Compare commits
14 Commits
Author | SHA1 | Date | |
---|---|---|---|
91d4e3c7ad | |||
c867aef5a6 | |||
1ad520d248 | |||
74a629fdcc | |||
94fe13756f | |||
2ac17caa3c | |||
0c60171c71 | |||
97fbdf91c7 | |||
297261d666 | |||
5dccf590e7 | |||
0c4b597dd2 | |||
11d9697e06 | |||
244b159c26 | |||
63ca6c716e |
24
README.md
24
README.md
@@ -1,14 +1,34 @@
|
|||||||
Graph Diffusion Transformer for Multi-Conditional Molecular Generation
|
Graph Diffusion Transformer for Multi-Conditional Molecular Generation
|
||||||
================================================================
|
================================================================
|
||||||
|
|
||||||
|
## Initial Setup
|
||||||
|
|
||||||
|
Please download NASBench201 dataset(NAS-Bench-201-v1_1-096897.pth) from
|
||||||
|
https://drive.google.com/file/d/16Y0UwGisiouVRxW-W5hEtbxmcHw_0hF_/view
|
||||||
|
|
||||||
|
and put it in the `/path/to/repo/graph_dit` folder.
|
||||||
|
|
||||||
|
## Running the code
|
||||||
|
|
||||||
|
start command:
|
||||||
|
``` bash
|
||||||
|
python main.py --config-name=config.yaml \
|
||||||
|
model.ensure_connected=True \
|
||||||
|
dataset.task_name='nasbench201' \
|
||||||
|
dataset.guidance_target='regression'
|
||||||
|
```
|
||||||
|
|
||||||
|
This repository contains the code for the paper "Inverse Molecular Design with Multi-Conditional Diffusion Guidance" by Gang Liu, Jiaxin Xu, Tengfei Luo, and Meng Jiang.
|
||||||
|
|
||||||
|
|
||||||
Paper: https://arxiv.org/abs/2401.13858
|
Paper: https://arxiv.org/abs/2401.13858
|
||||||
|
|
||||||
This is the code for Graph DiT. The denoising model architecture in `graph_dit/models` looks like:
|
<!-- This is the code for Graph DiT. The denoising model architecture in `graph_dit/models` looks like:
|
||||||
|
|
||||||
<div style="display: flex;" markdown="1">
|
<div style="display: flex;" markdown="1">
|
||||||
<img src="asset/reverse.png" style="width: 45%;" alt="Description of the first image">
|
<img src="asset/reverse.png" style="width: 45%;" alt="Description of the first image">
|
||||||
<img src="asset/arch.png" style="width: 45%;" alt="Description of the second image">
|
<img src="asset/arch.png" style="width: 45%;" alt="Description of the second image">
|
||||||
</div>
|
</div> -->
|
||||||
|
|
||||||
|
|
||||||
## Requirements
|
## Requirements
|
||||||
|
@@ -195,15 +195,18 @@ class Graph_DiT(pl.LightningModule):
|
|||||||
# print("Size of the input features Xdim {}, Edim {}, ydim {}".format(self.Xdim, self.Edim, self.ydim))
|
# print("Size of the input features Xdim {}, Edim {}, ydim {}".format(self.Xdim, self.Edim, self.ydim))
|
||||||
|
|
||||||
def on_train_epoch_start(self) -> None:
|
def on_train_epoch_start(self) -> None:
|
||||||
if self.current_epoch / self.trainer.max_epochs in [0.25, 0.5, 0.75, 1.0]:
|
# if self.current_epoch / self.trainer.max_epochs in [0.25, 0.5, 0.75, 1.0]:
|
||||||
print("Starting train epoch {}/{}...".format(self.current_epoch, self.trainer.max_epochs))
|
if self.current_epoch / self.cfg.train.n_epochs in [0.25, 0.5, 0.75, 1.0]:
|
||||||
|
# print("Starting train epoch {}/{}...".format(self.current_epoch, self.trainer.max_epochs))
|
||||||
|
print("Starting train epoch {}/{}...".format(self.current_epoch, self.cfg.train.n_epochs))
|
||||||
self.start_epoch_time = time.time()
|
self.start_epoch_time = time.time()
|
||||||
self.train_loss.reset()
|
self.train_loss.reset()
|
||||||
self.train_metrics.reset()
|
self.train_metrics.reset()
|
||||||
|
|
||||||
def on_train_epoch_end(self) -> None:
|
def on_train_epoch_end(self) -> None:
|
||||||
|
|
||||||
if self.current_epoch / self.trainer.max_epochs in [0.25, 0.5, 0.75, 1.0]:
|
# if self.current_epoch / self.trainer.max_epochs in [0.25, 0.5, 0.75, 1.0]:
|
||||||
|
if self.current_epoch / self.cfg.train.n_epochs in [0.25, 0.5, 0.75, 1.0]:
|
||||||
log = True
|
log = True
|
||||||
else:
|
else:
|
||||||
log = False
|
log = False
|
||||||
@@ -239,8 +242,8 @@ class Graph_DiT(pl.LightningModule):
|
|||||||
|
|
||||||
self.val_X_logp.compute(), self.val_E_logp.compute()]
|
self.val_X_logp.compute(), self.val_E_logp.compute()]
|
||||||
|
|
||||||
if self.current_epoch / self.trainer.max_epochs in [0.25, 0.5, 0.75, 1.0]:
|
# if self.current_epoch / self.trainer.max_epochs in [0.25, 0.5, 0.75, 1.0]:
|
||||||
