# Copyright 2021 Samsung Electronics Co., Ltd. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at import time # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================= import numpy as np import torch from . import measure def get_score(net, x, target, device, split_data): result_list = [] def forward_hook(module, data_input, data_output): norm = torch.norm(data_input[0]) result_list.append(norm) net.classifier.register_forward_hook(forward_hook) N = x.shape[0] for sp in range(split_data): st = sp * N // split_data en = (sp + 1) * N // split_data y = net(x[st:en]) n = result_list[0].item() result_list.clear() return n @measure('norm', bn=True) def compute_norm(net, inputs, targets, split_data=1, loss_fn=None): device = inputs.device # Compute gradients (but don't apply them) net.zero_grad() # print('var:', feature.shape) try: norm, t = get_score(net, inputs, targets, device, split_data=split_data) except Exception as e: print(e) norm, t = np.nan, None # print(jc) # print(f'norm time: {t} s') return norm, t