4 Commits

Author SHA1 Message Date
xmuhanma
123cde9313 add swap cifar10 results property_metric path update 2024-09-22 15:55:10 +02:00
xmuhanma
9360839a35 add config path 2024-09-22 15:47:51 +02:00
mhz
f75657ac3b add the environment yaml 2024-09-20 00:06:09 +02:00
mhz
be178bc5ee use trainer but has bugs 2024-09-19 14:11:19 +02:00
9 changed files with 16649 additions and 602 deletions

View File

@@ -2,20 +2,26 @@ general:
name: 'graph_dit' name: 'graph_dit'
wandb: 'disabled' wandb: 'disabled'
gpus: 1 gpus: 1
gpu_number: 2 gpu_number: 0
resume: null resume: null
test_only: null test_only: null
sample_every_val: 2500 sample_every_val: 2500
samples_to_generate: 512 samples_to_generate: 1000
samples_to_save: 3 samples_to_save: 3
chains_to_save: 1 chains_to_save: 1
log_every_steps: 50 log_every_steps: 50
number_chain_steps: 8 number_chain_steps: 8
final_model_samples_to_generate: 100 final_model_samples_to_generate: 1000
final_model_samples_to_save: 20 final_model_samples_to_save: 20
final_model_chains_to_save: 1 final_model_chains_to_save: 1
enable_progress_bar: False enable_progress_bar: False
save_model: True save_model: True
log_dir: '/zhome/academic/HLRS/xmu/xmuhanma/nasbenchDiT'
number_checkpoint_limit: 3
type: 'Trainer'
nas_201: '/zhome/academic/HLRS/xmu/xmuhanma/nasbenchDiT/graph_dit/NAS-Bench-201-v1_1-096897.pth'
swap_result: '/zhome/academic/HLRS/xmu/xmuhanma/nasbenchDiT/graph_dit/swap_results.csv'
root: '/zhome/academic/HLRS/xmu/xmuhanma/nasbenchDiT/graph_dit/'
model: model:
type: 'discrete' type: 'discrete'
transition: 'marginal' transition: 'marginal'
@@ -32,7 +38,7 @@ model:
ensure_connected: True ensure_connected: True
train: train:
# n_epochs: 5000 # n_epochs: 5000
n_epochs: 500 n_epochs: 10
batch_size: 1200 batch_size: 1200
lr: 0.0002 lr: 0.0002
clip_grad: null clip_grad: null
@@ -41,8 +47,11 @@ train:
seed: 0 seed: 0
val_check_interval: null val_check_interval: null
check_val_every_n_epoch: 1 check_val_every_n_epoch: 1
gradient_accumulation_steps: 1
dataset: dataset:
datadir: 'data/' datadir: 'data/'
task_name: 'nasbench-201' task_name: 'nasbench-201'
guidance_target: 'nasbench-201' guidance_target: 'nasbench-201'
pin_memory: False pin_memory: False
ppo:
clip_param: 1