print(f"Epoch {self.current_epoch}: Val NLL {metrics[0] :.2f} -- Val Atom type KL {metrics[1] :.2f} -- ",
|
print(f"Epoch {self.current_epoch}: Val NLL {metrics[0] :.2f} -- Val Atom type KL {metrics[1] :.2f} -- ",
|
||||||
f"Val Edge type KL: {metrics[2] :.2f}", 'Val loss: %.2f \t Best : %.2f\n' % (metrics[0], self.best_val_nll))
|
f"Val Edge type KL: {metrics[2] :.2f}", 'Val loss: %.2f \t Best : %.2f\n' % (metrics[0], self.best_val_nll))
|
||||||
with open("validation-metrics.csv", "a") as f:
|
with open("validation-metrics.csv", "a") as f:
|
||||||
# save the metrics as csv file
|
# save the metrics as csv file
|
||||||
@@ -286,7 +289,7 @@ class Graph_DiT(pl.LightningModule):
|
|||||||
samples.extend(self.sample_batch(batch_id=ident, batch_size=to_generate, y=batch_y,
|
samples.extend(self.sample_batch(batch_id=ident, batch_size=to_generate, y=batch_y,
|
||||||
save_final=to_save,
|
save_final=to_save,
|
||||||
keep_chain=chains_save,
|
keep_chain=chains_save,
|
||||||
number_chain_steps=self.number_chain_steps))
|
number_chain_steps=self.number_chain_steps)[0])
|
||||||
ident += to_generate
|
ident += to_generate
|
||||||
start_index += to_generate
|
start_index += to_generate
|
||||||
|
|
||||||
@@ -360,7 +363,7 @@ class Graph_DiT(pl.LightningModule):
|
|||||||
batch_y = torch.ones(to_generate, self.ydim_output, device=self.device)
|
batch_y = torch.ones(to_generate, self.ydim_output, device=self.device)
|
||||||
|
|
||||||
cur_sample = self.sample_batch(batch_id, to_generate, batch_y, save_final=to_save,
|
cur_sample = self.sample_batch(batch_id, to_generate, batch_y, save_final=to_save,
|
||||||
keep_chain=chains_save, number_chain_steps=self.number_chain_steps)
|
keep_chain=chains_save, number_chain_steps=self.number_chain_steps)[0]
|
||||||
samples = samples + cur_sample
|
samples = samples + cur_sample
|
||||||
|
|
||||||
all_ys.append(batch_y)
|
all_ys.append(batch_y)
|
||||||
@@ -601,6 +604,9 @@ class Graph_DiT(pl.LightningModule):
|
|||||||
|
|
||||||
assert (E == torch.transpose(E, 1, 2)).all()
|
assert (E == torch.transpose(E, 1, 2)).all()
|
||||||
|
|
||||||
|
total_log_probs = torch.zeros([self.cfg.general.final_model_samples_to_generate,10], device=self.device)
|
||||||
|
# total_log_probs = torch.zeros([self.cfg.general.samples_to_generate,10], device=self.device)
|
||||||
|
|
||||||
# Iteratively sample p(z_s | z_t) for t = 1, ..., T, with s = t - 1.
|
# Iteratively sample p(z_s | z_t) for t = 1, ..., T, with s = t - 1.
|
||||||
for s_int in reversed(range(0, self.T)):
|
for s_int in reversed(range(0, self.T)):
|
||||||
s_array = s_int * torch.ones((batch_size, 1)).type_as(y)
|
s_array = s_int * torch.ones((batch_size, 1)).type_as(y)
|
||||||
@@ -609,21 +615,24 @@ class Graph_DiT(pl.LightningModule):
|
|||||||
t_norm = t_array / self.T
|
t_norm = t_array / self.T
|
||||||
|
|
||||||
# Sample z_s
|
# Sample z_s
|
||||||
sampled_s, discrete_sampled_s = self.sample_p_zs_given_zt(s_norm, t_norm, X, E, y, node_mask)
|
sampled_s, discrete_sampled_s, log_probs= self.sample_p_zs_given_zt(s_norm, t_norm, X, E, y, node_mask)
|
||||||
X, E, y = sampled_s.X, sampled_s.E, sampled_s.y
|
X, E, y = sampled_s.X, sampled_s.E, sampled_s.y
|
||||||
|
print(f'sampled_s.X shape: {sampled_s.X.shape}, sampled_s.E shape: {sampled_s.E.shape}')
|
||||||
|
print(f'log_probs shape: {log_probs.shape}')
|
||||||
|
total_log_probs += log_probs
|
||||||
|
|
||||||
# Sample
|
# Sample
|
||||||
sampled_s = sampled_s.mask(node_mask, collapse=True)
|
sampled_s = sampled_s.mask(node_mask, collapse=True)
|
||||||
X, E, y = sampled_s.X, sampled_s.E, sampled_s.y
|
X, E, y = sampled_s.X, sampled_s.E, sampled_s.y
|
||||||
|
|
||||||
molecule_list = []
|
graph_list = []
|
||||||
for i in range(batch_size):
|
for i in range(batch_size):
|
||||||
n = n_nodes[i]
|
n = n_nodes[i]
|
||||||
atom_types = X[i, :n].cpu()
|
node_types = X[i, :n].cpu()
|
||||||
edge_types = E[i, :n, :n].cpu()
|
edge_types = E[i, :n, :n].cpu()
|
||||||
molecule_list.append([atom_types, edge_types])
|
graph_list.append([node_types, edge_types])
|
||||||
|
|
||||||
return molecule_list
|
return graph_list, total_log_probs
|
||||||
|
|
||||||
def sample_p_zs_given_zt(self, s, t, X_t, E_t, y_t, node_mask):
|
def sample_p_zs_given_zt(self, s, t, X_t, E_t, y_t, node_mask):
|
||||||
"""Samples from zs ~ p(zs | zt). Only used during sampling.
