upload
This commit is contained in:
19
zero-cost-nas/foresight/models/__init__.py
Normal file
19
zero-cost-nas/foresight/models/__init__.py
Normal file
@@ -0,0 +1,19 @@
|
||||
# Copyright 2021 Samsung Electronics Co., Ltd.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# =============================================================================
|
||||
|
||||
from os.path import dirname, basename, isfile, join
|
||||
import glob
|
||||
modules = glob.glob(join(dirname(__file__), "*.py"))
|
||||
__all__ = [ basename(f)[:-3] for f in modules if isfile(f) and not f.endswith('__init__.py')]
|
251
zero-cost-nas/foresight/models/nasbench1.py
Normal file
251
zero-cost-nas/foresight/models/nasbench1.py
Normal file
@@ -0,0 +1,251 @@
|
||||
# Copyright 2021 Samsung Electronics Co., Ltd.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# =============================================================================
|
||||
|
||||
"""Builds the Pytorch computational graph.
|
||||
Tensors flowing into a single vertex are added together for all vertices
|
||||
except the output, which is concatenated instead. Tensors flowing out of input
|
||||
are always added.
|
||||
If interior edge channels don't match, drop the extra channels (channels are
|
||||
guaranteed non-decreasing). Tensors flowing out of the input as always
|
||||
projected instead.
|
||||
"""
|
||||
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
import numpy as np
|
||||
import math
|
||||
|
||||
from .nasbench1_ops import *
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
class Network(nn.Module):
|
||||
def __init__(self, spec, stem_out, num_stacks, num_mods, num_classes, bn=True):
|
||||
super(Network, self).__init__()
|
||||
|
||||
self.spec=spec
|
||||
self.stem_out=stem_out
|
||||
self.num_stacks=num_stacks
|
||||
self.num_mods=num_mods
|
||||
self.num_classes=num_classes
|
||||
|
||||
self.layers = nn.ModuleList([])
|
||||
|
||||
in_channels = 3
|
||||
out_channels = stem_out
|
||||
|
||||
# initial stem convolution
|
||||
stem_conv = ConvBnRelu(in_channels, out_channels, 3, 1, 1, bn=bn)
|
||||
self.layers.append(stem_conv)
|
||||
|
||||
in_channels = out_channels
|
||||
for stack_num in range(num_stacks):
|
||||
if stack_num > 0:
|
||||
downsample = nn.MaxPool2d(kernel_size=2, stride=2)
|
||||
self.layers.append(downsample)
|
||||
|
||||
out_channels *= 2
|
||||
|
||||
for _ in range(num_mods):
|
||||
cell = Cell(spec, in_channels, out_channels, bn=bn)
|
||||
self.layers.append(cell)
|
||||
in_channels = out_channels
|
||||
|
||||
self.classifier = nn.Linear(out_channels, num_classes)
|
||||
|
||||
self._initialize_weights()
|
||||
|
||||
def forward(self, x):
|
||||
for _, layer in enumerate(self.layers):
|
||||
x = layer(x)
|
||||
out = torch.mean(x, (2, 3))
|
||||
out = self.classifier(out)
|
||||
|
||||
return out
|
||||
|
||||
def get_prunable_copy(self, bn=False):
|
||||
|
||||
model_new = Network(self.spec, self.stem_out, self.num_stacks, self.num_mods, self.num_classes, bn=bn)
|
||||
|
||||
#TODO this is quite brittle and doesn't work with nn.Sequential when bn is different
|
||||
# it is only required to maintain initialization -- maybe init after get_punable_copy?
|
||||
model_new.load_state_dict(self.state_dict(), strict=False)
|
||||
model_new.train()
|
||||
|
||||
return model_new
|
||||
|
||||
def _initialize_weights(self):
|
||||
for m in self.modules():
|
||||
if isinstance(m, nn.Conv2d):
|
||||
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
|
||||
m.weight.data.normal_(0, math.sqrt(2.0 / n))
|
||||
if m.bias is not None:
|
||||
m.bias.data.zero_()
|
||||
elif isinstance(m, nn.BatchNorm2d):
|
||||
m.weight.data.fill_(1)
|
||||
m.bias.data.zero_()
|
||||
elif isinstance(m, nn.Linear):
|
||||
n = m.weight.size(1)
|
||||
m.weight.data.normal_(0, 0.01)
|
||||
m.bias.data.zero_()
|
||||
|
||||
class Cell(nn.Module):
|
||||
"""
|
||||
Builds the model using the adjacency matrix and op labels specified. Channels
|
||||
controls the module output channel count but the interior channels are
|
||||
determined via equally splitting the channel count whenever there is a
|
||||
concatenation of Tensors.