228
environment.yaml Normal file
View File

@@ -0,0 +1,228 @@
name: graphdit
channels:
- pytorch
- conda-forge
- defaults
dependencies:
- _libgcc_mutex=0.1=conda_forge
- _openmp_mutex=4.5=2_gnu
- asttokens=2.4.1=pyhd8ed1ab_0
- blas=1.0=mkl
- brotli-python=1.0.9=py39h6a678d5_8
- bzip2=1.0.8=h5eee18b_6
- ca-certificates=2024.7.2=h06a4308_0
- comm=0.2.2=pyhd8ed1ab_0
- debugpy=1.6.7=py39h6a678d5_0
- decorator=5.1.1=pyhd8ed1ab_0
- exceptiongroup=1.2.0=pyhd8ed1ab_2
- executing=2.0.1=pyhd8ed1ab_0
- ffmpeg=4.3=hf484d3e_0
- freetype=2.12.1=h4a9f257_0
- gmp=6.2.1=h295c915_3
- gmpy2=2.1.2=py39heeb90bb_0
- gnutls=3.6.15=he1e5248_0
- idna=3.7=py39h06a4308_0
- importlib-metadata=7.1.0=pyha770c72_0
- importlib_metadata=7.1.0=hd8ed1ab_0
- intel-openmp=2023.1.0=hdb19cb5_46306
- ipykernel=6.29.4=pyh3099207_0
- ipython=8.18.1=pyh707e725_3
- jedi=0.19.1=pyhd8ed1ab_0
- jinja2=3.1.4=py39h06a4308_0
- jpeg=9e=h5eee18b_1
- jupyter_client=8.6.2=pyhd8ed1ab_0
- jupyter_core=5.7.2=py39hf3d152e_0
- lame=3.100=h7b6447c_0
- lcms2=2.12=h3be6417_0
- ld_impl_linux-64=2.38=h1181459_1
- lerc=3.0=h295c915_0
- libdeflate=1.17=h5eee18b_1
- libffi=3.4.4=h6a678d5_1
- libgcc-ng=13.2.0=h77fa898_7
- libgomp=13.2.0=h77fa898_7
- libiconv=1.16=h5eee18b_3
- libidn2=2.3.4=h5eee18b_0
- libpng=1.6.39=h5eee18b_0
- libsodium=1.0.18=h36c2ea0_1
- libstdcxx-ng=11.2.0=h1234567_1
- libtasn1=4.19.0=h5eee18b_0
- libtiff=4.5.1=h6a678d5_0
- libunistring=0.9.10=h27cfd23_0
- libwebp-base=1.3.2=h5eee18b_0
- lz4-c=1.9.4=h6a678d5_1
- matplotlib-inline=0.1.7=pyhd8ed1ab_0
- mkl=2023.1.0=h213fc3f_46344
- mkl-service=2.4.0=py39h5eee18b_1
- mkl_fft=1.3.8=py39h5eee18b_0
- mkl_random=1.2.4=py39hdb19cb5_0
- mpc=1.1.0=h10f8cd9_1
- mpfr=4.0.2=hb69a4c5_1
- mpmath=1.3.0=py39h06a4308_0
- ncurses=6.4=h6a678d5_0
- nest-asyncio=1.6.0=pyhd8ed1ab_0
- nettle=3.7.3=hbbd107a_1
- numpy-base=1.26.4=py39hb5e798b_0
- openh264=2.1.1=h4ff587b_0
- openjpeg=2.4.0=h9ca470c_2
- openssl=3.3.1=h4ab18f5_0
- packaging=24.0=pyhd8ed1ab_0
- parso=0.8.4=pyhd8ed1ab_0
- pexpect=4.9.0=pyhd8ed1ab_0
- pickleshare=0.7.5=py_1003
- pip=24.0=py39h06a4308_0
- platformdirs=4.2.2=pyhd8ed1ab_0
- prompt-toolkit=3.0.46=pyha770c72_0
- psutil=5.9.8=py39hd1e30aa_0
- ptyprocess=0.7.0=pyhd3deb0d_0
- pure_eval=0.2.2=pyhd8ed1ab_0
- pygments=2.18.0=pyhd8ed1ab_0
- pysocks=1.7.1=py39h06a4308_0
- python=3.9.19=h955ad1f_1
- python_abi=3.9=2_cp39
- pytorch-mutex=1.0=cpu
- pyzmq=25.1.2=py39h6a678d5_0
- readline=8.2=h5eee18b_0
- setuptools=69.5.1=py39h06a4308_0
- six=1.16.0=pyh6c4a22f_0
- sqlite=3.45.3=h5eee18b_0
- stack_data=0.6.2=pyhd8ed1ab_0
- sympy=1.12=py39h06a4308_0
- tbb=2021.8.0=hdb19cb5_0
- tk=8.6.14=h39e8969_0
- tornado=6.4.1=py39hd3abc70_0
- traitlets=5.14.3=pyhd8ed1ab_0
- typing_extensions=4.12.2=pyha770c72_0
- wcwidth=0.2.13=pyhd8ed1ab_0
- wheel=0.43.0=py39h06a4308_0
- xz=5.4.6=h5eee18b_1
- zeromq=4.3.5=h6a678d5_0
- zlib=1.2.13=h5eee18b_1
- zstd=1.5.5=hc292b87_2