|
"""Samples from zs ~ p(zs | zt). Only used during sampling.
|
||||||
@@ -635,6 +644,7 @@ class Graph_DiT(pl.LightningModule):
|
|||||||
|
|
||||||
# Neural net predictions
|
# Neural net predictions
|
||||||
noisy_data = {'X_t': X_t, 'E_t': E_t, 'y_t': y_t, 't': t, 'node_mask': node_mask}
|
noisy_data = {'X_t': X_t, 'E_t': E_t, 'y_t': y_t, 't': t, 'node_mask': node_mask}
|
||||||
|
print(f"sample p zs given zt X_t shape: {X_t.shape}, E_t shape: {E_t.shape}, y_t shape: {y_t.shape}, node_mask shape: {node_mask.shape}")
|
||||||
|
|
||||||
def get_prob(noisy_data, unconditioned=False):
|
def get_prob(noisy_data, unconditioned=False):
|
||||||
pred = self.forward(noisy_data, unconditioned=unconditioned)
|
pred = self.forward(noisy_data, unconditioned=unconditioned)
|
||||||
@@ -674,7 +684,19 @@ class Graph_DiT(pl.LightningModule):
|
|||||||
# with condition = P_t(G_{t-1} |G_t, C)
|
# with condition = P_t(G_{t-1} |G_t, C)
|
||||||
# with condition = P_t(A_{t-1} |A_t, y)
|
# with condition = P_t(A_{t-1} |A_t, y)
|
||||||
prob_X, prob_E, pred = get_prob(noisy_data)
|
prob_X, prob_E, pred = get_prob(noisy_data)
|
||||||
|
print(f'prob_X shape: {prob_X.shape}, prob_E shape: {prob_E.shape}')
|
||||||
|
print(f'X_t shape: {X_t.shape}, E_t shape: {E_t.shape}, y_t shape: {y_t.shape}')
|
||||||
|
print(f'X_t: {X_t}')
|
||||||
|
log_prob_X = torch.log(torch.gather(prob_X, -1, X_t.long()).squeeze(-1)) # bs, n
|
||||||
|
log_prob_E = torch.log(torch.gather(prob_E, -1, E_t.long()).squeeze(-1)) # bs, n, n
|
||||||
|
|
||||||
|
# Sum the log_prob across dimensions for total log_prob
|
||||||
|
log_prob_X = log_prob_X.sum(dim=-1)
|
||||||
|
log_prob_E = log_prob_E.sum(dim=(1, 2))
|
||||||
|
print(f'log_prob_X shape: {log_prob_X.shape}, log_prob_E shape: {log_prob_E.shape}')
|
||||||
|
# log_probs = log_prob_E + log_prob_X
|
||||||
|
log_probs = torch.cat([log_prob_X, log_prob_E], dim=-1) # (batch_size, 2)
|
||||||
|
print(f'log_probs shape: {log_probs.shape}')
|
||||||
### Guidance
|
### Guidance
|
||||||
if self.guidance_target is not None and self.guide_scale is not None and self.guide_scale != 1:
|
if self.guidance_target is not None and self.guide_scale is not None and self.guide_scale != 1:
|
||||||
uncon_prob_X, uncon_prob_E, pred = get_prob(noisy_data, unconditioned=True)
|
uncon_prob_X, uncon_prob_E, pred = get_prob(noisy_data, unconditioned=True)
|
||||||
@@ -810,4 +832,4 @@ class Graph_DiT(pl.LightningModule):
|
|||||||
out_one_hot = utils.PlaceHolder(X=X_s, E=E_s, y=y_t)
|
out_one_hot = utils.PlaceHolder(X=X_s, E=E_s, y=y_t)
|
||||||
out_discrete = utils.PlaceHolder(X=X_s, E=E_s, y=y_t)
|
out_discrete = utils.PlaceHolder(X=X_s, E=E_s, y=y_t)
|
||||||
|
|
||||||
return out_one_hot.mask(node_mask).type_as(y_t), out_discrete.mask(node_mask, collapse=True).type_as(y_t)
|
return out_one_hot.mask(node_mask).type_as(y_t), out_discrete.mask(node_mask, collapse=True).type_as(y_t), log_probs
|
||||||
|
@@ -1,4 +1,5 @@
|
|||||||
# These imports are tricky because they use c++, do not move them
|
# These imports are tricky because they use c++, do not move them
|
||||||
|
from tqdm import tqdm
|
||||||
import os, shutil
|
import os, shutil
|
||||||
import warnings
|
import warnings
|
||||||
|
|
||||||
@@ -144,10 +145,32 @@ def main(cfg: DictConfig):
|
|||||||
else:
|
else:
|
||||||
trainer.test(model, datamodule=datamodule, ckpt_path=cfg.general.test_only)
|
trainer.test(model, datamodule=datamodule, ckpt_path=cfg.general.test_only)
|
||||||
|
|
||||||
|
from accelerate import Accelerator
|
||||||
|
from accelerate.utils import set_seed, ProjectConfiguration
|
||||||
|
|
||||||
@hydra.main(
|
@hydra.main(
|
||||||
version_base="1.1", config_path="../configs", config_name="config"