|
||||
"""
|
||||
def __init__(self, spec, in_channels, out_channels, bn=True):
|
||||
super(Cell, self).__init__()
|
||||
|
||||
self.spec = spec
|
||||
self.num_vertices = np.shape(self.spec.matrix)[0]
|
||||
|
||||
# vertex_channels[i] = number of output channels of vertex i
|
||||
self.vertex_channels = ComputeVertexChannels(in_channels, out_channels, self.spec.matrix)
|
||||
#self.vertex_channels = [in_channels] + [out_channels] * (self.num_vertices - 1)
|
||||
|
||||
# operation for each node
|
||||
self.vertex_op = nn.ModuleList([None])
|
||||
for t in range(1, self.num_vertices-1):
|
||||
op = OP_MAP[spec.ops[t]](self.vertex_channels[t], self.vertex_channels[t], bn=bn)
|
||||
self.vertex_op.append(op)
|
||||
|
||||
# operation for input on each vertex
|
||||
self.input_op = nn.ModuleList([None])
|
||||
for t in range(1, self.num_vertices):
|
||||
if self.spec.matrix[0, t]:
|
||||
self.input_op.append(Projection(in_channels, self.vertex_channels[t], bn=bn))
|
||||
else:
|
||||
self.input_op.append(None)
|
||||
|
||||
def forward(self, x):
|
||||
tensors = [x]
|
||||
|
||||
out_concat = []
|
||||
for t in range(1, self.num_vertices-1):
|
||||
fan_in = [Truncate(tensors[src], self.vertex_channels[t]) for src in range(1, t) if self.spec.matrix[src, t]]
|
||||
|
||||
if self.spec.matrix[0, t]:
|
||||
fan_in.append(self.input_op[t](x))
|
||||
|
||||
# perform operation on node
|
||||
#vertex_input = torch.stack(fan_in, dim=0).sum(dim=0)
|
||||
vertex_input = sum(fan_in)
|
||||
#vertex_input = sum(fan_in) / len(fan_in)
|
||||
vertex_output = self.vertex_op[t](vertex_input)
|
||||
|
||||
tensors.append(vertex_output)
|
||||
if self.spec.matrix[t, self.num_vertices-1]:
|
||||
out_concat.append(tensors[t])
|
||||
|
||||
if not out_concat:
|
||||
assert self.spec.matrix[0, self.num_vertices-1]
|
||||
outputs = self.input_op[self.num_vertices-1](tensors[0])
|
||||
else:
|
||||
if len(out_concat) == 1:
|
||||
outputs = out_concat[0]
|
||||
else:
|
||||
outputs = torch.cat(out_concat, 1)
|
||||
|
||||
if self.spec.matrix[0, self.num_vertices-1]:
|
||||
outputs += self.input_op[self.num_vertices-1](tensors[0])
|
||||
|
||||
#if self.spec.matrix[0, self.num_vertices-1]:
|
||||
# out_concat.append(self.input_op[self.num_vertices-1](tensors[0]))
|
||||
#outputs = sum(out_concat) / len(out_concat)
|
||||
|
||||
return outputs
|
||||
|
||||
def Projection(in_channels, out_channels, bn=True):
|
||||
"""1x1 projection (as in ResNet) followed by batch normalization and ReLU."""
|
||||
return ConvBnRelu(in_channels, out_channels, 1, bn=bn)
|
||||
|
||||
def Truncate(inputs, channels):
|
||||
"""Slice the inputs to channels if necessary."""
|
||||
input_channels = inputs.size()[1]
|
||||
if input_channels < channels:
|
||||
raise ValueError('input channel < output channels for truncate')
|
||||
elif input_channels == channels:
|
||||
return inputs # No truncation necessary
|
||||
else:
|
||||
# Truncation should only be necessary when channel division leads to
|
||||
# vertices with +1 channels. The input vertex should always be projected to
|
||||
# the minimum channel count.
|
||||
assert input_channels - channels == 1
|
||||
return inputs[:, :channels, :, :]
|
||||
|
||||
def ComputeVertexChannels(in_channels, out_channels, matrix):
|
||||
"""Computes the number of channels at every vertex.
|
||||
Given the input channels and output channels, this calculates the number of
|
||||
channels at each interior vertex. Interior vertices have the same number of
|
||||
channels as the max of the channels of the vertices it feeds into. The output
|
||||
channels are divided amongst the vertices that are directly connected to it.
|
||||
When the division is not even, some vertices may receive an extra channel to
|
||||
compensate.
|
||||
Returns:
|
||||
list of channel counts, in order of the vertices.
|
||||
"""
|
||||
num_vertices = np.shape(matrix)[0]
|
||||
|
||||
vertex_channels = [0] * num_vertices
|
||||
vertex_channels[0] = in_channels
|
||||
vertex_channels[num_vertices - 1] = out_channels
|
||||
|
||||
if num_vertices == 2:
|
||||
# Edge case where module only has input and output vertices
|
||||
return vertex_channels
|
||||
|
||||
# Compute the in-degree ignoring input, axis 0 is the src vertex and axis 1 is
|
||||
# the dst vertex. Summing over 0 gives the in-degree count of each vertex.
|
||||
in_degree = np.sum(matrix[1:], axis=0)
|
||||
interior_channels = out_channels // in_degree[num_vertices - 1]
|
||||
correction = out_channels % in_degree[num_vertices - 1] # Remainder to add
|
||||
|
||||
# Set channels of vertices that flow directly to output
|
||||
for v in range(1, num_vertices - 1):
|
||||
if matrix[v, num_vertices - 1]:
|
||||
vertex_channels[v] = interior_channels
|
||||
if correction:
|
||||
vertex_channels[v] += 1
|
||||
correction -= 1
|
||||
|
||||
# Set channels for all other vertices to the max of the out edges, going
|
||||
# backwards. (num_vertices - 2) index skipped because it only connects to
|
||||
# output.
|
||||
for v in range(num_vertices - 3, 0, -1):
|
||||
if not matrix[v, num_vertices - 1]:
|
||||
for dst in range(v + 1, num_vertices - 1):
|
||||
if matrix[v, dst]:
|
||||
vertex_channels[v] = max(vertex_channels[v], vertex_channels[dst])
|
||||
assert vertex_channels[v] > 0
|
||||
|
||||
# Sanity check, verify that channels never increase and final channels add up.
|
||||
final_fan_in = 0
|
||||
for v in range(1, num_vertices - 1):
|
||||
if matrix[v, num_vertices - 1]:
|
||||
final_fan_in += vertex_channels[v]
|
||||
for dst in range(v + 1, num_vertices - 1):
|
||||
if matrix[v, dst]:
|
||||
assert vertex_channels[v] >= vertex_channels[dst]
|
||||
assert final_fan_in == out_channels or num_vertices == 2
|
||||
# num_vertices == 2 means only input/output nodes, so 0 fan-in
|
||||
|
||||
return vertex_channels
|
83
zero-cost-nas/foresight/models/nasbench1_ops.py
Normal file
83
zero-cost-nas/foresight/models/nasbench1_ops.py
Normal file
@@ -0,0 +1,83 @@
|
||||
# Copyright 2021 Samsung Electronics Co., Ltd.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# =============================================================================
|
||||
|
||||
"""Base operations used by the modules in this search space."""
|
||||
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
class ConvBnRelu(nn.Module):
|
||||
def __init__(self, in_channels, out_channels, kernel_size=1, stride=1, padding=0, bn=True):
|
||||
super(ConvBnRelu, self).__init__()
|
||||
|
||||
if bn:
|
||||
self.conv_bn_relu = nn.Sequential(
|
||||
nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding, bias=False),
|
||||
nn.BatchNorm2d(out_channels),
|
||||
nn.ReLU(inplace=False)
|
||||
)
|
||||
else:
|
||||
self.conv_bn_relu = nn.Sequential(
|
||||
nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding, bias=False),
|
||||
nn.ReLU(inplace=False)
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
return self.conv_bn_relu(x)
|
||||
|
||||
class Conv3x3BnRelu(nn.Module):
|
||||
"""3x3 convolution with batch norm and ReLU activation."""
|
||||
def __init__(self, in_channels, out_channels, bn=True):
|
||||
super(Conv3x3BnRelu, self).__init__()
|
||||
|
||||
self.conv3x3 = ConvBnRelu(in_channels, out_channels, 3, 1, 1, bn=bn)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.conv3x3(x)
|
||||
return x
|
||||
|
||||
class Conv1x1BnRelu(nn.Module):
|
||||
"""1x1 convolution with batch norm and ReLU activation."""
|
||||
def __init__(self, in_channels, out_channels, bn=True):
|
||||
super(Conv1x1BnRelu, self).__init__()
|
||||
|
||||
self.conv1x1 = ConvBnRelu(in_channels, out_channels, 1, 1, 0, bn=bn)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.conv1x1(x)
|
||||
return x
|
||||
|
||||
class MaxPool3x3(nn.Module):
|
||||
"""3x3 max pool with no subsampling."""
|
||||
def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, padding=1, bn=None):
|
||||
super(MaxPool3x3, self).__init__()
|
||||
|
||||
self.maxpool = nn.MaxPool2d(kernel_size, stride, padding)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.maxpool(x)
|
||||
return x
|
||||
|
||||
# Commas should not be used in op names
|
||||
OP_MAP = {
|
||||
'conv3x3-bn-relu': Conv3x3BnRelu,
|
||||
'conv1x1-bn-relu': Conv1x1BnRelu,
|
||||
'maxpool3x3': MaxPool3x3
|
||||
}
|
294
zero-cost-nas/foresight/models/nasbench1_spec.py
Normal file
294
zero-cost-nas/foresight/models/nasbench1_spec.py
Normal file
@@ -0,0 +1,294 @@
|
||||
# Copyright 2021 Samsung Electronics Co., Ltd.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# =============================================================================
|
||||
|
||||
"""Model specification for module connectivity individuals.
|
||||
This module handles pruning the unused parts of the computation graph but should
|
||||
avoid creating any TensorFlow models (this is done inside model_builder.py).
|
||||
"""
|
||||
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
import copy
|
||||
import hashlib
|
||||
import itertools
|
||||
import numpy as np
|
||||
|
||||
|
||||
# Graphviz is optional and only required for visualization.
|
||||
try:
|
||||
import graphviz # pylint: disable=g-import-not-at-top
|
||||
except ImportError:
|
||||
pass
|
||||
|
||||
def _ToModelSpec(mat, ops):
|
||||
return ModelSpec(mat, ops)
|
||||
|
||||
def gen_is_edge_fn(bits):
|
||||
"""Generate a boolean function for the edge connectivity.