- pip:
- absl-py==2.1.0
- accelerate==0.34.2
- aiohttp==3.9.5
- aiosignal==1.3.1
- antlr4-python3-runtime==4.9.3
- astunparse==1.6.3
- async-timeout==4.0.3
- attrs==23.2.0
- beautifulsoup4==4.12.3
- bleach==6.1.0
- certifi==2024.2.2
- charset-normalizer==3.1.0
- cmake==3.29.3
- contourpy==1.2.1
- cycler==0.12.1
- defusedxml==0.7.1
- fastjsonschema==2.19.1
- fcd-torch==1.0.7
- filelock==3.14.0
- flatbuffers==24.3.25
- fonttools==4.52.4
- frozenlist==1.4.1
- fsspec==2024.5.0
- gast==0.5.4
- google-pasta==0.2.0
- grpcio==1.64.1
- h5py==3.11.0
- huggingface-hub==0.24.6
- hydra-core==1.3.2
- imageio==2.26.0
- importlib-resources==6.4.0
- joblib==1.2.0
- jsonschema==4.22.0
- jsonschema-specifications==2023.12.1
- jupyterlab-pygments==0.3.0
- keras==3.3.3
- kiwisolver==1.4.5
- libclang==18.1.1
- lightning-utilities==0.11.2
- lit==18.1.6
- markdown==3.6
- markdown-it-py==3.0.0
- markupsafe==2.1.5
- matplotlib==3.7.0
- mdurl==0.1.2
- mini-moses==1.0
- mistune==3.0.2
- ml-dtypes==0.3.2
- multidict==6.0.5
- namex==0.0.8
- nas-bench-201==2.1
- nasbench==1.0
- nbclient==0.10.0
- nbconvert==7.16.4
- nbformat==5.10.4
- networkx==3.0
- numpy==1.24.2
- nvidia-cublas-cu11==11.10.3.66
- nvidia-cublas-cu12==12.1.3.1
- nvidia-cuda-cupti-cu11==11.7.101
- nvidia-cuda-cupti-cu12==12.1.105
- nvidia-cuda-nvrtc-cu11==11.7.99
- nvidia-cuda-nvrtc-cu12==12.1.105
- nvidia-cuda-runtime-cu11==11.7.99
- nvidia-cuda-runtime-cu12==12.1.105
- nvidia-cudnn-cu11==8.5.0.96
- nvidia-cudnn-cu12==8.9.2.26
- nvidia-cufft-cu11==10.9.0.58
- nvidia-cufft-cu12==11.0.2.54
- nvidia-curand-cu11==10.2.10.91
- nvidia-curand-cu12==10.3.2.106
- nvidia-cusolver-cu11==11.4.0.1
- nvidia-cusolver-cu12==11.4.5.107
- nvidia-cusparse-cu11==11.7.4.91
- nvidia-cusparse-cu12==12.1.0.106
- nvidia-nccl-cu11==2.14.3
- nvidia-nccl-cu12==2.20.5
- nvidia-nvjitlink-cu12==12.5.40
- nvidia-nvtx-cu11==11.7.91
- nvidia-nvtx-cu12==12.1.105
- omegaconf==2.3.0
- opt-einsum==3.3.0
- optree==0.11.0
- pandas==1.5.3
- pandocfilters==1.5.1
- pillow==10.3.0
- protobuf==3.20.3
- pyparsing==3.1.2
- python-dateutil==2.9.0.post0
- pytorch-lightning==2.0.1
- pytz==2024.1
- pyyaml==6.0.1
- rdkit==2023.9.4
- referencing==0.35.1
- requests==2.32.2
- rich==13.7.1
- rpds-py==0.18.1
- safetensors==0.4.5
- scikit-learn==1.2.1
- scipy==1.13.1
- seaborn==0.13.2
- simplejson==3.19.2
- soupsieve==2.5
- tensorboard==2.16.2
- tensorboard-data-server==0.7.2
- tensorflow==2.16.1
- tensorflow-io-gcs-filesystem==0.37.0
- termcolor==2.4.0
- threadpoolctl==3.5.0
- tinycss2==1.3.0
- torch==2.0.0
- torch-geometric==2.3.0
- torchaudio==2.0.1+rocm5.4.2
- torchmetrics==0.11.4
- torchvision==0.15.1
- tqdm==4.64.1
- triton==2.0.0
- typing-extensions==4.12.0
- tzdata==2024.1
- urllib3==2.2.1
- webencodings==0.5.1
- werkzeug==3.0.3
- wrapt==1.16.0
- yacs==0.1.8
- yarl==1.9.4
- zipp==3.19.0
prefix: /home/stud/hanzhang/anaconda3/envs/graphdit

