update print and output json statements

This commit is contained in:
mhz
2024-07-03 15:26:12 +02:00
parent 73324083ce
commit d44900c8ba
2 changed files with 74 additions and 7 deletions

View File

@@ -102,6 +102,7 @@ class TaskModel():
mask = ~np.isnan(labels)
labels = labels[mask]
features = features[mask]
# features = str(features)
self.model.fit(features, labels)
y_pred = self.model.predict(features)
perf = self.metric_func(labels, y_pred)
@@ -136,7 +137,7 @@ class TaskModel():
print(f'{self.task_name} performance: {perf}')
return perf
def __call__(self, smiles_list):
def __call(self, smiles_list):
fps = []
mask = []
for i,smiles in enumerate(smiles_list):
@@ -153,6 +154,54 @@ class TaskModel():
scores = scores * np.array(mask)
return np.float32(scores)
def __call__(self, graph_list):
# def read_adj_ops_from_json(filename):
# with open(filename, 'r') as json_file:
# data = json.load(json_file)
# adj_ops_pairs = []
# for item in data:
# adj_matrix = np.array(item['adj_matrix'])
# ops = item['ops']
# acc = item['train'][0]['accuracy']
# adj_ops_pairs.append((adj_matrix, ops, acc))
# return adj_ops_pairs
def feature_from_adj_and_ops(ops, adj):
return np.concatenate([adj.flatten(), ops])
# filename = '/home/stud/hanzhang/nasbenchDiT/graph_dit/nasbench-201-graph.json'
# graphs = read_adj_ops_from_json(filename)
# adjs = []
# opss = []
# accs = []
# features = []
# for graph in graphs:
# adj, ops, acc=graph
# op_code = [op_type[op] for op in ops]
# adjs.append(adj)
# opss.append(op_code)
# accs.append(acc)
features = []
print(f"graphlist: {graph_list[0]}")
print(f"len graphlist: {len(graph_list)}")
for op_code, adj in graph_list:
features.append(feature_from_adj_and_ops(op_code, adj))
print(f"len features: {len(features)}")
# print(f"features: {features[0].shape}")
features = np.stack(features)
features = features.astype(np.float32)
print(f"features shape: {features.shape}")
fps = features
if 'classification' in self.task_type:
scores = self.model.predict_proba(fps)[:, 1]
else:
scores = self.model.predict(fps)
# scores = scores * np.array(mask)
return np.float32(scores)
@classmethod
def fingerprints_from_mol(cls, mol): # use ECFP4
features_vec = AllChem.GetMorganFingerprintAsBitVect(mol, 2, nBits=2048)