|
||||
Given a bitstring FEDCBA and a 4x4 matrix, the generated matrix is
|
||||
[[0, A, B, D],
|
||||
[0, 0, C, E],
|
||||
[0, 0, 0, F],
|
||||
[0, 0, 0, 0]]
|
||||
Note that this function is agnostic to the actual matrix dimension due to
|
||||
order in which elements are filled out (column-major, starting from least
|
||||
significant bit). For example, the same FEDCBA bitstring (0-padded) on a 5x5
|
||||
matrix is
|
||||
[[0, A, B, D, 0],
|
||||
[0, 0, C, E, 0],
|
||||
[0, 0, 0, F, 0],
|
||||
[0, 0, 0, 0, 0],
|
||||
[0, 0, 0, 0, 0]]
|
||||
Args:
|
||||
bits: integer which will be interpreted as a bit mask.
|
||||
Returns:
|
||||
vectorized function that returns True when an edge is present.
|
||||
"""
|
||||
def is_edge(x, y):
|
||||
"""Is there an edge from x to y (0-indexed)?"""
|
||||
if x >= y:
|
||||
return 0
|
||||
# Map x, y to index into bit string
|
||||
index = x + (y * (y - 1) // 2)
|
||||
return (bits >> index) % 2 == 1
|
||||
|
||||
return np.vectorize(is_edge)
|
||||
|
||||
|
||||
def is_full_dag(matrix):
|
||||
"""Full DAG == all vertices on a path from vert 0 to (V-1).
|
||||
i.e. no disconnected or "hanging" vertices.
|
||||
It is sufficient to check for:
|
||||
1) no rows of 0 except for row V-1 (only output vertex has no out-edges)
|
||||
2) no cols of 0 except for col 0 (only input vertex has no in-edges)
|
||||
Args:
|
||||
matrix: V x V upper-triangular adjacency matrix
|
||||
Returns:
|
||||
True if the there are no dangling vertices.
|
||||
"""
|
||||
shape = np.shape(matrix)
|
||||
|
||||
rows = matrix[:shape[0]-1, :] == 0
|
||||
rows = np.all(rows, axis=1) # Any row with all 0 will be True
|
||||
rows_bad = np.any(rows)
|
||||
|
||||
cols = matrix[:, 1:] == 0
|
||||
cols = np.all(cols, axis=0) # Any col with all 0 will be True
|
||||
cols_bad = np.any(cols)
|
||||
|
||||
return (not rows_bad) and (not cols_bad)
|
||||
|
||||
|
||||
def num_edges(matrix):
|
||||
"""Computes number of edges in adjacency matrix."""
|
||||
return np.sum(matrix)
|
||||
|
||||
|
||||
def hash_module(matrix, labeling):
|
||||
"""Computes a graph-invariance MD5 hash of the matrix and label pair.
|
||||
Args:
|
||||
matrix: np.ndarray square upper-triangular adjacency matrix.
|
||||
labeling: list of int labels of length equal to both dimensions of
|
||||
matrix.
|
||||
Returns:
|
||||
MD5 hash of the matrix and labeling.
|
||||
"""
|
||||
vertices = np.shape(matrix)[0]
|
||||
in_edges = np.sum(matrix, axis=0).tolist()
|
||||
out_edges = np.sum(matrix, axis=1).tolist()
|
||||
|
||||
assert len(in_edges) == len(out_edges) == len(labeling)
|
||||
hashes = list(zip(out_edges, in_edges, labeling))
|
||||
hashes = [hashlib.md5(str(h).encode('utf-8')).hexdigest() for h in hashes]
|
||||
# Computing this up to the diameter is probably sufficient but since the
|
||||
# operation is fast, it is okay to repeat more times.
|
||||
for _ in range(vertices):
|
||||
new_hashes = []
|
||||
for v in range(vertices):
|
||||
in_neighbors = [hashes[w] for w in range(vertices) if matrix[w, v]]
|
||||
out_neighbors = [hashes[w] for w in range(vertices) if matrix[v, w]]
|
||||
new_hashes.append(hashlib.md5(
|
||||
(''.join(sorted(in_neighbors)) + '|' +
|
||||
''.join(sorted(out_neighbors)) + '|' +
|
||||
hashes[v]).encode('utf-8')).hexdigest())
|
||||
hashes = new_hashes
|
||||
fingerprint = hashlib.md5(str(sorted(hashes)).encode('utf-8')).hexdigest()
|
||||
|
||||
return fingerprint
|
||||
|
||||
|
||||
def permute_graph(graph, label, permutation):
|
||||
"""Permutes the graph and labels based on permutation.
|
||||
Args:
|
||||
graph: np.ndarray adjacency matrix.
|
||||
label: list of labels of same length as graph dimensions.
|
||||
permutation: a permutation list of ints of same length as graph dimensions.