View File

@@ -54,7 +54,9 @@ class BasicGraphMetrics(object):
covered_nodes = set() covered_nodes = set()
direct_valid_count = 0 direct_valid_count = 0
print(f"generated number: {len(generated)}") print(f"generated number: {len(generated)}")
print(f"generated: {generated}")
for graph in generated: for graph in generated:
print(f"graph: {graph}")
node_types, edge_types = graph node_types, edge_types = graph
direct_valid_flag = True direct_valid_flag = True
direct_valid_count += 1 direct_valid_count += 1

View File

@@ -25,7 +25,6 @@ from sklearn.model_selection import train_test_split
import utils as utils import utils as utils
from datasets.abstract_dataset import AbstractDatasetInfos, AbstractDataModule from datasets.abstract_dataset import AbstractDatasetInfos, AbstractDataModule
from diffusion.distributions import DistributionNodes from diffusion.distributions import DistributionNodes
from naswot.score_networks import get_nasbench201_idx_score
from naswot import nasspace from naswot import nasspace
from naswot import datasets as dt from naswot import datasets as dt
@@ -72,7 +71,9 @@ class DataModule(AbstractDataModule):
# base_path = pathlib.Path(os.path.realpath(__file__)).parents[2] # base_path = pathlib.Path(os.path.realpath(__file__)).parents[2]
# except NameError: # except NameError:
# base_path = pathlib.Path(os.getcwd()).parent[2] # base_path = pathlib.Path(os.getcwd()).parent[2]
base_path = '/nfs/data3/hanzhang/nasbenchDiT' # base_path = '/nfs/data3/hanzhang/nasbenchDiT'
base_path = os.path.join(self.cfg.general.root, "..")
root_path = os.path.join(base_path, self.datadir) root_path = os.path.join(base_path, self.datadir)
self.root_path = root_path self.root_path = root_path
@@ -84,7 +85,7 @@ class DataModule(AbstractDataModule):
# Load the dataset to the memory # Load the dataset to the memory
# Dataset has target property, root path, and transform # Dataset has target property, root path, and transform
source = './NAS-Bench-201-v1_1-096897.pth' source = './NAS-Bench-201-v1_1-096897.pth'
dataset = Dataset(source=source, root=root_path, target_prop=target, transform=None) dataset = Dataset(source=source, root=root_path, target_prop=target, transform=None, cfg=self.cfg)
self.dataset = dataset self.dataset = dataset
# self.api = dataset.api # self.api = dataset.api
@@ -384,7 +385,7 @@ class DataModule_original(AbstractDataModule):
def test_dataloader(self): def test_dataloader(self):
return self.test_loader return self.test_loader
def new_graphs_to_json(graphs, filename): def new_graphs_to_json(graphs, filename, cfg):
source_name = "nasbench-201" source_name = "nasbench-201"
num_graph = len(graphs) num_graph = len(graphs)
@@ -491,8 +492,9 @@ def new_graphs_to_json(graphs, filename):
'num_active_nodes': len(active_nodes), 'num_active_nodes': len(active_nodes),
'transition_E': transition_E.tolist(), 'transition_E': transition_E.tolist(),
} }
import os
with open(f'/nfs/data3/hanzhang/nasbenchDiT/graph_dit/nasbench-201-meta.json', 'w') as f: # with open(f'/nfs/data3/hanzhang/nasbenchDiT/graph_dit/nasbench-201-meta.json', 'w') as f:
with open(os.path.join(cfg.general.root,'nasbench-201-meta.json'), 'w') as f:
json.dump(meta_dict, f) json.dump(meta_dict, f)
return meta_dict return meta_dict
@@ -656,9 +658,11 @@ def graphs_to_json(graphs, filename):
json.dump(meta_dict, f) json.dump(meta_dict, f)
return meta_dict return meta_dict
class Dataset(InMemoryDataset): class Dataset(InMemoryDataset):
def __init__(self, source, root, target_prop=None, transform=None, pre_transform=None, pre_filter=None): def __init__(self, source, root, target_prop=None, transform=None, pre_transform=None, pre_filter=None, cfg=None):
self.target_prop = target_prop self.target_prop = target_prop
source = '/nfs/data3/hanzhang/nasbenchDiT/graph_dit/NAS-Bench-201-v1_1-096897.pth' self.cfg = cfg
# source = '/nfs/data3/hanzhang/nasbenchDiT/graph_dit/NAS-Bench-201-v1_1-096897.pth'
source = os.path.join(self.cfg.general.root, 'NAS-Bench-201-v1_1-096897.pth')
self.source = source self.source = source
# self.api = API(source) # Initialize NAS-Bench-201 API # self.api = API(source) # Initialize NAS-Bench-201 API
# print('API loaded') # print('API loaded')
@@ -679,7 +683,8 @@ class Dataset(InMemoryDataset):
return [f'{self.source}.pt'] return [f'{self.source}.pt']
def process(self): def process(self):
source = '/nfs/data3/hanzhang/nasbenchDiT/graph_dit/NAS-Bench-201-v1_1-096897.pth' # source = '/nfs/data3/hanzhang/nasbenchDiT/graph_dit/NAS-Bench-201-v1_1-096897.pth'
source = self.cfg.general.nas_201
# self.api = API(source) # self.api = API(source)
data_list = [] data_list = []
@@ -748,7 +753,8 @@ class Dataset(InMemoryDataset):
return edges,nodes return edges,nodes
def graph_to_graph_data(graph, idx, train_loader, searchspace, args, device): # def graph_to_graph_data(graph, idx, train_loader, searchspace, args, device):
def graph_to_graph_data(graph, idx, args, device):
# def graph_to_graph_data(graph): # def graph_to_graph_data(graph):
ops = graph[1] ops = graph[1]
adj = graph[0] adj = graph[0]
@@ -797,7 +803,7 @@ class Dataset(InMemoryDataset):
args.batch_size = 128 args.batch_size = 128
args.GPU = '0' args.GPU = '0'
args.dataset = 'cifar10' args.dataset = 'cifar10'
args.api_loc = '/nfs/data3/hanzhang/nasbenchDiT/graph_dit/NAS-Bench-201-v1_1-096897.pth' args.api_loc = self.cfg.general.nas_201
args.data_loc = '../cifardata/' args.data_loc = '../cifardata/'
args.seed = 777 args.seed = 777