|
version_base="1.1", config_path="../configs", config_name="config"
|
||||||
)
|
)
|
||||||
def test(cfg: DictConfig):
|
def test(cfg: DictConfig):
|
||||||
|
os.environ["CUDA_VISIBLE_DEVICES"] = cfg.general.gpu_number
|
||||||
|
accelerator_config = ProjectConfiguration(
|
||||||
|
project_dir=os.path.join(cfg.general.log_dir, cfg.general.name),
|
||||||
|
automatic_checkpoint_naming=True,
|
||||||
|
total_limit=cfg.general.number_checkpoint_limit,
|
||||||
|
)
|
||||||
|
accelerator = Accelerator(
|
||||||
|
mixed_precision='no',
|
||||||
|
project_config=accelerator_config,
|
||||||
|
# gradient_accumulation_steps=cfg.train.gradient_accumulation_steps * cfg.train.n_epochs,
|
||||||
|
gradient_accumulation_steps=cfg.train.gradient_accumulation_steps,
|
||||||
|
)
|
||||||
|
|
||||||
|
# Debug: 确认可用设备
|
||||||
|
print(f"Available GPUs: {torch.cuda.device_count()}")
|
||||||
|
print(f"Using device: {accelerator.device}")
|
||||||
|
|
||||||
|
set_seed(cfg.train.seed, device_specific=True)
|
||||||
|
|
||||||
datamodule = dataset.DataModule(cfg)
|
datamodule = dataset.DataModule(cfg)
|
||||||
datamodule.prepare_data()
|
datamodule.prepare_data()
|
||||||
dataset_infos = dataset.DataInfos(datamodule=datamodule, cfg=cfg, dataset=datamodule.dataset)
|
dataset_infos = dataset.DataInfos(datamodule=datamodule, cfg=cfg, dataset=datamodule.dataset)
|
||||||
@@ -169,40 +192,216 @@ def test(cfg: DictConfig):
|
|||||||
"visualization_tools": visulization_tools,
|
"visualization_tools": visulization_tools,
|
||||||
}
|
}
|
||||||
|
|
||||||
|
# Debug: 确认可用设备
|
||||||
|
print(f"Available GPUs: {torch.cuda.device_count()}")
|
||||||
|
print(f"Using device: {accelerator.device}")
|
||||||
|
|
||||||
if cfg.general.test_only:
|
if cfg.general.test_only:
|
||||||
cfg, _ = get_resume(cfg, model_kwargs)
|
cfg, _ = get_resume(cfg, model_kwargs)
|
||||||
os.chdir(cfg.general.test_only.split("checkpoints")[0])
|
os.chdir(cfg.general.test_only.split("checkpoints")[0])
|
||||||
elif cfg.general.resume is not None:
|
elif cfg.general.resume is not None:
|
||||||
cfg, _ = get_resume_adaptive(cfg, model_kwargs)
|
cfg, _ = get_resume_adaptive(cfg, model_kwargs)
|
||||||
os.chdir(cfg.general.resume.split("checkpoints")[0])
|
os.chdir(cfg.general.resume.split("checkpoints")[0])
|
||||||
# os.environ["CUDA_VISIBLE_DEVICES"] = cfg.general.gpu_number
|
|
||||||
model = Graph_DiT(cfg=cfg, **model_kwargs)
|
model = Graph_DiT(cfg=cfg, **model_kwargs)
|
||||||
trainer = Trainer(
|
graph_dit_model = model
|
||||||
gradient_clip_val=cfg.train.clip_grad,
|
|
||||||
# accelerator="cpu",
|
|
||||||
accelerator="gpu"
|
|
||||||
if torch.cuda.is_available() and cfg.general.gpus > 0
|
|
||||||
else "cpu",
|
|
||||||
devices=[cfg.general.gpu_number]
|
|
||||||
if torch.cuda.is_available() and cfg.general.gpus > 0
|
|
||||||
else None,
|
|
||||||
max_epochs=cfg.train.n_epochs,
|
|
||||||
enable_checkpointing=False,
|
|
||||||
check_val_every_n_epoch=cfg.train.check_val_every_n_epoch,
|
|
||||||
val_check_interval=cfg.train.val_check_interval,
|
|
||||||
strategy="ddp" if cfg.general.gpus > 1 else "auto",
|
|
||||||
enable_progress_bar=cfg.general.enable_progress_bar,
|
|
||||||
callbacks=[],
|
|
||||||
reload_dataloaders_every_n_epochs=0,
|
|
||||||
logger=[],
|
|
||||||
)
|
|
||||||
|
|
||||||
if not cfg.general.test_only:
|
inference_dtype = torch.float32
|
||||||
print("start testing fit method")
|
graph_dit_model.to(accelerator.device, dtype=inference_dtype)
|
||||||
trainer.fit(model, datamodule=datamodule, ckpt_path=cfg.general.resume)
|
|
||||||
if cfg.general.save_model:
|
|
||||||
trainer.save_checkpoint(f"checkpoints/{cfg.general.name}/last.ckpt")
|
# optional: freeze the model
|
||||||
