 'kitti-f1': f1}
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--model', help="restore checkpoint")
parser.add_argument('--dataset', help="dataset for evaluation")
parser.add_argument('--small', action='store_true', help='use small model')
parser.add_argument('--sintel_iters', type=int, default=50)
parser.add_argument('--kitti_iters', type=int, default=32)
parser.add_argument('--mixed_precision', action='store_true', help='use mixed precision')
args = parser.parse_args()
model = RAFT(args)
model = torch.nn.DataParallel(model)
model = torch.nn.DataParallel(RAFT(args))
model.load_state_dict(torch.load(args.model))
model.to('cuda')
model.cuda()
model.eval()
validate_sintel(args, model, args.sintel_iters)
validate_kitti(args, model, args.kitti_iters)
# create_sintel_submission(model.module, warm_start=True)
# create_kitti_submission(model.module)
with torch.no_grad():
if args.dataset == 'chairs':
validate_chairs(model.module)
elif args.dataset == 'sintel':
validate_sintel(model.module)
elif args.dataset == 'kitti':
validate_kitti(model.module)