args.init = '' args.init = ''
@@ -812,11 +818,12 @@ class Dataset(InMemoryDataset):
args.num_modules_per_stack = 3 args.num_modules_per_stack = 3
args.num_labels = 1 args.num_labels = 1
searchspace = nasspace.get_search_space(args) searchspace = nasspace.get_search_space(args)
train_loader = dt.get_data(args.dataset, args.data_loc, args.trainval, args.batch_size, args.augtype, args.repeat, args) # train_loader = dt.get_data(args.dataset, args.data_loc, args.trainval, args.batch_size, args.augtype, args.repeat, args)
self.swap_scores = [] self.swap_scores = []
import csv import csv
# with open('/nfs/data3/hanzhang/nasbenchDiT/graph_dit/swap_results.csv', 'r') as f: # with open('/nfs/data3/hanzhang/nasbenchDiT/graph_dit/swap_results.csv', 'r') as f:
with open('/nfs/data3/hanzhang/nasbenchDiT/graph_dit/swap_results_cifar100.csv', 'r') as f: with open(self.cfg.general.swap_result, 'r') as f:
# with open('/nfs/data3/hanzhang/nasbenchDiT/graph_dit/swap_results_cifar100.csv', 'r') as f:
reader = csv.reader(f) reader = csv.reader(f)
header = next(reader) header = next(reader)
data = [row for row in reader] data = [row for row in reader]
@@ -824,12 +831,15 @@ class Dataset(InMemoryDataset):
device = torch.device('cuda:2') device = torch.device('cuda:2')
with tqdm(total = len_data) as pbar: with tqdm(total = len_data) as pbar:
active_nodes = set() active_nodes = set()
file_path = '/nfs/data3/hanzhang/nasbenchDiT/graph_dit/nasbench-201-graph.json' import os
# file_path = '/nfs/data3/hanzhang/nasbenchDiT/graph_dit/nasbench-201-graph.json'
file_path = os.path.join(self.cfg.general.root, 'nasbench-201-graph.json')
with open(file_path, 'r') as f: with open(file_path, 'r') as f:
graph_list = json.load(f) graph_list = json.load(f)
i = 0 i = 0
flex_graph_list = [] flex_graph_list = []
flex_graph_path = '/nfs/data3/hanzhang/nasbenchDiT/graph_dit/flex-nasbench201-graph.json' # flex_graph_path = '/nfs/data3/hanzhang/nasbenchDiT/graph_dit/flex-nasbench201-graph.json'
flex_graph_path = os.path.join(self.cfg.general.root,'flex-nasbench201-graph.json')
for graph in graph_list: for graph in graph_list:
print(f'iterate every graph in graph_list, here is {i}') print(f'iterate every graph in graph_list, here is {i}')
arch_info = graph['arch_str'] arch_info = graph['arch_str']
@@ -837,7 +847,8 @@ class Dataset(InMemoryDataset):
for op in ops: for op in ops:
if op not in active_nodes: if op not in active_nodes:
active_nodes.add(op) active_nodes.add(op)
data = graph_to_graph_data((adj_matrix, ops),idx=i, train_loader=train_loader, searchspace=searchspace, args=args, device=device) # data = graph_to_graph_data((adj_matrix, ops),idx=i, train_loader=train_loader, searchspace=searchspace, args=args, device=device)
data = graph_to_graph_data((adj_matrix, ops),idx=i, args=args, device=device)
i += 1 i += 1
if data is None: if data is None:
pbar.update(1) pbar.update(1)
@@ -1140,6 +1151,7 @@ class DataInfos(AbstractDatasetInfos):
self.task = task_name self.task = task_name
self.task_type = tasktype_dict.get(task_name, "regression") self.task_type = tasktype_dict.get(task_name, "regression")
self.ensure_connected = cfg.model.ensure_connected self.ensure_connected = cfg.model.ensure_connected
self.cfg = cfg
# self.api = dataset.api # self.api = dataset.api
datadir = cfg.dataset.datadir datadir = cfg.dataset.datadir
@@ -1182,14 +1194,15 @@ class DataInfos(AbstractDatasetInfos):
# len_ops.add(len(ops)) # len_ops.add(len(ops))
# graphs.append((adj_matrix, ops)) # graphs.append((adj_matrix, ops))
# graphs = read_adj_ops_from_json(f'/nfs/data3/hanzhang/nasbenchDiT/graph_dit/flex-nasbench201-graph.json') # graphs = read_adj_ops_from_json(f'/nfs/data3/hanzhang/nasbenchDiT/graph_dit/flex-nasbench201-graph.json')
graphs = read_adj_ops_from_json(f'/nfs/data3/hanzhang/nasbenchDiT/graph_dit/nasbench-201-graph.json') # graphs = read_adj_ops_from_json(f'/nfs/data3/hanzhang/nasbenchDiT/graph_dit/nasbench-201-graph.json')
graphs = read_adj_ops_from_json(os.path.join(self.cfg.general.root, 'nasbench-201-graph.json'))
# check first five graphs # check first five graphs
for i in range(5): for i in range(5):
print(f'graph {i} : {graphs[i]}') print(f'graph {i} : {graphs[i]}')
# print(f'ops_type: {ops_type}') # print(f'ops_type: {ops_type}')
meta_dict = new_graphs_to_json(graphs, 'nasbench-201') meta_dict = new_graphs_to_json(graphs, 'nasbench-201', self.cfg)
self.base_path = base_path self.base_path = base_path
self.active_nodes = meta_dict['active_nodes'] self.active_nodes = meta_dict['active_nodes']
self.max_n_nodes = meta_dict['max_n_nodes'] self.max_n_nodes = meta_dict['max_n_nodes']
@@ -1396,11 +1409,12 @@ def compute_meta(root, source_name, train_index, test_index):
'transition_E': tansition_E.tolist(), 'transition_E': tansition_E.tolist(),
} }
with open(f'/nfs/data3/hanzhang/nasbenchDiT/graph_dit/nasbench201.meta.json', "w") as f: # with open(f'/nfs/data3/hanzhang/nasbenchDiT/graph_dit/nasbench201.meta.json', "w") as f:
with open(os.path.join(self.cfg.general.root, 'nasbench201.meta.json'), "w") as f:
json.dump(meta_dict, f) json.dump(meta_dict, f)
return meta_dict return meta_dict
if __name__ == "__main__": if __name__ == "__main__":
dataset = Dataset(source='nasbench', root='/nfs/data3/hanzhang/nasbenchDiT/graph-dit', target_prop='Class', transform=None) dataset = Dataset(source='nasbench', root='/zhome/academic/HLRS/xmu/xmuhanma/nasbenchDiT/graph_dit/', target_prop='Class', transform=None)