|
||||
Returns:
|
||||
np.ndarray where vertex permutation[v] is vertex v from the original graph
|
||||
"""
|
||||
# vertex permutation[v] in new graph is vertex v in the old graph
|
||||
forward_perm = zip(permutation, list(range(len(permutation))))
|
||||
inverse_perm = [x[1] for x in sorted(forward_perm)]
|
||||
edge_fn = lambda x, y: graph[inverse_perm[x], inverse_perm[y]] == 1
|
||||
new_matrix = np.fromfunction(np.vectorize(edge_fn),
|
||||
(len(label), len(label)),
|
||||
dtype=np.int8)
|
||||
new_label = [label[inverse_perm[i]] for i in range(len(label))]
|
||||
return new_matrix, new_label
|
||||
|
||||
|
||||
def is_isomorphic(graph1, graph2):
|
||||
"""Exhaustively checks if 2 graphs are isomorphic."""
|
||||
matrix1, label1 = np.array(graph1[0]), graph1[1]
|
||||
matrix2, label2 = np.array(graph2[0]), graph2[1]
|
||||
assert np.shape(matrix1) == np.shape(matrix2)
|
||||
assert len(label1) == len(label2)
|
||||
|
||||
vertices = np.shape(matrix1)[0]
|
||||
# Note: input and output in our constrained graphs always map to themselves
|
||||
# but this script does not enforce that.
|
||||
for perm in itertools.permutations(range(0, vertices)):
|
||||
pmatrix1, plabel1 = permute_graph(matrix1, label1, perm)
|
||||
if np.array_equal(pmatrix1, matrix2) and plabel1 == label2:
|
||||
return True
|
||||
|
||||
return False
|
||||
|
||||
class ModelSpec(object):
|
||||
"""Model specification given adjacency matrix and labeling."""
|
||||
|
||||
def __init__(self, matrix, ops, data_format='channels_last'):
|
||||
"""Initialize the module spec.
|
||||
Args:
|
||||
matrix: ndarray or nested list with shape [V, V] for the adjacency matrix.
|
||||
ops: V-length list of labels for the base ops used. The first and last
|
||||
elements are ignored because they are the input and output vertices
|
||||
which have no operations. The elements are retained to keep consistent
|
||||
indexing.
|
||||
data_format: channels_last or channels_first.
|
||||
Raises:
|
||||
ValueError: invalid matrix or ops
|
||||
"""
|
||||
if not isinstance(matrix, np.ndarray):
|
||||
matrix = np.array(matrix)
|
||||
shape = np.shape(matrix)
|
||||
if len(shape) != 2 or shape[0] != shape[1]:
|
||||
raise ValueError('matrix must be square')
|
||||
if shape[0] != len(ops):
|
||||
raise ValueError('length of ops must match matrix dimensions')
|
||||
if not is_upper_triangular(matrix):
|
||||
raise ValueError('matrix must be upper triangular')
|
||||
|
||||
# Both the original and pruned matrices are deep copies of the matrix and
|
||||
# ops so any changes to those after initialization are not recognized by the
|
||||
# spec.
|
||||
self.original_matrix = copy.deepcopy(matrix)
|
||||
self.original_ops = copy.deepcopy(ops)
|
||||
|
||||
self.matrix = copy.deepcopy(matrix)
|
||||
self.ops = copy.deepcopy(ops)
|
||||
self.valid_spec = True
|
||||
self._prune()
|
||||
|
||||
self.data_format = data_format
|
||||
|
||||
def _prune(self):
|
||||
"""Prune the extraneous parts of the graph.
|
||||
General procedure:
|
||||
1) Remove parts of graph not connected to input.
|
||||
2) Remove parts of graph not connected to output.
|
||||
3) Reorder the vertices so that they are consecutive after steps 1 and 2.
|
||||
These 3 steps can be combined by deleting the rows and columns of the
|
||||
vertices that are not reachable from both the input and output (in reverse).
|
||||
"""
|
||||
num_vertices = np.shape(self.original_matrix)[0]
|
||||
|
||||
# DFS forward from input
|
||||
visited_from_input = set([0])
|
||||
frontier = [0]
|
||||
while frontier:
|
||||
top = frontier.pop()
|
||||
for v in range(top + 1, num_vertices):
|
||||
if self.original_matrix[top, v] and v not in visited_from_input:
|
||||
visited_from_input.add(v)
|
||||
frontier.append(v)
|
||||
|
||||
# DFS backward from output
|
||||
visited_from_output = set([num_vertices - 1])
|
||||
frontier = [num_vertices - 1]
|
||||
while frontier:
|
||||
top = frontier.pop()
|
||||
for v in range(0, top):
|
||||
if self.original_matrix[v, top] and v not in visited_from_output:
|
||||
visited_from_output.add(v)
|
||||
frontier.append(v)
|
||||
|
||||
# Any vertex that isn't connected to both input and output is extraneous to
|
||||
# the computation graph.
|
||||
extraneous = set(range(num_vertices)).difference(
|
||||
visited_from_input.intersection(visited_from_output))
|
||||
|
||||
# If the non-extraneous graph is less than 2 vertices, the input is not
|
||||
# connected to the output and the spec is invalid.
|
||||
if len(extraneous) > num_vertices - 2:
|
||||
self.matrix = None
|
||||
self.ops = None
|
||||
self.valid_spec = False
|
||||
return
|
||||
|
||||
self.matrix = np.delete(self.matrix, list(extraneous), axis=0)
|
||||
self.matrix = np.delete(self.matrix, list(extraneous), axis=1)
|
||||
for index in sorted(extraneous, reverse=True):
|
||||
del self.ops[index]
|
||||
|
||||
def hash_spec(self, canonical_ops):
|
||||
"""Computes the isomorphism-invariant graph hash of this spec.