trainer.test(model, datamodule=datamodule)
|
# graph_dit_model.model.requires_grad_(True)
|
||||||
|
|
||||||
|
import torch.nn.functional as F
|
||||||
|
optimizer = graph_dit_model.configure_optimizers()
|
||||||
|
train_dataloader = accelerator.prepare(datamodule.train_dataloader())
|
||||||
|
optimizer, graph_dit_model = accelerator.prepare(optimizer, graph_dit_model)
|
||||||
|
# start training
|
||||||
|
for epoch in range(cfg.train.n_epochs):
|
||||||
|
graph_dit_model.train() # 设置模型为训练模式
|
||||||
|
print(f"Epoch {epoch}", end="\n")
|
||||||
|
graph_dit_model.on_train_epoch_start()
|
||||||
|
for data in train_dataloader: # 从数据加载器中获取一个批次的数据
|
||||||
|
# data.to(accelerator.device)
|
||||||
|
# data_x = F.one_hot(data.x, num_classes=12).float()[:, graph_dit_model.active_index]
|
||||||
|
# data_edge_attr = F.one_hot(data.edge_attr, num_classes=2).float()
|
||||||
|
# dense_data, node_mask = utils.to_dense(data_x, data.edge_index, data_edge_attr, data.batch, graph_dit_model.max_n_nodes)
|
||||||
|
# dense_data = dense_data.mask(node_mask)
|
||||||
|
# X, E = dense_data.X, dense_data.E
|
||||||
|
# noisy_data = graph_dit_model.apply_noise(X, E, data.y, node_mask)
|
||||||
|
# pred = graph_dit_model.forward(noisy_data)
|
||||||
|
# loss = graph_dit_model.train_loss(masked_pred_X=pred.X, masked_pred_E=pred.E, pred_y=pred.y,
|
||||||
|
# true_X=X, true_E=E, true_y=data.y, node_mask=node_mask,
|
||||||
|
# log=epoch % graph_dit_model.log_every_steps == 0)
|
||||||
|
# # print(f'training loss: {loss}, epoch: {self.current_epoch}, batch: {i}\n, pred type: {type(pred)}, pred.X shape: {type(pred.X)}, {pred.X.shape}, pred.E shape: {type(pred.E)}, {pred.E.shape}')
|
||||||
|
# graph_dit_model.train_metrics(masked_pred_X=pred.X, masked_pred_E=pred.E, true_X=X, true_E=E,
|
||||||
|
# log=epoch % graph_dit_model.log_every_steps == 0)
|
||||||
|
# graph_dit_model.log(f'loss', loss, batch_size=X.size(0), sync_dist=True)
|
||||||
|
# print(f"training loss: {loss}")
|
||||||
|
# with open("training-loss.csv", "a") as f:
|
||||||
|
# f.write(f"{loss}, {epoch}\n")
|
||||||
|
loss = graph_dit_model.training_step(data, epoch)
|
||||||
|
loss = loss['loss']
|
||||||
|
|
||||||
|
accelerator.backward(loss)
|
||||||
|
optimizer.step()
|
||||||
|
optimizer.zero_grad()
|
||||||
|
# return {'loss': loss}
|
||||||
|
graph_dit_model.on_train_epoch_end()
|
||||||
|
if epoch % cfg.train.check_val_every_n_epoch == 0:
|
||||||
|
print(f'print validation loss')
|
||||||
|
graph_dit_model.eval()
|
||||||
|
graph_dit_model.on_validation_epoch_start()
|
||||||
|
graph_dit_model.validation_step(data, epoch)
|
||||||
|
graph_dit_model.on_validation_epoch_end()
|
||||||
|
|
||||||
|
# start testing
|
||||||
|
print("start testing")
|
||||||
|
graph_dit_model.eval()
|
||||||
|
test_dataloader = accelerator.prepare(datamodule.test_dataloader())
|
||||||
|
graph_dit_model.on_test_epoch_start()
|
||||||
|
for data in test_dataloader:
|
||||||
|
nll = graph_dit_model.test_step(data, epoch)
|
||||||
|
# data_x = F.one_hot(data.x, num_classes=12).float()[:, graph_dit_model.active_index]
|
||||||
|
# data_edge_attr = F.one_hot(data.edge_attr, num_classes=2).float()
|
||||||
|
|
||||||
|
# dense_data, node_mask = utils.to_dense(data_x, data.edge_index, data_edge_attr, data.batch, graph_dit_model.max_n_nodes)
|
||||||
|
# dense_data = dense_data.mask(node_mask)
|
||||||
|
# noisy_data = graph_dit_model.apply_noise(dense_data.X, dense_data.E, data.y, node_mask)
|
||||||
|
# pred = graph_dit_model.forward(noisy_data)
|
||||||
|
# nll = graph_dit_model.compute_val_loss(pred, noisy_data, dense_data.X, dense_data.E, data.y, node_mask, test=True)
|
||||||
|
# graph_dit_model.test_y_collection.append(data.y)
|
||||||