View File

@@ -23,6 +23,9 @@ class Graph_DiT(pl.LightningModule):
self.test_only = cfg.general.test_only self.test_only = cfg.general.test_only
self.guidance_target = getattr(cfg.dataset, 'guidance_target', None) self.guidance_target = getattr(cfg.dataset, 'guidance_target', None)
from nas_201_api import NASBench201API as API
self.api = API(cfg.general.nas_201)
input_dims = dataset_infos.input_dims input_dims = dataset_infos.input_dims
output_dims = dataset_infos.output_dims output_dims = dataset_infos.output_dims
nodes_dist = dataset_infos.nodes_dist nodes_dist = dataset_infos.nodes_dist
@@ -41,7 +44,7 @@ class Graph_DiT(pl.LightningModule):
self.args.batch_size = 128 self.args.batch_size = 128
self.args.GPU = '0' self.args.GPU = '0'
self.args.dataset = 'cifar10-valid' self.args.dataset = 'cifar10-valid'
self.args.api_loc = '/nfs/data3/hanzhang/nasbenchDiT/graph_dit/NAS-Bench-201-v1_1-096897.pth' self.args.api_loc = cfg.general.nas_201
self.args.data_loc = '../cifardata/' self.args.data_loc = '../cifardata/'
self.args.seed = 777 self.args.seed = 777
self.args.init = '' self.args.init = ''
@@ -79,6 +82,7 @@ class Graph_DiT(pl.LightningModule):
self.node_dist = nodes_dist self.node_dist = nodes_dist
self.active_index = active_index self.active_index = active_index
self.dataset_info = dataset_infos self.dataset_info = dataset_infos
self.cur_epoch = 0
self.train_loss = TrainLossDiscrete(self.cfg.model.lambda_train) self.train_loss = TrainLossDiscrete(self.cfg.model.lambda_train)
@@ -162,6 +166,62 @@ class Graph_DiT(pl.LightningModule):
return pred return pred
def training_step(self, data, i): def training_step(self, data, i):
if self.cfg.general.type != 'accelerator' and self.current_epoch > self.cfg.train.n_epochs / 5 * 4:
samples_left_to_generate = self.cfg.general.samples_to_generate
samples_left_to_save = self.cfg.general.samples_to_save
chains_left_to_save = self.cfg.general.chains_to_save
samples, all_ys, batch_id = [], [], 0
def graph_reward_fn(graphs, true_graphs=None, device=None, reward_model='swap'):
rewards = []
if reward_model == 'swap':
import csv
with open(self.cfg.general.swap_result, 'r') as f:
reader = csv.reader(f)
header = next(reader)
data = [row for row in reader]
swap_scores = [float(row[0]) for row in data]
for graph in graphs:
node_tensor = graph[0]
node = node_tensor.cpu().numpy().tolist()
def nodes_to_arch_str(nodes):
num_to_op = ['input', 'nor_conv_1x1', 'nor_conv_3x3', 'avg_pool_3x3', 'skip_connect', 'none', 'output']
nodes_str = [num_to_op[node] for node in nodes]
arch_str = '|' + nodes_str[1] + '~0|+' + \
'|' + nodes_str[2] + '~0|' + nodes_str[3] + '~1|+' +\
'|' + nodes_str[4] + '~0|' + nodes_str[5] + '~1|' + nodes_str[6] + '~2|'
return arch_str
arch_str = nodes_to_arch_str(node)
reward = swap_scores[self.api.query_index_by_arch(arch_str)]
rewards.append(reward)
return torch.tensor(rewards, dtype=torch.float32, requires_grad=True).unsqueeze(0).to(device)
old_log_probs = None
bs = 1 * self.cfg.train.batch_size
to_generate = min(samples_left_to_generate, bs)
to_save = min(samples_left_to_save, bs)
chains_save = min(chains_left_to_save, bs)
# batch_y = test_y_collection[batch_id : batch_id + to_generate]
batch_y = torch.ones(to_generate, self.ydim_output, device=self.device)
cur_sample, log_probs = self.sample_batch(batch_id, to_generate, batch_y, save_final=to_save,
keep_chain=chains_save, number_chain_steps=self.number_chain_steps)
# samples = samples + cur_sample
samples.append(cur_sample)
reward = graph_reward_fn(cur_sample, device=self.device)
advantages = (reward - torch.mean(reward)) / (torch.std(reward) + 1e-6) #
if old_log_probs is None:
old_log_probs = log_probs.clone()
ratio = torch.exp(log_probs - old_log_probs)
print(f"ratio: {ratio.shape}, advantages: {advantages.shape}")
unclipped_loss = -advantages * ratio
clipped_loss = -advantages * torch.clamp(ratio, 1.0 - self.cfg.ppo.clip_param, 1.0 + self.cfg.ppo.clip_param)
loss = torch.mean(torch.max(unclipped_loss, clipped_loss))
return {'loss': loss}
else:
data_x = F.one_hot(data.x, num_classes=12).float()[:, self.active_index] data_x = F.one_hot(data.x, num_classes=12).float()[:, self.active_index]
data_edge_attr = F.one_hot(data.edge_attr, num_classes=2).float() data_edge_attr = F.one_hot(data.edge_attr, num_classes=2).float()
@@ -196,14 +256,15 @@ class Graph_DiT(pl.LightningModule):
def on_train_epoch_start(self) -> None: def on_train_epoch_start(self) -> None:
if self.current_epoch / self.trainer.max_epochs in [0.25, 0.5, 0.75, 1.0]: if self.current_epoch / self.trainer.max_epochs in [0.25, 0.5, 0.75, 1.0]:
print("Starting train epoch {}/{}...".format(self.current_epoch, self.trainer.max_epochs)) # if self.cur_epoch / self.cfg.train.n_epochs in [0.25, 0.5, 0.75, 1.0]:
print("Starting train epoch {}/{}...".format(self.cur_epoch, self.cfg.train.n_epochs))
self.start_epoch_time = time.time() self.start_epoch_time = time.time()
self.train_loss.reset() self.train_loss.reset()
self.train_metrics.reset() self.train_metrics.reset()
def on_train_epoch_end(self) -> None: def on_train_epoch_end(self) -> None:
if self.current_epoch / self.trainer.max_epochs in [0.25, 0.5, 0.75, 1.0]: if self.current_epoch / self.cfg.train.n_epochs in [0.25, 0.5, 0.75, 1.0]:
log = True log = True
else: else:
log = False log = False
@@ -240,6 +301,7 @@ class Graph_DiT(pl.LightningModule):
self.val_X_logp.compute(), self.val_E_logp.compute()] self.val_X_logp.compute(), self.val_E_logp.compute()]
if self.current_epoch / self.trainer.max_epochs in [0.25, 0.5, 0.75, 1.0]: if self.current_epoch / self.trainer.max_epochs in [0.25, 0.5, 0.75, 1.0]:
# if self.cur_epoch / self.cfg.train.n_epochs in [0.25, 0.5, 0.75, 1.0]:
print(f"Epoch {self.current_epoch}: Val NLL {metrics[0] :.2f} -- Val Atom type KL {metrics[1] :.2f} -- ", print(f"Epoch {self.current_epoch}: Val NLL {metrics[0] :.2f} -- Val Atom type KL {metrics[1] :.2f} -- ",
f"Val Edge type KL: {metrics[2] :.2f}", 'Val loss: %.2f \t Best : %.2f\n' % (metrics[0], self.best_val_nll)) f"Val Edge type KL: {metrics[2] :.2f}", 'Val loss: %.2f \t Best : %.2f\n' % (metrics[0], self.best_val_nll))
with open("validation-metrics.csv", "a") as f: with open("validation-metrics.csv", "a") as f:
@@ -283,10 +345,15 @@ class Graph_DiT(pl.LightningModule):
num_examples = self.val_y_collection.size(0) num_examples = self.val_y_collection.size(0)
batch_y = self.val_y_collection[start_index:start_index + to_generate] batch_y = self.val_y_collection[start_index:start_index + to_generate]
all_ys.append(batch_y) all_ys.append(batch_y)
samples.extend(self.sample_batch(batch_id=ident, batch_size=to_generate, y=batch_y, cur_sample, logprobs = self.sample_batch(batch_id=ident, batch_size=to_generate, y=batch_y,
save_final=to_save, save_final=to_save,
keep_chain=chains_save, keep_chain=chains_save,
number_chain_steps=self.number_chain_steps)) number_chain_steps=self.number_chain_steps)
samples.extend(cur_sample)
# samples.extend(self.sample_batch(batch_id=ident, batch_size=to_generate, y=batch_y,
# save_final=to_save,
# keep_chain=chains_save,
# number_chain_steps=self.number_chain_steps))
ident += to_generate ident += to_generate
start_index += to_generate start_index += to_generate
@@ -336,7 +403,7 @@ class Graph_DiT(pl.LightningModule):
print(f"Epoch {self.current_epoch}: Test NLL {metrics[0] :.2f} -- Test Atom type KL {metrics[1] :.2f} -- ", print(f"Epoch {self.current_epoch}: Test NLL {metrics[0] :.2f} -- Test Atom type KL {metrics[1] :.2f} -- ",
f"Test Edge type KL: {metrics[2] :.2f}") f"Test Edge type KL: {metrics[2] :.2f}")
## final epcoh ## final epoch
samples_left_to_generate = self.cfg.general.final_model_samples_to_generate samples_left_to_generate = self.cfg.general.final_model_samples_to_generate
samples_left_to_save = self.cfg.general.final_model_samples_to_save samples_left_to_save = self.cfg.general.final_model_samples_to_save
chains_left_to_save = self.cfg.general.final_model_chains_to_save chains_left_to_save = self.cfg.general.final_model_chains_to_save
@@ -359,9 +426,9 @@ class Graph_DiT(pl.LightningModule):
# batch_y = test_y_collection[batch_id : batch_id + to_generate] # batch_y = test_y_collection[batch_id : batch_id + to_generate]
batch_y = torch.ones(to_generate, self.ydim_output, device=self.device) batch_y = torch.ones(to_generate, self.ydim_output, device=self.device)
cur_sample = self.sample_batch(batch_id, to_generate, batch_y, save_final=to_save, cur_sample, log_probs = self.sample_batch(batch_id, to_generate, batch_y, save_final=to_save,
keep_chain=chains_save, number_chain_steps=self.number_chain_steps) keep_chain=chains_save, number_chain_steps=self.number_chain_steps)
samples = samples + cur_sample samples.extend(cur_sample)
all_ys.append(batch_y) all_ys.append(batch_y)
batch_id += to_generate batch_id += to_generate
@@ -601,6 +668,12 @@ class Graph_DiT(pl.LightningModule):
assert (E == torch.transpose(E, 1, 2)).all() assert (E == torch.transpose(E, 1, 2)).all()
if self.cfg.general.type != 'accelerator':
if self.trainer.training or self.trainer.validating:
total_log_probs = torch.zeros([self.cfg.general.samples_to_generate, 10], device=self.device)
elif self.trainer.testing:
total_log_probs = torch.zeros([self.cfg.general.final_model_samples_to_generate, 10], device=self.device)
# Iteratively sample p(z_s | z_t) for t = 1, ..., T, with s = t - 1. # Iteratively sample p(z_s | z_t) for t = 1, ..., T, with s = t - 1.
for s_int in reversed(range(0, self.T)): for s_int in reversed(range(0, self.T)):
s_array = s_int * torch.ones((batch_size, 1)).type_as(y) s_array = s_int * torch.ones((batch_size, 1)).type_as(y)
@@ -609,21 +682,24 @@ class Graph_DiT(pl.LightningModule):
t_norm = t_array / self.T t_norm = t_array / self.T
# Sample z_s # Sample z_s
sampled_s, discrete_sampled_s = self.sample_p_zs_given_zt(s_norm, t_norm, X, E, y, node_mask) sampled_s, discrete_sampled_s, log_probs = self.sample_p_zs_given_zt(s_norm, t_norm, X, E, y, node_mask)
X, E, y = sampled_s.X, sampled_s.E, sampled_s.y X, E, y = sampled_s.X, sampled_s.E, sampled_s.y
total_log_probs += log_probs
# Sample # Sample
sampled_s = sampled_s.mask(node_mask, collapse=True) sampled_s = sampled_s.mask(node_mask, collapse=True)
X, E, y = sampled_s.X, sampled_s.E, sampled_s.y X, E, y = sampled_s.X, sampled_s.E, sampled_s.y
molecule_list = [] graph_list = []
for i in range(batch_size): for i in range(batch_size):
n = n_nodes[i] n = n_nodes[i]
atom_types = X[i, :n].cpu() node_types = X[i, :n].cpu()
edge_types = E[i, :n, :n].cpu() edge_types = E[i, :n, :n].cpu()
molecule_list.append([atom_types, edge_types]) graph_list.append((node_types , edge_types))
return molecule_list total_log_probs = torch.sum(total_log_probs, dim=-1)
return graph_list, total_log_probs
def sample_p_zs_given_zt(self, s, t, X_t, E_t, y_t, node_mask): def sample_p_zs_given_zt(self, s, t, X_t, E_t, y_t, node_mask):
"""Samples from zs ~ p(zs | zt). Only used during sampling. """Samples from zs ~ p(zs | zt). Only used during sampling.
@@ -675,6 +751,14 @@ class Graph_DiT(pl.LightningModule):
# with condition = P_t(A_{t-1} |A_t, y) # with condition = P_t(A_{t-1} |A_t, y)
prob_X, prob_E, pred = get_prob(noisy_data) prob_X, prob_E, pred = get_prob(noisy_data)
log_prob_X = torch.log(torch.gather(prob_X, -1, X_t.long()).squeeze(-1)) # bs, n
log_prob_E = torch.log(torch.gather(prob_E, -1, E_t.long()).squeeze(-1)) # bs, n, n
# Sum the log_prob across dimensions for total log_prob
log_prob_X = log_prob_X.sum(dim=-1)
log_prob_E = log_prob_E.sum(dim=(1, 2))
log_probs = torch.cat([log_prob_X, log_prob_E], dim=-1)
### Guidance ### Guidance
if self.guidance_target is not None and self.guide_scale is not None and self.guide_scale != 1: if self.guidance_target is not None and self.guide_scale is not None and self.guide_scale != 1:
uncon_prob_X, uncon_prob_E, pred = get_prob(noisy_data, unconditioned=True) uncon_prob_X, uncon_prob_E, pred = get_prob(noisy_data, unconditioned=True)
@@ -810,4 +894,4 @@ class Graph_DiT(pl.LightningModule):
out_one_hot = utils.PlaceHolder(X=X_s, E=E_s, y=y_t) out_one_hot = utils.PlaceHolder(X=X_s, E=E_s, y=y_t)
out_discrete = utils.PlaceHolder(X=X_s, E=E_s, y=y_t) out_discrete = utils.PlaceHolder(X=X_s, E=E_s, y=y_t)
return out_one_hot.mask(node_mask).type_as(y_t), out_discrete.mask(node_mask, collapse=True).type_as(y_t) return out_one_hot.mask(node_mask).type_as(y_t), out_discrete.mask(node_mask, collapse=True).type_as(y_t), log_probs