|
||||
Args:
|
||||
canonical_ops: list of operations in the canonical ordering which they
|
||||
were assigned (i.e. the order provided in the config['available_ops']).
|
||||
Returns:
|
||||
MD5 hash of this spec which can be used to query the dataset.
|
||||
"""
|
||||
# Invert the operations back to integer label indices used in graph gen.
|
||||
labeling = [-1] + [canonical_ops.index(op) for op in self.ops[1:-1]] + [-2]
|
||||
return graph_util.hash_module(self.matrix, labeling)
|
||||
|
||||
def visualize(self):
|
||||
"""Creates a dot graph. Can be visualized in colab directly."""
|
||||
num_vertices = np.shape(self.matrix)[0]
|
||||
g = graphviz.Digraph()
|
||||
g.node(str(0), 'input')
|
||||
for v in range(1, num_vertices - 1):
|
||||
g.node(str(v), self.ops[v])
|
||||
g.node(str(num_vertices - 1), 'output')
|
||||
|
||||
for src in range(num_vertices - 1):
|
||||
for dst in range(src + 1, num_vertices):
|
||||
if self.matrix[src, dst]:
|
||||
g.edge(str(src), str(dst))
|
||||
|
||||
return g
|
||||
|
||||
|
||||
def is_upper_triangular(matrix):
|
||||
"""True if matrix is 0 on diagonal and below."""
|
||||
for src in range(np.shape(matrix)[0]):
|
||||
for dst in range(0, src + 1):
|
||||
if matrix[src, dst] != 0:
|
||||
return False
|
||||
|
||||
return True
|
121
zero-cost-nas/foresight/models/nasbench2.py
Normal file
121
zero-cost-nas/foresight/models/nasbench2.py
Normal file
@@ -0,0 +1,121 @@
|
||||
# Copyright 2021 Samsung Electronics Co., Ltd.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# =============================================================================
|
||||
|
||||
import os
|
||||
import argparse
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from .nasbench2_ops import *
|
||||
|
||||
|
||||
def gen_searchcell_mask_from_arch_str(arch_str):
|
||||
nodes = arch_str.split('+')
|
||||
nodes = [node[1:-1].split('|') for node in nodes]
|
||||
nodes = [[op_and_input.split('~') for op_and_input in node] for node in nodes]
|
||||
|
||||
keep_mask = []
|
||||
for curr_node_idx in range(len(nodes)):
|
||||
for prev_node_idx in range(curr_node_idx+1):
|
||||
_op = [edge[0] for edge in nodes[curr_node_idx] if int(edge[1]) == prev_node_idx]
|
||||
assert len(_op) == 1, 'The arch string does not follow the assumption of 1 connection between two nodes.'
|
||||
for _op_name in OPS.keys():
|
||||
keep_mask.append(_op[0] == _op_name)
|
||||
return keep_mask
|
||||
|
||||
|
||||
def get_model_from_arch_str(arch_str, num_classes, use_bn=True, init_channels=16):
|
||||
keep_mask = gen_searchcell_mask_from_arch_str(arch_str)
|
||||
net = NAS201Model(arch_str=arch_str, num_classes=num_classes, use_bn=use_bn, keep_mask=keep_mask, stem_ch=init_channels)
|
||||
return net
|
||||
|
||||
|
||||
def get_super_model(num_classes, use_bn=True):
|
||||
net = NAS201Model(arch_str=arch_str, num_classes=num_classes, use_bn=use_bn)
|
||||
return net
|
||||
|
||||
|
||||
class NAS201Model(nn.Module):
|
||||
|
||||
def __init__(self, arch_str, num_classes, use_bn=True, keep_mask=None, stem_ch=16):
|
||||
super(NAS201Model, self).__init__()
|
||||
self.arch_str=arch_str
|
||||
self.num_classes=num_classes
|
||||
self.use_bn= use_bn
|
||||
|
||||
self.stem = stem(out_channels=stem_ch, use_bn=use_bn)
|
||||
self.stack_cell1 = nn.Sequential(*[SearchCell(in_channels=stem_ch, out_channels=stem_ch, stride=1, affine=False, track_running_stats=False, use_bn=use_bn, keep_mask=keep_mask) for i in range(5)])
|
||||
self.reduction1 = reduction(in_channels=stem_ch, out_channels=stem_ch*2)
|
||||
self.stack_cell2 = nn.Sequential(*[SearchCell(in_channels=stem_ch*2, out_channels=stem_ch*2, stride=1, affine=False, track_running_stats=False, use_bn=use_bn, keep_mask=keep_mask) for i in range(5)])
|
||||
self.reduction2 = reduction(in_channels=stem_ch*2, out_channels=stem_ch*4)
|
||||
self.stack_cell3 = nn.Sequential(*[SearchCell(in_channels=stem_ch*4, out_channels=stem_ch*4, stride=1, affine=False, track_running_stats=False, use_bn=use_bn, keep_mask=keep_mask) for i in range(5)])
|
||||
self.top = top(in_dims=stem_ch*4, num_classes=num_classes, use_bn=use_bn)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.stem(x)
|
||||
|
||||
x = self.stack_cell1(x)
|
||||
x = self.reduction1(x)
|
||||
|
||||
x = self.stack_cell2(x)
|
||||
x = self.reduction2(x)
|
||||
|
||||
x = self.stack_cell3(x)
|
||||
|
||||
x = self.top(x)
|
||||
return x
|
||||
|
||||
def get_prunable_copy(self, bn=False):
|
||||
model_new = get_model_from_arch_str(self.arch_str, self.num_classes, use_bn=bn)
|
||||
|
||||
#TODO this is quite brittle and doesn't work with nn.Sequential when bn is different