|
print(f'test loss: {nll}')
|
||||||
|
|
||||||
|
graph_dit_model.on_test_epoch_end()
|
||||||
|
|
||||||
|
# start sampling
|
||||||
|
|
||||||
|
# samples_left_to_generate = cfg.general.final_model_samples_to_generate
|
||||||
|
# samples_left_to_save = cfg.general.final_model_samples_to_save
|
||||||
|
# chains_left_to_save = cfg.general.final_model_chains_to_save
|
||||||
|
|
||||||
|
# samples, all_ys, batch_id = [], [], 0
|
||||||
|
# samples_with_log_probs = []
|
||||||
|
# test_y_collection = torch.cat(graph_dit_model.test_y_collection, dim=0)
|
||||||
|
# num_examples = test_y_collection.size(0)
|
||||||
|
# if cfg.general.final_model_samples_to_generate > num_examples:
|
||||||
|
# ratio = cfg.general.final_model_samples_to_generate // num_examples
|
||||||
|
# test_y_collection = test_y_collection.repeat(ratio+1, 1)
|
||||||
|
# num_examples = test_y_collection.size(0)
|
||||||
|
|
||||||
|
# Normal reward function
|
||||||
|
# from nas_201_api import NASBench201API as API
|
||||||
|
# api = API('/nfs/data3/hanzhang/nasbenchDiT/graph_dit/NAS-Bench-201-v1_1-096897.pth')
|
||||||
|
# def graph_reward_fn(graphs, true_graphs=None, device=None, reward_model='swap'):
|
||||||
|
# rewards = []
|
||||||
|
# if reward_model == 'swap':
|
||||||
|
# import csv
|
||||||
|
# with open('/nfs/data3/hanzhang/nasbenchDiT/graph_dit/swap_results.csv', 'r') as f:
|
||||||
|
# reader = csv.reader(f)
|
||||||
|
# header = next(reader)
|
||||||
|
# data = [row for row in reader]
|
||||||
|
# swap_scores = [float(row[0]) for row in data]
|
||||||
|
# for graph in graphs:
|
||||||
|
# node_tensor = graph[0]
|
||||||
|
# node = node_tensor.cpu().numpy().tolist()
|
||||||
|
|
||||||
|
# def nodes_to_arch_str(nodes):
|
||||||
|
# num_to_op = ['input', 'nor_conv_1x1', 'nor_conv_3x3', 'avg_pool_3x3', 'skip_connect', 'none', 'output']
|
||||||
|
# nodes_str = [num_to_op[node] for node in nodes]
|
||||||
|
# arch_str = '|' + nodes_str[1] + '~0|+' + \
|
||||||
|
# '|' + nodes_str[2] + '~0|' + nodes_str[3] + '~1|+' +\
|
||||||
|
# '|' + nodes_str[4] + '~0|' + nodes_str[5] + '~1|' + nodes_str[6] + '~2|'
|
||||||
|
# return arch_str
|
||||||
|
|
||||||
|
# arch_str = nodes_to_arch_str(node)
|
||||||
|
# reward = swap_scores[api.query_index_by_arch(arch_str)]
|
||||||
|
# rewards.append(reward)
|
||||||
|
|
||||||
|
# # for graph in graphs:
|
||||||
|
# # reward = 1.0
|
||||||
|
# # rewards.append(reward)
|
||||||
|
# return torch.tensor(rewards, dtype=torch.float32, requires_grad=True).unsqueeze(0).to(device)
|
||||||
|
# old_log_probs = None
|
||||||
|
# while samples_left_to_generate > 0:
|
||||||
|
# print(f'samples left to generate: {samples_left_to_generate}/'
|
||||||
|
# f'{cfg.general.final_model_samples_to_generate}', end='', flush=True)
|
||||||
|
# bs = 1 * cfg.train.batch_size
|
||||||
|
# to_generate = min(samples_left_to_generate, bs)
|
||||||
|
# to_save = min(samples_left_to_save, bs)
|
||||||
|
# chains_save = min(chains_left_to_save, bs)
|
||||||
|
# # batch_y = test_y_collection[batch_id : batch_id + to_generate]
|
||||||
|
# batch_y = torch.ones(to_generate, graph_dit_model.ydim_output, device=graph_dit_model.device)
|
||||||
|
|
||||||
|
# cur_sample, log_probs = graph_dit_model.sample_batch(batch_id, to_generate, batch_y, save_final=to_save,
|
||||||
|
# keep_chain=chains_save, number_chain_steps=graph_dit_model.number_chain_steps)
|
||||||
|
# log_probs = torch.sum(log_probs, dim=-1).unsqueeze(1)
|
||||||
|
# samples = samples + cur_sample
|
||||||
|
# reward = graph_reward_fn(cur_sample, device=graph_dit_model.device)
|
||||||
|
# advantages = (reward - torch.mean(reward)) / (torch.std(reward) + 1e-6)
|
||||||
|