View File

@@ -177,6 +177,66 @@ def test(cfg: DictConfig):
os.chdir(cfg.general.resume.split("checkpoints")[0]) os.chdir(cfg.general.resume.split("checkpoints")[0])
# os.environ["CUDA_VISIBLE_DEVICES"] = cfg.general.gpu_number # os.environ["CUDA_VISIBLE_DEVICES"] = cfg.general.gpu_number
model = Graph_DiT(cfg=cfg, **model_kwargs) model = Graph_DiT(cfg=cfg, **model_kwargs)
if cfg.general.type == "accelerator":
graph_dit_model = model
from accelerate import Accelerator
from accelerate.utils import set_seed, ProjectConfiguration
accelerator_config = ProjectConfiguration(
project_dir=os.path.join(cfg.general.log_dir, cfg.general.name),
automatic_checkpoint_naming=True,
total_limit=cfg.general.number_checkpoint_limit,
)
accelerator = Accelerator(
mixed_precision='no',
project_config=accelerator_config,
# gradient_accumulation_steps=cfg.train.gradient_accumulation_steps * cfg.train.n_epochs,
gradient_accumulation_steps=cfg.train.gradient_accumulation_steps,
)
optimizer = graph_dit_model.configure_optimizers()
train_dataloader = datamodule.train_dataloader()
train_dataloader = accelerator.prepare(train_dataloader)
val_dataloader = datamodule.val_dataloader()
val_dataloader = accelerator.prepare(val_dataloader)
test_dataloader = datamodule.test_dataloader()
test_dataloader = accelerator.prepare(test_dataloader)
optimizer, graph_dit_model = accelerator.prepare(optimizer, graph_dit_model)
# train_epoch
from pytorch_lightning import seed_everything
seed_everything(cfg.train.seed)
for epoch in range(cfg.train.n_epochs):
print(f"Epoch {epoch}")
graph_dit_model.train()
graph_dit_model.cur_epoch = epoch
graph_dit_model.on_train_epoch_start()
for batch in train_dataloader:
optimizer.zero_grad()
loss = graph_dit_model.training_step(batch, epoch)['loss']
accelerator.backward(loss)
optimizer.step()
graph_dit_model.on_train_epoch_end()
for batch in val_dataloader:
if epoch % cfg.train.check_val_every_n_epoch == 0:
graph_dit_model.eval()
graph_dit_model.on_validation_epoch_start()
graph_dit_model.validation_step(batch, epoch)
graph_dit_model.on_validation_epoch_end()
# test_epoch
graph_dit_model.test()
graph_dit_model.on_test_epoch_start()
for batch in test_dataloader:
graph_dit_model.test_step(batch, epoch)
graph_dit_model.on_test_epoch_end()
elif cfg.general.type == "Trainer":
trainer = Trainer( trainer = Trainer(
gradient_clip_val=cfg.train.clip_grad, gradient_clip_val=cfg.train.clip_grad,
# accelerator="cpu", # accelerator="cpu",

View File

@@ -83,7 +83,8 @@ class TaskModel():
return adj_ops_pairs return adj_ops_pairs
def feature_from_adj_and_ops(adj, ops): def feature_from_adj_and_ops(adj, ops):
return np.concatenate([adj.flatten(), ops]) return np.concatenate([adj.flatten(), ops])
filename = '/home/stud/hanzhang/nasbenchDiT/graph_dit/nasbench-201-graph.json' # filename = '/home/stud/hanzhang/nasbenchDiT/graph_dit/nasbench-201-graph.json'
filename = '/zhome/academic/HLRS/xmu/xmuhanma/nasbenchDiT/graph_dit/nasbench-201-graph.json'
graphs = read_adj_ops_from_json(filename) graphs = read_adj_ops_from_json(filename)
adjs = [] adjs = []
opss = [] opss = []

15626
graph_dit/swap_results.csv Normal file

File diff suppressed because it is too large Load Diff

File diff suppressed because one or more lines are too long