|
||||
# it is only required to maintain initialization -- maybe init after get_punable_copy?
|
||||
model_new.load_state_dict(self.state_dict(), strict=False)
|
||||
model_new.train()
|
||||
|
||||
return model_new
|
||||
|
||||
|
||||
def get_arch_str_from_model(net):
|
||||
search_cell = net.stack_cell1[0].options
|
||||
keep_mask = net.stack_cell1[0].keep_mask
|
||||
num_nodes = net.stack_cell1[0].num_nodes
|
||||
|
||||
nodes = []
|
||||
idx = 0
|
||||
for curr_node in range(num_nodes -1):
|
||||
edges = []
|
||||
for prev_node in range(curr_node+1): # n-1 prev nodes
|
||||
for _op_name in OPS.keys():
|
||||
if keep_mask[idx]:
|
||||
edges.append(f'{_op_name}~{prev_node}')
|
||||
idx += 1
|
||||
node_str = '|'.join(edges)
|
||||
node_str = f'|{node_str}|'
|
||||
nodes.append(node_str)
|
||||
arch_str = '+'.join(nodes)
|
||||
return arch_str
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
arch_str = '|nor_conv_3x3~0|+|none~0|none~1|+|avg_pool_3x3~0|nor_conv_3x3~1|nor_conv_3x3~2|'
|
||||
|
||||
n = get_model_from_arch_str(arch_str=arch_str, num_classes=10)
|
||||
print(n.stack_cell1[0])
|
||||
|
||||
arch_str2 = get_arch_str_from_model(n)
|
||||
print(arch_str)
|
||||
print(arch_str2)
|
||||
print(f'Are the two arch strings same? {arch_str == arch_str2}')
|
164
zero-cost-nas/foresight/models/nasbench2_ops.py
Normal file
164
zero-cost-nas/foresight/models/nasbench2_ops.py
Normal file
@@ -0,0 +1,164 @@
|
||||
# Copyright 2021 Samsung Electronics Co., Ltd.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# =============================================================================
|
||||
|
||||
import os
|
||||
import argparse
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
class ReLUConvBN(nn.Module):
|
||||
|
||||
def __init__(self, in_channels, out_channels, kernel_size, stride, padding, dilation, affine, track_running_stats=True, use_bn=True, name='ReLUConvBN'):
|
||||
super(ReLUConvBN, self).__init__()
|
||||
self.name = name
|
||||
if use_bn:
|
||||
self.op = nn.Sequential(
|
||||
nn.ReLU(inplace=False),
|
||||
nn.Conv2d(in_channels, out_channels, kernel_size, stride=stride, padding=padding, dilation=dilation, bias=not affine),
|
||||
nn.BatchNorm2d(out_channels, affine=affine, track_running_stats=track_running_stats)
|
||||
)
|
||||
else:
|
||||
self.op = nn.Sequential(
|
||||
nn.ReLU(inplace=False),
|
||||
nn.Conv2d(in_channels, out_channels, kernel_size, stride=stride, padding=padding, dilation=dilation, bias=not affine)
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
return self.op(x)
|
||||
|
||||
class Identity(nn.Module):
|
||||
def __init__(self, name='Identity'):
|
||||
self.name = name
|
||||
super(Identity, self).__init__()
|
||||
|
||||
def forward(self, x):
|
||||
return x
|
||||
|
||||
class Zero(nn.Module):
|
||||
|
||||
def __init__(self, stride, name='Zero'):
|
||||
self.name = name
|
||||
super(Zero, self).__init__()
|
||||
self.stride = stride
|
||||
|
||||
def forward(self, x):
|
||||
if self.stride == 1:
|
||||
return x.mul(0.)
|
||||
return x[:,:,::self.stride,::self.stride].mul(0.)