# print(f'reward: {reward.shape}, advantages: {advantages.shape}, log_probs: {log_probs.shape}, cur_sample: {len(cur_sample)}')
|
||||||
|
# if old_log_probs is None:
|
||||||
|
# old_log_probs = log_probs.clone()
|
||||||
|
# ratio = torch.exp(log_probs - old_log_probs)
|
||||||
|
# unclipped_loss = -advantages * ratio
|
||||||
|
# clipped_loss = -advantages * torch.clamp(ratio, 1.0 - cfg.ppo.clip_param, 1.0 + cfg.ppo.clip_param)
|
||||||
|
# loss = torch.mean(torch.max(unclipped_loss, clipped_loss))
|
||||||
|
# accelerator.backward(loss)
|
||||||
|
# optimizer.step()
|
||||||
|
# optimizer.zero_grad()
|
||||||
|
|
||||||
|
|
||||||
|
# samples_with_log_probs.append((cur_sample, log_probs, reward))
|
||||||
|
|
||||||
|
# all_ys.append(batch_y)
|
||||||
|
# batch_id += to_generate
|
||||||
|
|
||||||
|
# samples_left_to_save -= to_save
|
||||||
|
# samples_left_to_generate -= to_generate
|
||||||
|
# chains_left_to_save -= chains_save
|
||||||
|
|
||||||
|
# print(f"final Computing sampling metrics...")
|
||||||
|
# graph_dit_model.sampling_metrics.reset()
|
||||||
|
# graph_dit_model.sampling_metrics(samples, all_ys, graph_dit_model.name, graph_dit_model.current_epoch, graph_dit_model.val_counter, test=True)
|
||||||
|
# graph_dit_model.sampling_metrics.reset()
|
||||||
|
# print(f"Done.")
|
||||||
|
|
||||||
|
# # save samples
|
||||||
|
# print("Samples:")
|
||||||
|
# print(samples)
|
||||||
|
|
||||||
|
# ========================
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
# trainer = Trainer(
|
||||||
|
# gradient_clip_val=cfg.train.clip_grad,
|
||||||
|
# # accelerator="cpu",
|
||||||
|
# accelerator="gpu"
|
||||||
|
# if torch.cuda.is_available() and cfg.general.gpus > 0
|
||||||
|
# else "cpu",
|
||||||
|
# devices=[cfg.general.gpu_number]
|
||||||
|
# if torch.cuda.is_available() and cfg.general.gpus > 0
|
||||||
|
# else None,
|
||||||
|
# max_epochs=cfg.train.n_epochs,
|
||||||
|
# enable_checkpointing=False,
|
||||||
|
# check_val_every_n_epoch=cfg.train.check_val_every_n_epoch,
|
||||||
|
# val_check_interval=cfg.train.val_check_interval,
|
||||||
|
# strategy="ddp" if cfg.general.gpus > 1 else "auto",
|
||||||
|
# enable_progress_bar=cfg.general.enable_progress_bar,
|
||||||
|
# callbacks=[],
|
||||||
|
# reload_dataloaders_every_n_epochs=0,
|
||||||
|
# logger=[],
|
||||||
|
# )
|
||||||
|
|
||||||
|
# if not cfg.general.test_only:
|
||||||
|
# print("start testing fit method")
|
||||||
|
# trainer.fit(model, datamodule=datamodule, ckpt_path=cfg.general.resume)
|
||||||
|
# if cfg.general.save_model:
|
||||||
|
# trainer.save_checkpoint(f"checkpoints/{cfg.general.name}/last.ckpt")
|
||||||
|
# trainer.test(model, datamodule=datamodule)
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
test()
|
test()
|
||||||
|
@@ -76,6 +76,8 @@ class CategoricalEmbedder(nn.Module):
|
|||||||
embeddings = embeddings + noise
|
embeddings = embeddings + noise
|
||||||
return embeddings
|
return embeddings
|
||||||
|
|
||||||
|
# 相似的condition cluster起来
|
||||||
|
# size
|
||||||
class ClusterContinuousEmbedder(nn.Module):
|
class ClusterContinuousEmbedder(nn.Module):
|
||||||
def __init__(self, input_size, hidden_size, dropout_prob):
|
def __init__(self, input_size, hidden_size, dropout_prob):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
@@ -108,6 +110,8 @@ class ClusterContinuousEmbedder(nn.Module):
|
|||||||
|
|
||||||
if drop_ids is not None:
|
if drop_ids is not None:
|
||||||
embeddings = torch.zeros((labels.shape[0], self.hidden_size), device=labels.device)
|
embeddings = torch.zeros((labels.shape[0], self.hidden_size), device=labels.device)
|
||||||
|
# print(labels[~drop_ids].shape)
|
||||||
|
# torch.Size([1200])
|
||||||
embeddings[~drop_ids] = self.mlp(labels[~drop_ids])
|
