import os
from omegaconf import OmegaConf, open_dict

import torch
import torch_geometric.utils
from torch_geometric.utils import to_dense_adj, to_dense_batch

def create_folders(args):
    try:
        os.makedirs('graphs')
        os.makedirs('chains')
    except OSError:
        pass

    try:
        os.makedirs('graphs/' + args.general.name)
        os.makedirs('chains/' + args.general.name)
    except OSError:
        pass

def normalize(X, E, y, norm_values, norm_biases, node_mask):
    X = (X - norm_biases[0]) / norm_values[0]
    E = (E - norm_biases[1]) / norm_values[1]
    y = (y - norm_biases[2]) / norm_values[2]

    diag = torch.eye(E.shape[1], dtype=torch.bool).unsqueeze(0).expand(E.shape[0], -1, -1)
    E[diag] = 0

    return PlaceHolder(X=X, E=E, y=y).mask(node_mask)


def unnormalize(X, E, y, norm_values, norm_biases, node_mask, collapse=False):
    """
    X : node features
    E : edge features
    y : global features`
    norm_values : [norm value X, norm value E, norm value y]
    norm_biases : same order
    node_mask
    """
    X = (X * norm_values[0] + norm_biases[0])
    E = (E * norm_values[1] + norm_biases[1])
    y = y * norm_values[2] + norm_biases[2]

    return PlaceHolder(X=X, E=E, y=y).mask(node_mask, collapse)


def to_dense(x, edge_index, edge_attr, batch, max_num_nodes=None):
    X, node_mask = to_dense_batch(x=x, batch=batch, max_num_nodes=max_num_nodes)
    # node_mask = node_mask.float()
    edge_index, edge_attr = torch_geometric.utils.remove_self_loops(edge_index, edge_attr)
    if max_num_nodes is None:
        max_num_nodes = X.size(1)
    E = to_dense_adj(edge_index=edge_index, batch=batch, edge_attr=edge_attr, max_num_nodes=max_num_nodes)
    E = encode_no_edge(E)
    return PlaceHolder(X=X, E=E, y=None), node_mask


def encode_no_edge(E):
    assert len(E.shape) == 4
    if E.shape[-1] == 0:
        return E
    no_edge = torch.sum(E, dim=3) == 0
    first_elt = E[:, :, :, 0]
    first_elt[no_edge] = 1
    E[:, :, :, 0] = first_elt
    diag = torch.eye(E.shape[1], dtype=torch.bool).unsqueeze(0).expand(E.shape[0], -1, -1)
    E[diag] = 0
    return E


def update_config_with_new_keys(cfg, saved_cfg):
    saved_general = saved_cfg.general
    saved_train = saved_cfg.train
    saved_model = saved_cfg.model
    saved_dataset = saved_cfg.dataset
    
    for key, val in saved_dataset.items():
        OmegaConf.set_struct(cfg.dataset, True)
        with open_dict(cfg.dataset):
            if key not in cfg.dataset.keys():
                setattr(cfg.dataset, key, val)

    for key, val in saved_general.items():
        OmegaConf.set_struct(cfg.general, True)
        with open_dict(cfg.general):
            if key not in cfg.general.keys():
                setattr(cfg.general, key, val)

    OmegaConf.set_struct(cfg.train, True)
    with open_dict(cfg.train):
        for key, val in saved_train.items():
            if key not in cfg.train.keys():
                setattr(cfg.train, key, val)

    OmegaConf.set_struct(cfg.model, True)
    with open_dict(cfg.model):
        for key, val in saved_model.items():
            if key not in cfg.model.keys():
                setattr(cfg.model, key, val)
    return cfg


class PlaceHolder:
    def __init__(self, X, E, y):
        self.X = X
        self.E = E
        self.y = y

    def type_as(self, x: torch.Tensor, categorical: bool = False):
        """ Changes the device and dtype of X, E, y. """
        self.X = self.X.type_as(x)
        self.E = self.E.type_as(x)
        if categorical:
            self.y = self.y.type_as(x)
        return self

    def mask(self, node_mask, collapse=False):
        x_mask = node_mask.unsqueeze(-1)          # bs, n, 1
        e_mask1 = x_mask.unsqueeze(2)             # bs, n, 1, 1
        e_mask2 = x_mask.unsqueeze(1)             # bs, 1, n, 1

        if collapse:
            self.X = torch.argmax(self.X, dim=-1)
            self.E = torch.argmax(self.E, dim=-1)

            self.X[node_mask == 0] = - 1
            self.E[(e_mask1 * e_mask2).squeeze(-1) == 0] = - 1
        else:
            self.X = self.X * x_mask
            self.E = self.E * e_mask1 * e_mask2
            assert torch.allclose(self.E, torch.transpose(self.E, 1, 2))
        return self