from torch.jit import Final
import torch.nn.functional as F
from itertools import repeat
import collections.abc

import torch
import torch.nn as nn

class Attention(nn.Module):
    fast_attn: Final[bool]

    def __init__(
            self,
            dim,
            num_heads=8,
            qkv_bias=False,
            qk_norm=False,
            attn_drop=0,
            proj_drop=0,
            norm_layer=nn.LayerNorm,
    ):
        super().__init__()
        assert dim % num_heads == 0, 'dim should be divisible by num_heads'
        self.num_heads = num_heads
        self.head_dim = dim // num_heads

        self.scale = self.head_dim ** -0.5
        self.fast_attn = hasattr(torch.nn.functional, 'scaled_dot_product_attention')  # FIXME
        assert self.fast_attn, "scaled_dot_product_attention Not implemented"

        self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)

        self.q_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity()
        self.k_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity()
        self.attn_drop = nn.Dropout(attn_drop)

        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)

    def dot_product_attention(self, q, k, v):
        q = q * self.scale
        attn = q @ k.transpose(-2, -1)
        attn_sfmx = attn.softmax(dim=-1)
        attn_sfmx = self.attn_drop(attn_sfmx)
        x = attn_sfmx @ v
        return x, attn
    
    def forward(self, x, node_mask):
        B, N, D = x.shape
        
        # B, head, N, head_dim
        qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4)
        q, k, v = qkv.unbind(0) # B, head, N, head_dim
        q, k = self.q_norm(q), self.k_norm(k)
        
        attn_mask = (node_mask[:, None, :, None] & node_mask[:, None, None, :]).expand(-1, self.num_heads, N, N)
        attn_mask[attn_mask.sum(-1) == 0] = True

        x = F.scaled_dot_product_attention(
            q, k, v,
            dropout_p=self.attn_drop.p,
            attn_mask=attn_mask,
        )

        x = x.transpose(1, 2).reshape(B, N, -1)

        x = self.proj(x)
        x = self.proj_drop(x)

        return x


class Mlp(nn.Module):
    def __init__(
            self,
            in_features,
            hidden_features=None,
            out_features=None,
            act_layer=nn.GELU,
            bias=True,
            drop=0.,
    ):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        bias = to_2tuple(bias)
        drop_probs = to_2tuple(drop)
        linear_layer = nn.Linear

        self.fc1 = linear_layer(in_features, hidden_features, bias=bias[0])
        self.act = act_layer()
        self.drop1 = nn.Dropout(drop_probs[0])
        self.fc2 = linear_layer(hidden_features, out_features, bias=bias[1])
        self.drop2 = nn.Dropout(drop_probs[1])

    def forward(self, x):
        x = self.fc1(x)
        x = self.act(x)
        x = self.drop1(x)
        x = self.fc2(x)
        x = self.drop2(x)
        return x

# From PyTorch internals
def _ntuple(n):
    def parse(x):
        if isinstance(x, collections.abc.Iterable) and not isinstance(x, str):
            return tuple(x)
        return tuple(repeat(x, n))
    return parse

to_2tuple = _ntuple(2)