embeddings[~drop_ids] = self.mlp(labels[~drop_ids])
|
||||||
embeddings[drop_ids] += self.embedding_drop.weight[0]
|
embeddings[drop_ids] += self.embedding_drop.weight[0]
|
||||||
else:
|
else:
|
||||||
|
@@ -17,20 +17,22 @@ class Denoiser(nn.Module):
|
|||||||
num_heads=16,
|
num_heads=16,
|
||||||
mlp_ratio=4.0,
|
mlp_ratio=4.0,
|
||||||
drop_condition=0.1,
|
drop_condition=0.1,
|
||||||
Xdim=118,
|
Xdim=7,
|
||||||
Edim=5,
|
Edim=2,
|
||||||
ydim=3,
|
ydim=1,
|
||||||
task_type='regression',
|
task_type='regression',
|
||||||
):
|
):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
|
print(f"Denoiser, xdim: {Xdim}, edim: {Edim}, ydim: {ydim}, hidden_size: {hidden_size}, depth: {depth}, num_heads: {num_heads}, mlp_ratio: {mlp_ratio}, drop_condition: {drop_condition}")
|
||||||
self.num_heads = num_heads
|
self.num_heads = num_heads
|
||||||
self.ydim = ydim
|
self.ydim = ydim
|
||||||
self.x_embedder = nn.Linear(Xdim + max_n_nodes * Edim, hidden_size, bias=False)
|
self.x_embedder = nn.Linear(Xdim + max_n_nodes * Edim, hidden_size, bias=False)
|
||||||
|
|
||||||
self.t_embedder = TimestepEmbedder(hidden_size)
|
self.t_embedder = TimestepEmbedder(hidden_size)
|
||||||
|
#
|
||||||
self.y_embedding_list = torch.nn.ModuleList()
|
self.y_embedding_list = torch.nn.ModuleList()
|
||||||
|
|
||||||
self.y_embedding_list.append(ClusterContinuousEmbedder(2, hidden_size, drop_condition))
|
self.y_embedding_list.append(ClusterContinuousEmbedder(1, hidden_size, drop_condition))
|
||||||
for i in range(ydim - 2):
|
for i in range(ydim - 2):
|
||||||
if task_type == 'regression':
|
if task_type == 'regression':
|
||||||
self.y_embedding_list.append(ClusterContinuousEmbedder(1, hidden_size, drop_condition))
|
self.y_embedding_list.append(ClusterContinuousEmbedder(1, hidden_size, drop_condition))
|
||||||
@@ -88,6 +90,8 @@ class Denoiser(nn.Module):
|
|||||||
|
|
||||||
# print("Denoiser Forward")
|
# print("Denoiser Forward")
|
||||||
# print(x.shape, e.shape, y.shape, t.shape, unconditioned)
|
# print(x.shape, e.shape, y.shape, t.shape, unconditioned)
|
||||||
|
# torch.Size([1200, 8, 7]) torch.Size([1200, 8, 8, 2]) torch.Size([1200, 2]) torch.Size([1200, 1]) False
|
||||||
|
# print(y)
|
||||||
force_drop_id = torch.zeros_like(y.sum(-1))
|
force_drop_id = torch.zeros_like(y.sum(-1))
|
||||||
# drop the nan values
|
# drop the nan values
|
||||||
force_drop_id[torch.isnan(y.sum(-1))] = 1
|
force_drop_id[torch.isnan(y.sum(-1))] = 1
|
||||||
@@ -109,11 +113,12 @@ class Denoiser(nn.Module):
|
|||||||
c1 = self.t_embedder(t)
|
c1 = self.t_embedder(t)
|
||||||
# print("C1 after t_embedder")
|
# print("C1 after t_embedder")
|
||||||
# print(c1.shape)
|
# print(c1.shape)
|
||||||
for i in range(1, self.ydim):
|
c2 = self.y_embedding_list[0](y[:,0].unsqueeze(-1), self.training, force_drop_id, t)
|
||||||
if i == 1:
|
# for i in range(1, self.ydim):
|
||||||
c2 = self.y_embedding_list[i-1](y[:, :2], self.training, force_drop_id, t)
|
# if i == 1:
|
||||||
else:
|
# c2 = self.y_embedding_list[i-1](y[:, :2], self.training, force_drop_id, t)
|
||||||
c2 = c2 + self.y_embedding_list[i-1](y[:, i:i+1], self.training, force_drop_id, t)
|
# else:
|
||||||
|
# c2 = c2 + self.y_embedding_list[i-1](y[:, i:i+1], self.training, force_drop_id, t)
|
||||||
# print("C2 after y_embedding_list")
|
# print("C2 after y_embedding_list")
|
||||||
# print(c2.shape)
|
# print(c2.shape)
|
||||||
# print("C1 + C2")
|
# print("C1 + C2")
|
||||||
|
15626
graph_dit/swap_results_aircraft.csv
Normal file
15626
graph_dit/swap_results_aircraft.csv
Normal file
File diff suppressed because it is too large
Load Diff
File diff suppressed because one or more lines are too long
Reference in New Issue
Block a user