|
||||
|
||||
class POOLING(nn.Module):
|
||||
def __init__(self, kernel_size, stride, padding, name='POOLING'):
|
||||
super(POOLING, self).__init__()
|
||||
self.name = name
|
||||
self.avgpool = nn.AvgPool2d(kernel_size=kernel_size, stride=1, padding=1, count_include_pad=False)
|
||||
|
||||
def forward(self, x):
|
||||
return self.avgpool(x)
|
||||
|
||||
|
||||
class reduction(nn.Module):
|
||||
def __init__(self, in_channels, out_channels):
|
||||
super(reduction, self).__init__()
|
||||
self.residual = nn.Sequential(
|
||||
nn.AvgPool2d(kernel_size=2, stride=2, padding=0),
|
||||
nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=1, stride=1, padding=0, bias=False))
|
||||
|
||||
self.conv_a = ReLUConvBN(in_channels=in_channels, out_channels=out_channels, kernel_size=3, stride=2, padding=1, dilation=1, affine=True, track_running_stats=True)
|
||||
self.conv_b = ReLUConvBN(in_channels=out_channels, out_channels=out_channels, kernel_size=3, stride=1, padding=1, dilation=1, affine=True, track_running_stats=True)
|
||||
|
||||
def forward(self, x):
|
||||
basicblock = self.conv_a(x)
|
||||
basicblock = self.conv_b(basicblock)
|
||||
residual = self.residual(x)
|
||||
return residual + basicblock
|
||||
|
||||
class stem(nn.Module):
|
||||
def __init__(self, out_channels, use_bn=True):
|
||||
super(stem, self).__init__()
|
||||
if use_bn:
|
||||
self.net = nn.Sequential(
|
||||
nn.Conv2d(in_channels=3, out_channels=out_channels, kernel_size=3, padding=1, bias=False),
|
||||
nn.BatchNorm2d(out_channels))
|
||||
else:
|
||||
self.net = nn.Sequential(
|
||||
nn.Conv2d(in_channels=3, out_channels=out_channels, kernel_size=3, padding=1, bias=False)
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
return self.net(x)
|
||||
|
||||
class top(nn.Module):
|
||||
def __init__(self, in_dims, num_classes, use_bn=True):
|
||||
super(top, self).__init__()
|
||||
if use_bn:
|
||||
self.lastact = nn.Sequential(nn.BatchNorm2d(in_dims), nn.ReLU(inplace=True))
|
||||
else:
|
||||
self.lastact = nn.ReLU(inplace=True)
|
||||
self.global_pooling = nn.AdaptiveAvgPool2d(1)
|
||||
self.classifier = nn.Linear(in_dims, num_classes)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.lastact(x)
|
||||
x = self.global_pooling(x)
|
||||
x = x.view(x.size(0), -1)
|
||||
logits = self.classifier(x)
|
||||
return logits
|
||||
|
||||
|
||||
class SearchCell(nn.Module):
|
||||
|
||||
def __init__(self, in_channels, out_channels, stride, affine, track_running_stats, use_bn=True, num_nodes=4, keep_mask=None):
|
||||
super(SearchCell, self).__init__()
|
||||
self.num_nodes = num_nodes
|
||||
self.options = nn.ModuleList()
|
||||
for curr_node in range(self.num_nodes-1):
|
||||
for prev_node in range(curr_node+1):
|
||||
for _op_name in OPS.keys():
|
||||
op = OPS[_op_name](in_channels, out_channels, stride, affine, track_running_stats, use_bn)
|
||||
self.options.append(op)
|
||||
|
||||
if keep_mask is not None:
|
||||
self.keep_mask = keep_mask
|
||||
else:
|
||||
self.keep_mask = [True]*len(self.options)
|
||||
|
||||
def forward(self, x):
|
||||
outs = [x]
|
||||
|
||||
idx = 0
|
||||
for curr_node in range(self.num_nodes-1):
|
||||
edges_in = []
|
||||
for prev_node in range(curr_node+1): # n-1 prev nodes
|
||||
for op_idx in range(len(OPS.keys())):
|
||||
if self.keep_mask[idx]:
|
||||
edges_in.append(self.options[idx](outs[prev_node]))
|
||||
idx += 1
|
||||
node_output = sum(edges_in)
|
||||
outs.append(node_output)
|
||||
|
||||
return outs[-1]
|
||||
|
||||
|
||||
|
||||
OPS = {
|
||||
'none' : lambda in_channels, out_channels, stride, affine, track_running_stats, use_bn: Zero(stride, name='none'),
|
||||
'avg_pool_3x3' : lambda in_channels, out_channels, stride, affine, track_running_stats, use_bn: POOLING(3, 1, 1, name='avg_pool_3x3'),
|
||||
'nor_conv_3x3' : lambda in_channels, out_channels, stride, affine, track_running_stats, use_bn: ReLUConvBN(in_channels, out_channels, 3, 1, 1, 1, affine, track_running_stats, use_bn, name='nor_conv_3x3'),
|
||||
'nor_conv_1x1' : lambda in_channels, out_channels, stride, affine, track_running_stats, use_bn: ReLUConvBN(in_channels, out_channels, 1, 1, 0, 1, affine, track_running_stats, use_bn, name='nor_conv_1x1'),
|
||||
'skip_connect' : lambda in_channels, out_channels, stride, affine, track_running_stats, use_bn: Identity(name='skip_connect'),
|
||||
}
|
||||
|
||||
|
Reference in New Issue
Block a user